Article information

2014 , Volume 19, ¹ 6, p.19-41

Gusev O.I.

Algorithm for surface waves calculation above a movable bottom within the frame of plane nonlinear dispersive model

The influence of the effects due to frequency dispersion on tsunami wave patterns is investigated. The numerical algorithm developed is based on the partitioning of the fully nonlinear dispersive shallow water equations with a movable bottom into elliptic and hyperbolic subproblems, which are solved alternately at each time step. At that, equations of the hyperbolic subproblem differ from the classic shallow water system in the right side only. Therefore, well-examined finite-difference schemas are implemented for both subproblems. In this paper, we describe in detail the integro-interpolation method for the elliptic subproblem. The hyperbolic subproblem is solved by the explicit schema of predictorcorrector type. For open bounds of the computational region Zommerfeld type conditions are proposed for both subproblems. Obtained numerical solutions are compared with computations based on shallow water model and experimental data. Regarding the problem of disintegration of initial disturbance above the flat bottom, it is checked out that as the source width is decreased so dispersion is significantly increased. During the simulations of the landslide-generated tsunamis, we detect the loss of adequacy of the model when the ratio of the landslide length to its depth is small. In other cases the model reproduce wave pattern better than the classic shallow water model. In addition, significant dependence of the surface wave amplitudes versus the landslide width is demonstrated. Good agreement of numerical solutions with experimental data obtained in the problem of interaction of solitary wave with the conical island shows the applicability of the model in complex multi linked domains.

[full text]
Keywords: Underwater landslide, surface waves, tsunami, shallow water equations, nonlinear dispersive equations, numerical simulation, finite-difference schema

Author(s):
Gusev Oleg Igorevitch
PhD.
Position: Senior Research Scientist
Office: Federal Research Center for Information and Computational Technologies
Address: 630090, Russia, Novosibirsk, 6, Acad. Lavrentjev avenue
Phone Office: (383) 334-91-18
E-mail: GusevOI@ict.sbras.ru
SPIN-code: 3995-2134

References:
[1] Tappin D.R., Watts P., Grilli S.T. The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event . Natural Hazards Earth Syst. Sci. 2008; 8: 243-266.
[2] Ward S.N., Day S. The 1963 Landslide and Flood at Vaiont Reservoir Italy. A tsunmi ball simulation. Ital. J. Geosci. 2011; 130(1): 16-26.
[3] Didenkulova I.I., Pelinovskij E.N. Tsunami-like events in Russian inland waters [Cunamipodobnye javlenija v rossijskih vnutrennih vodoemah]. Fundamental'naja i prikladnaja gidrofizika. 2009; 3(5): 52-96. (In Russ.)
[4] Lynett P.J., Liu P.L.-F. A numerical study of the run-up generated by three-dimensional landslides . J. Geophys. Res. 2005; 110. C03006, doi:10.1029/2004JC002443.
[5] Eletskij S.V., Majorov Ju.B., Maksimov V.V., Nudner I.S., Fedotova Z.I., Khazhojan M.G., Khakimzjanov G.S., Chubarov L.B. Simulation of surface waves generation by a moving part of the bottom down the coastal slope [Modelirovanie generacii poverhnostnyh voln peremeshheniem fragmenta dna po beregovomu sklonu]. Sovmestnyj vyp. zhurnalov Vychisl. tehnologii i Vestnik KazNU im. al'-Farabi. 2004; 9(ch. II.): 194-206. (In Russ.)
[6] Grilli S. T., Watts P. Tsunami generation by submarine mass failure. I : Modeling, experimental validation, and sensitivity analyses . Journal of Waterway Port Coastal and Ocean Engineering. 2005;
131(6): 283-297.
[7] Enet F., Grilli S.T. Experimental study of tsunami generation by three-dimensional rigid underwater landslides. Journal of Waterway Port Coastal and Ocean Engineering. 2007; 133(6): 442-454.
[8] Watts P., Grilli S.T. Modeling of waves generated by a moving submerged body. Applications to underwater landslides. Engineering Analysis with Boundary Elements. 1999; 23: 645-656.
[9] Khakimzjanov G.S., Shokin Ju.I., Barakhnin V.B., Shokina N.Ju. Numerical simulation of fluid flows with surface waves [Chislennoe modelirovanie techenij zhidkosti s poverhnostnymi volnami]. Novosibirsk: Izd-vo SO RAN; 2001. 394. (In Russ.)
[10] Green A.E., Naghdi P.M. A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 1976; 78(part 2): 237-246.
[11] Zheleznjak M.I., Pelinovskij E.N. , Physico-mathematical models of the tsunami climbing a beach [Fiziko-matematicheskie modeli nakata tsunami na bereg] .Nakat tsunami na bereg. Gor'kij: IPF AN SSSR; 1985. 8-33. (In Russ.)
[12] Bazdenkov S.V., Morozov N.N., Poguce O.P. Dispersion effects in two dimensional hydrodynamics [Dispersionnye jeffekty v dvumernoj gidrodinamike]. DAN SSSR. 1987; 293(4): 818-822. (In Russ.)
[13] Aleshkov Ju.Z. Flow and waves in the ocean [Techenija i volny v okeane]. SPb: Izd-vo S.-Peterburgskogo universiteta;1996. 226.(In Russ.)
[14] Lynett P.J., Liu P.L.-F. A numerical study of submarine-landslide-generated waves and run-up.Proc. Royal Society of London. A. 2002; 458: 2885-2910.
[15] Peregrine D.H. Long waves on a beach . J. Fluid Mech. 1967; 27(pt 4.): 815-827.
[16] Dorfman A.A., Jagovdik G.I. The equations of approximate nonlinear dispersion theory of long gravitational waves caused by a moving bottom and propagating in basin of variable depth
[Uravnenija priblizhennoj nelinejno-dispersionnoj teorii dlinnyh gravitacionnyh voln, vozbuzhdaemyh peremeshhenijami dna i rasprostranjajushhihsja v bassejne peremennoj glubiny]. Chislen. metody meh. sploshnoj sredy: Sb. nauchn. tr. AN SSSR, Sib. otd-nie, VC, ITPM. 1977; 8(1): 36-48. (In Russ.)
[17] Shokin Ju.I., Chubarov L.B. On the approaches to a numerical modeling of landslide mechanism of tsunami wave generation [O podhodah k chislennomu modelirovaniju opolznevogo mehanizma generacii voln cunami]. Vychisl. tehnologii. 2006; 11( Special'nyj vypusk, Chast' 2): 100-111.(In Russ.)
[18] Fedotova Z.I., Pashkova V.Yu. Methods of construction and the analysis of difference schemes for nonlinear dispersive models of wave hydrodynamics . Russ. J. Numer. Anal. Math. Modelling. 1997; 12(2): 127-149.
[19] Wei G., Kirby J.T., Grilli S.T., Subramanya R. A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. J. Fluid Mech. 1995; 294: 71-92.
[20] Gusev O.I. On an algorithm for surface waves calculation within the framework of nonlinear dispersive model with a movable bottom [Ob algoritme rascheta poverhnostnyh voln v ramkah nelinejno-dispersionnoj modeli na podvizhnom dne]. 2012; 17(5): 46-64. (In Russ.)
[21] Gusev O.I., Shokina N.Ju., Kutergin V.A., Khakimzjanov G.S. Numerical modelling of surface waves generated by underwater landslide in a reservoir [Modelirovanie poverhnostnyh voln, generiruemyh podvodnym opolznem v vodohranilishhe]. Vychisl. tehnologii. 2013; 18(5): 74-90. (In Russ.)
[22] Shokin Ju.I., Bejzel' S.A., Gusev O.I., Khakimzjanov G.S., Chubarov L.B., Shokina N.Ju. Numerical modelling of dispersive waves generated by landslide motion. Bulletin of the South Ural State University.Series "Mathematical Modelling, Programming & Computer Software"[ Chislennoe issledovanie dispersionnykh voln, voznikajushhikh pri dvizhenii podvodnogo opolznja]. Vestnik JuUrGU. 2014; 7(1): 121-133. (In Russ.)
[23] Shokin Ju. I., Khakimzjanov G. S. Predictor-corrector schema preserving hydraulic jump [Skhema prediktor-korrektor, sohranjajushhaja gidravlicheskij skachok ]. Vychisl. tehnologii. 2006; 11(Spec. vypusk, chast' 2): 92-99.(In Russ.)
[24] Briggs M.J., Synolakis C.E., Harkins G.S., Green D.R. Laboratory experiments of tsunami runup on circular island. Pure and Appl. Geoph. 1995; 144( 3/4): 569-593.
[25] Fedotova Z.I., Khakimzjanov G. S. On Analysis of Conditions for Derivation of Nonlinear-Dispersive Equations [Analiz uslovij vyvoda NLD-uravnenij].Vychisl. tehnologii. 2012; 17(5): 94-108. (In Russ.)
[26] Barakhnin V.B., Khakimzyanov G.S. On the algorithm for one nonlinear dispersive shallow-water model .Rus. J. Numer. Anal. Math. Modelling. 1997; 12( 4): 293-317.
[27] Kirby J.T., Shi F., Tehranirad B., Harris J.C., Grilli S.T. Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects . Ocean Modelling. 2013; 62: 39-55.
[28] Bejzel' S.A., Khakimzjanov G.S. Numerical modelling of dispersive waves generated by landslide motion on uneven bottom [Chislennoe modelirovanie poverkhnostnyh voln, voznikajushhikh pri dvizhenii podvodnogo opolznja po nerovnomu dnu ].Vychisl. tehnologii. 2010; 15(1) : 105-119.(In Russ.)
[29] Beisel S.A., Chubarov L.B., Khakimzyanov G.S. Simulation of surface waves generated by an underwater landslide moving over an uneven slope .Russian Journal of Numerical Analysis and Mathematical Modelling. 2011; 26(1): 17-38.
[30] Chubarov L.B., Fedotova Z.I., Shkuropatskii D.A. Investigation of computational models of long surface waves in the problem of interaction of a solitary wave with a conic island. Russ.J. Numer. Anal. Math. Modelling. 1998; 13(4): 289-306.
[31] Chubarov L.B., Fedotova Z.I. An effective high accuracy method for tsunami runup numerical modeling .Submarine Landslides and Tsunamis: Proceedings of the NATO Advanced Research Workshop on Underwater Ground Failures on Tsunami Generation, Modeling, Risk and Mitigation, May 23-26, 2001, Istanbul, Turkey. Dordrecht: Kluwer, 2003. 203-216.
[32] Liu P.L.-F., Cho Y.-S., Briggs M.J., Kanoglu U., Synolakis C.E. Runup of solitary waves on a circular island. J. Fluid Mech. 1995; 302: 259-285.

Bibliography link:
Gusev O.I. Algorithm for surface waves calculation above a movable bottom within the frame of plane nonlinear dispersive model // Computational technologies. 2014. V. 19. ¹ 6. P. 19-41
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2025 FRC ICT