Article information
2017 , Volume 22, ¹ 3, p.91-102
Tarasenkov M.V., Belov V.V.
Comparison of the complexity of algorithms for statistical simulation of impulse response of bistatic communication channel on scattered radiation and bistatic laser sensing
To check our algorithms test comparisons with results of other authors were made. Checking shows that the difference between the results is less then calculation error. To achieve main purpose we performed a large number of calculation series for homogeneous medium. The comparison shows that for the optical thickness of the source-intersection path-receiver less than 1 the proposed algorithm is about 5 times more efficient than the double local estimation algorithm and 5.9 times more efficient than the combined estimation algorithm. For larger optical thicknesses and low degree of elongation of the scattering phase function in the forward direction, the algorithm of combined estimate has higher efficiency, whereas for high degree of elongation of the scattering phase function, the algorithm of double local estimate has higher efficiency.
[full text] Keywords: Monte Carlo method, multiple scattering, optical communications, bistatic sensing, pulsed transfer characteristic
Author(s): Tarasenkov Michail Viktorovich PhD. , Professor Position: Research Scientist Office: V.E. Zuev Institute of Atmospheric Optics SB RAS Address: 634021, Russia, Tomsk, 1, Academician Zuev Sq.
Phone Office: (3822) 49-10-81 E-mail: tmv@iao.ru Belov Vladimir Vasilyevich Dr. , Professor Position: Research Scientist Office: V.E. Zuev Institute of Atmospheric Optics SB RAS, National Research Tomsk State University Address: 634021, Russia, Tomsk, 1, Academician Zuev Sq.
Phone Office: (3822) 49 22 37 E-mail: belov@iao.ru
References: [1] Yin, H., Chang, S., Jia, H., Yang, Ji., Yang, Ju. Non-line-of-sight multiscatter propagation Model. Journal of the Optical Society of America A. 2009; 26(11):2466-2469. [2] Ding, H., Chen, G., Majumdar, A. K., Sadler, B. M., Xu, Z. Modeling of non-line-ofsight ultraviolet scattering channels for communication. IEEE journal on selected areas in communications. 2009; 27(9):1535-1544. [3] Yin, H., Jia, H., Zhang, H., Wang, X., Chang, S., Yang, J. Vectorized polarization-sensitive model of non-line-of-sight multiple-scatter propagation. Journal of the Optical Society of America A. 2011; 28(10):2082-2085. [4] Han, D., Fan, X., Zhang, K., Zhu, R. Research on multiple-scattering channel with Monte Carlo model in UV atmosphere communication. Applied optics. 2013; 52(22):5516-5522. [5] Xiao, H., Zuo, Y., Wu, J., Li, Y., Lin, J. Non-line-of-sight ultraviolet single-scatter propagation model in random turbulent medium. Optics letters. 2013; 38(17):3366-3369. [6] Belov, V.V., Tarasenkov, M.V., Abramochkin, V.N., Ivanov, V.V., Fedosov, A.V., Troitskii, V.O., Shiyanov, D.V. Atmospheric bistatic communication channels with scattering. Part 1. Methods of study. Atmospheric and oceanic optics. 2013; 26(5):364-370. [7] Belov, V.V., Tarasenkov, M.V., Abramochkin, V.N., Ivanov, V.V., Fedosov, A.V., Gridnev, Yu.V., Troitskii, V.O., Dimaki, V.A. Atmospheric Bistatic Communication Channels with Scattering Part 2. Field Experiments in 2013. Atmospheric and Oceanic Optics. 2015; 28(3):202–208. [8] Belov, V.V., Tarasenkov, M.V., Abramochkin, V.N., Troitskii, V.O. Over-the-horizon Optoelectronic Communication Systems. Russian Physics Journal. 2014; 57(7):202-208. [9] Belov, V.V., Tarasenkov, M.V., Abramochkin, V.N. Bistatic Atmospheric Optoelectronic Communication Systems (Field Experiments). Technical Physics Letters. 2014; 40(10):871–874. [10] Yin, H., Chang, S., Wang, X., Yang, Ji., Yang, Ju., Tan, J. Analytical model of non-lineof-sight single-scatter propagation. Journal of the Optical Society of America A. 2010; 27(7):1505-1509. [11] Elshimy, M.A., Hranilovic, S. Non-line-of-sight single-scatter propagation model for noncoplanar geometries. Journal of the Optical Society of America A. 2011; 28(3):420-428. [12] Vorontsov, M.A., Dudorov, V.V., Zyryanove, M.O., Kolosov, V.V., Filimonov, G.A. Bit error rate in free space optical communication systems with a partially coherent transmitting beam. Atmospheric and ocean optics. 2013; 26 (3):185-189. [13] Polyanskiy, S.V., Ignatov, A.N. Defining the distance of atmospheric link with necessary readiness factor for Novosibirsk. Vestnik SibGUTI. 2009; (4):73-82. (In Russ.) [14] Pozhidaev, V.N. Osushhestvimost’ linij svjazi ul’trafioletovogo diapazona, osnovannyh na jeffekte molekuljarnogo i ajerozol’nogo rassejanija v atmosfere. Journal of Communications Technology and Electronics. 1977; 22(10):2190 – 2192. (In Russ.) [15] Reagan, J.A., Byrne, D.M., King, M.D., Spinhirne, J.D., Herman, B.M. Determination of the Complex Refractive- Index and Size Distribution of Atmospheric Particulates from Bistatic-Monostatic Lidar and Solar Radiometer Measurements. Journal of Geophysical Research: Oceans. 1980; 85(C3):1591-1599. [16] Meki, K., Yamaguchi, K., Li, X., Saito, Y., Kawahara, T.D., Nomura, A. Range-Resolved Bistatic Imaging Lidar for the Measurement of the Lower Atmosphere. Optics letters. 1996; 21(17):1318-1320. [17] Sugimoto, N. Two-Color Dual-Polarization Pulsed Bistatic Lidar for Measuring Water Cloud Droplet Size. Optical Review. 2000; 7(3):235-240. [18] Barnes, J.E., Sharma, N.C.P., Kaplan, T.B. Atmospheric aerosol profiling with a bistatic imaging lidar system. Applied Optics. 2007; 46(15):2922-2929. [19] Olofson, K.F.G., Witt, G., Peterson, J.B.C. Bistatic lidar mesurements of clouds in the Nordic Arctic region. Applied Optics. 2008; 47(26):4777-4786. [20] Kablukova, E.G., Kargin, B.A. Efficient discrete stochastic modification for local estimates of the Monte Carlo method for problems of laser sounding of scattering media. Computational technologies. 2012; 17(3):70-82. ( In Russ.) [21] Marchuk, G.I., Mikhailov, G.A., Nazaraliev, M.A., Darbinjan, RA., Kargin, B.A., Elepov, B.S. The Monte Carlo methods in atmospheric optics. Heidelberg, Germany: Springer-Verlag; 1980: 209. [22] Belov, V.V., Tarasenkov, M.V. Three algorithms of statistical simulation in problems of optical communication on scattered radiation and bistatic sensing. Atmospheric and oceanic optics. 2016; 29(5):397–403. ( In Russ.) [23] Belov, V.V., Tarasenkov, M.V. Algoritmy statisticheskogo modelirovaniya impul’snykh reaktsij bistaticheskikh kanalov svyazi. Trudy Mezhdunarodnoy konferentsii «Aktual’nye problemy vychislitel’noy i prikladnoy matematiki – 2015», posvyashhennoy 90-letiyu so dnya rozhdeniya akademika Guriya Ivanovicha Marchuka. Institut vychislitel’noy matematiki i matematicheskoy geofiziki Sibirskogo otdeleniya Rossiyskoy akademii nauk. Novosibirsk. October 19-23, 2015. Novosibirsk: Abvey; 2015:95-101. ( In Russ.) [24] Lotova,G.Z. Modification of the double local estimate of the Monte Carlo method in radiation transfer theory. Ryssian Journal of Numerical Analysis and Mathematical Modeling. 2011; 26(5):491-500. [25] Mikhailov, G.A., Lotova, G.Z. A numerical statistical estimate for a particle flux with finite Variance. Doklady Mathematics. 2012; 86(3):743-746.
Bibliography link: Tarasenkov M.V., Belov V.V. Comparison of the complexity of algorithms for statistical simulation of impulse response of bistatic communication channel on scattered radiation and bistatic laser sensing // Computational technologies. 2017. V. 22. ¹ 3. P. 91-102
|