Article information
2017 , Volume 22, ¹ 5, p.110-122
Hidirova M.B., Shakarov A.R.
Mathematical modelling for number dynamics of skin epidermis cellular communities at norm and anomalies
Purpose. The purpose of this paper is to develop mathematical models for dynamics of the skin epidermis cellular communities under the norm and the skin diseases. Methodology. The paper describes the results made by using methods of quantitative and qualitative analysis of functional-differential equations. Findings. The paper concludes that number dynamics of the skin epidermis cellular communities have the following regimes: rest, stable stationary state, regular oscillations which can be identified as normal condition of the epidermis activity and irregular fluctuations with the destructive changes that conform to pathological condition of the skin. Originality/value. The paper provides a new mathematical and computer models able to describe regulatory mechanisms in the skin epidermis at the norm and anomalies taking into account spatial and temporal relations.
[full text] Keywords: mathematical modeling, functional-differential equations, auto-oscillations, dynamical chaos, epidermis, the skin diseases, living systems, organism
Author(s): Hidirova Mohiniso Bahromovna PhD. Position: Senior Research Scientist Office: Centre for the development of software and hardware program complexes at Tashkent University of Informational Technologies Address: 100084, Uzbekistan, Tashkent, Kichik xalqa yuli, 2
Phone Office: (99890)3514673 E-mail: mhidirova@yandex.ru Shakarov Alisher Rasulovich Office: Centre for the development of software and hardware program complexes at Tashkent University of Informational Technologies Address: 100084, Uzbekistan, Tashkent, Kichik xalqa yuli, 2
Phone Office: (99893)5288022
References: [1] Akovbyan, V.A., Khidirov, B.N. O matematicheskom modelirovanii nekotorykh regulyatornykh mekhanizmov kletok slizistoy kishechnika [On mathematical modeling some regulatory mechanisms of cells of the intestinal mucosa]. Kletochnye mekhanizmy prisposobi-tel'nykh protsessov. Sbornik nauchnykh trudov TashGosMI. Vyp.1. Tashkent: TashGosMI; 1974:42-49. (In Russ.) [2] Khidirov, B.N. Izbrannye raboty po matematicheskomu modelirovaniyu regulyatoriki zhivykh system [Selected works on mathematical modeling of iving systems regulatorika]. Moscow: Izhevsk; 2014: 304. (In Russ.) [3] Akimov, V. G., Chistyakova, T. V. Mistakes in reception of dermatologic patients. Klinicheskaya dermatologiya i venerologiya. 2016; 15(1): 88-95. (In Russ.) [4] Kruglova, L.S. Vitiligo: etiology, pathogenesis and therapy. Russian Journal of Skin and Venereal Diseases. 2016; 19(4):241-244. (In Russ.) [5] Yusupova, L.A. Features of concomitant hepatic pathology in patients with psoriasis. Lechashchiy vrach. 2016; (8):41-44. (In Russ.) [6] Voropaeva O.F., Shokin Y.I. Numerical simulation of feedback p53 - Mdm2 in biological process of apoptosis. Computational Technologies. 2012; 17(6):47-63. (In Russ.) [7] Zhang, H., Hou, W., Henrot, L., Schnebert, S., Dumas, M., Heusele, C., Yang, J. Modelling epidermis homoeostasis and psoriasis pathogenesis. J R Soc Interface. 2015; 12: 20141071. [8] Adra, S., Sun, T., MacNeil, S., Holcombe, M., Smallwood, R. Development of a three dimensional multiscale computational model of the human epidermis. PLoS ONE. 2010; (5): e8511. DOI:10.1371. [9] Laptev, M. V. , Nikulin, N. K. A mathematical model of paracrine regulation of the proliferative activity of epidermis with the participation of T lymphocytes. Biophysics. 2010; 55(2):305-316. [10] Samtsov, A.V., Barbinov V.V. Dermatovenereology: Textbook for medical universities. SPb.: SpetsLit; 2008: 352. (In Russ.) [11] Kichigina, T.N., Grushin, V.N., Belikova, I.S., Myadelets, O.D. Melanocytes: structure, functions, methods of detection, role in skin pathology. Vestnik of Vitebsk State Medical University. 2007; (4): 5-16.(In Russ.) [12] Khidirov, B.N. Living systems regulatorika: the qualitative research. Doklady AN RUz. 1998; (8):12-15. (In Russ.) [13] Aliev, B.R., Hidirov, B.N., Saidalieva, M., Hidirova, M.B. Quantitative Study of Cellular Mechanisms of HIV Infection’s Pathogenesis. Engineering Letters. 2007; 13(3):304-307. [14] Abduvaliev, A., Saidalieva, M., Hidirova, M., Gildieva, Ì. Mathematical Modeling of the Thyroid Regulatory Mechanisms. American Journal of Medical Sciences and Medicine. 2015; 3(3):28-32. DOI: 10.12691/ajmsm-3-3-1. [15] Aliev, B.R., Khidirov, B.N., Saydalieva, M. Quantitative analysis of control mechanisms of immune system cellular regulatorika during HIV infection pathogenesis. Infektsiya, immunitet i farmakologiya. 2010; (1-2):23-27. (In Russ.) [16] Khidirova, M.B., Shakarov, A.R. Programma dlya kachestvennogo analiza funktsional'no-differentsial'nykh uravneniy gudvinovskogo tipa [Program for qualitative analysis of Goodwin type functional-differential equations]. DGU 02890. 10/12/2014. (In Russ.) [17] El’sgol’ts, L.E., Norkin, S.B. Introduction to the Theory and Application of Differential Equations with Deviating Arguments. New York: Academic Press; 1973: 356. [18] Bellman, R., Cooke, K. L. Differential-Difference Equations. New York: Academic Press; 1963: 462.
Bibliography link: Hidirova M.B., Shakarov A.R. Mathematical modelling for number dynamics of skin epidermis cellular communities at norm and anomalies // Computational technologies. 2017. V. 22. ¹ 5. P. 110-122
|