Article information
2020 , Volume 25, ¹ 4, p.83-98
Kostornaya A.A., Rublev A.N., Golomolzin V.V.
The determination of the total atmospheric water vapor content over the oceans using the MTVZA-GY microwave radiometer measurements
The determination of the total atmospheric water vapor content over the cloudless ocean using the MTVZA-GY measurements in microwave range is described. The microwave scanning radiometer MTVZA-GY is located on the Russian meteorological satellites “Meteor-M” and outgoing radiation of the surface-atmosphere system is measured in 29 channels. To calculate the integrated water vapor, the adaptive searching of the optimal set of channels using regression analysis was proposed. Frequencies that are not related to water-vapor absorption lines are used as predictors. The minimum of total approximation error was obtained for selected channels and corresponding regression coefficients values. The quality control of retrieval integrated water vapor (kg/m2) was conducted with the help of the set of atmospheric profiles obtained by M. Matricardi and NCEP/NCAR Reanalysis as a priori data using the proposed method. Standard deviations (RMS) obtained by determined adaptive search for the predictors are about 3 kg/m2. Application of the method for cloudless water areas allowed finding a set of 6 channels MTVZA GY (18.7H, 23.8V, 23.8H, 57+0.32+0.025H, 57+0.32+0.01H è 183+1.4V) for which the RMS values are minimal — 4.4 kg/m2. The use of all channels of the device in the search allows reducing the error in determining the integrated water vapor content. The proposed method for recovering the content of water vapor from measurements in the channels of the MTVZA-GYa device allows an adaptive search for an optimal set of channels for different regions of the globe and find the best combinations for various climatic zones and surface types
[full text] Keywords: regression analysis, microwave radiation, atmospheric model, MTVZA-GY, integrated water vapor, total atmospheric water vapor content
doi: 10.25743/ICT.2020.25.4.008
Author(s): Kostornaya Angelika Andreevna Position: Junior Research Scientist Office: Siberian Center of State Research Center of Space Hydrometeorology Planeta Address: 630099, Russia, Novosibirsk, Sovetskaya, Str. 30
Phone Office: (383) 363-46-05 E-mail: kostornaya@rcpod.ru SPIN-code: 9275-4228Rublev Alexey Nikolaevich Dr. , Senior Scientist Position: Deputy director Office: Siberian Center of State Research Center of Space Hydrometeorology Planeta Address: 123242, Russia, Moscow, Bolshoy Predtechenskiy str. 7
Phone Office: (499)795-20-71 E-mail: rublev@planet.iitp.ru SPIN-code: : 1850-1589Golomolzin Vladimir Victorovich PhD. , Senior Scientist Position: Head of Departament Office: Siberian Center of State Research Center of Space Hydrometeorology Planeta Address: 123242, Russia, Novosibirsk, Sovetskaya, Str. 30
Phone Office: (383)363 46 05 E-mail: vvg@rcpod.ru SPIN-code: 9275-1945 References:
1. Kondrat’ev K.Ya., Timofeev Yu.M. Meteorologicheskoe zondirovanie atmosfery iz kosmosa [Meteorological sounding of the atmosphere from space]. Moscow: Gidrometeoizdat; 1978: 280. (In Russ.)
2. Miloshevich L.M., Vomel H., Whiteman D.N., Leblanc T. Accuracy assessment and correction ofVaisala RS92 radiosonde water vapour measurements. Journal of Geophysical Research. 2009; 114: 11305–11327. DOI:10.1029/2008JD011565.
3. Wang J., Zhang L., Dai A., Van Hove T.V., Van Baelen J. A near-global, 2-hourly data set ofatmospheric precipitable water from ground-based GPS measurements. Journal of Geophysical Research. 2007; (112):D11107. DOI:10.1029/2006JD007529.
4. Shchukin G.G., Bulkin V.V. Meteorological passive-active radar observations. Journal of Communications Technology and Electronics. 2011; 56(5):509.
5. Zhang X.A, Pang J. A comparison between atmospheric water vapour content retrieval methods usingMSG2-SEVIRI thermal-IR data. International Journal of Remote Sensing. 2015; 36(19):5075–5086.
6. Mitnik L.M., Mitnik M.L. Retrieval of atmospheric and ocean surface parameters from ADEOS-IIAdvanced Microwave Scanning Radiometer (AMSR) data: Comparison of errors of global and regional algorithms. Radio science. 2003; 38(4):30-1–30-10.
7. Obraztsov S.P., Shchukin G.G. Recovery of meteorological atmospheric characteristics and surfacetemperature from satellite measurements. Methods and Devices of Information Transmission and Processing. 2001; (1):92–96. (In Russ.)
8. Basharinov A.E., Gurvich A.S., Egorov S.T. Basharinov A.E., Gurvich A.S., Egorov S.T. Radioizluchenie Zemli kak planety [The radio emission of the Earth as a planet]. Moscow: Nauka; 1974: 187. (In Russ.)
9. Boldyrev V.V., Il’gasov P.A., Pancov V.Yu., Prohorov Yu.N., Strel’nikov N.I., Chernyy I.V.,Chernyavskiy G.M., Yakovlev V.V. Microwave scanner / sounder MTVZA-GY on “METEOR-M” No. 1. Electromechanical Matters. VNIIEM Studies. 2008; (107):22–25. (In Russ.)
10. Timofeev Yu.M., Vasil’ev A.V. Teoreticheskie osnovy atmosfernoy optiki [Theoretical fundamentalsof atmospheric optics]. S.-Peterburg: Nauka; 2003: 475. (In Russ.)
11. Kalinin N.A., Tolmacheva N.I. Kosmicheskie metody issledovaniy v meteorologii [Space researchmethods in meteorology]. Perm’: Permskiy gosudarstvennyy universitet. 2005; 347. (In Russ.)
12. Karavaev D.M., Shchukin G.G. Issledovanie variaciy harakteristik mikrovolnovogo izlucheniya i parametrov vlagosoderzhaniya atmosfery [Examination of microwave radiation characteristics variations and parameters of atmospheric moisture]. Radiofizicheskie Metody v Distancionnom Zondirovanii Sred. Materialy VII Vserossiyskoy Nauchnoy Konferentsii (Radiophysical Methods in Remote Sensing. Materials of the VII All-Russian Scientific Conference). Murom: Muromskiy Institut (Filial) Gosudarstvennogo Obrazovatel’nogo Uchrezhdeniya Vysshego Professional’nogo Obrazovaniya “Vladimirskiy Gosudarstvennyy Universitet im. Aleksandra Grigor’evicha i Nikolaya Grigor’evicha Stoletovykh”. 2016: 73–76. (In Russ.)
13. Karavaev D.M., Shchukin G.G. Metod mikrovolnovoy radiometrii atmosfery v zadachah validatsiisputnikovoy informatsii i radionavigatsionnogo obespecheniya [The method of microwave radiometry of the atmosphere in the in the problems of validating the satellite information and radio navigation support]. Problemy Distantsionnogo Zondirovaniya, Rasprostraneniya i Difraktsii Radiovoln. Sbornik Trudov Konferentsii “VII Vserossiyskie Armandovskie Chteniya” (Remote Sensing Problems of Distribution and Diffraction of Radio Waves. Proceedings of the Conference “VII All-Russian Armandov readings”). Murom: Muromskiy Institut (Filial) Gosudarstvennogo Obrazovatel’nogo Uchrezhdeniya Vysshego Professional’nogo Obrazovaniya “Vladimirskiy Gosudarstvennyy Universitet im. Aleksandra Grigor’evicha i Nikolaya Grigor’evicha Stoletovykh”. 2017: 22–32. (In Russ.)
14. Pyatkin F.V., Golomolzin V.V., Kostornaya A.A. Application of regression analysis for calculationsbased on the data of the IKFS-2 and MTVZA devices of the METEOR-2 satellite. The International Exhibition and Scientific Congress “Interexpo GEO-Siberia”. The Collection of Materials. [Mezhdunarodnyy Nauchnyy Kongress “InterEkspo Geo-Sibir’-2019”. Sbornik Materialov v 9 t.]. Novosibirsk: SGUGiT; 2019: (4):3–10. (In Russ.)
15. Venttsel’ E.S. Teoriya veroyatnostey [Probability theory]. Moscow: Izdatel’stvo Nauka; 1969: 576. (In Russ.)
16. Deeter M.N. A new satellite retrieval method for precipitable water vapor over land and ocean.Geophys. Res. Lett. 2007; 34(2):L02815. DOI:10.1029/2006GL028019.
17. Climate data guide. CERES: IGBP land classification. Available at: https://climatedataguide. ucar.edu/climate-data/ceres-igbp-land-classification (accessed 29.03.2019).
18. Matricardi M. The generation of RTTOV regression coefficients for IASI and AIRS using a new profiletraining set and a new line-by-line database. ECMWF Research Department Technical Memorandum. 2008; (564). Available at: https://www.ecmwf.int/sites/default/files/elibrary/2008/ 11040-generation-rttov-regression-coefficients-iasi-and-airs-using-new-profiletraining-set-and-new.pdf (accessed 28.07.2019).
19. Matricardi M. RTIASI-4: A new version of the ECMWF fast radiative transfer model for the infraredatmospheric sounding interferometer. ECMWF Research Dept. Tech. Memo. 2003; (425). Available at: https://www.ecmwf.int/en/elibrary/11039-rtiasi-4-new-version-ecmwf-fast-radiativetransfer-model-infrared-atmospheric (accessed 28.07.2019).
20. Kistler R. The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bulletinof the American Meteorological Society. 2001; (82):247–268.
21. Han J., Roads J.O. U.S. climate sensitivity simulated with the NCEP regional spectral model. ClimaticChange. 2004; 62(1–3):115–154.
22. Uspenskiy A.B., Rublev A.N., Rusin E.V., Pyatkin V.P. A fast radiative transfer model for theMETEOR-M satellite-based hyperspectral IR sounders. Izvestiya. Atmospheric and Oceanic Physics. 2014; 50(9):968–977.
23. Pyatkin V.P., Rusin E.V. Development of the software for fast simulation of measurements forsatellitebased infrared sounders. The International Exhibition and Scientific Congress “Interexpo GEO-Siberia”. The collection of materials. Novosibirsk: Siberian State University of Geosystems and Technologies; 2014; (1):1–6. (In Russ.) Available at: https://cyberleninka.ru/article/n/razvitieprogrammnogo-obespecheniya-bystrogo-modelirovaniya-izmereniy-sputnikovyh-infrakrasnyh -zondirovschikov/viewer
24. Liu Q., English S., Weng F. Fast microwave ocean emissivity model version 5 (FASTEM-5). IEEETransactions on Geoscience and Remote Sensing. 2012: 50.
25. Zabolotskikh E., Timofeyev Y., Mitnik L., Uspenskii A. Errors of microwave satellite measurementsof sea surface wind speed, atmospheric water vapor, and cloud liquid water. Izvestiya. Atmospheric and Oceanic Physics. 2002; 38(5):670–675.
26. Gayfulin D., Tsyrulnikov M., Uspensky A. Assessment and adaptive correction of observations inatmospheric sounding channels of the satellite microwave radiometer MTVZA GY. Pure and Applied Geophysics. 2018; (175):3653–3670.
27. Andersson E. Requirements for observational data: The rolling review of requirements. Available at: https://www.wmo.int/pages/prog/www/OSY/Documentation/RRR-process.pdf (accessed 28.07.2019). Bibliography link: Kostornaya A.A., Rublev A.N., Golomolzin V.V. The determination of the total atmospheric water vapor content over the oceans using the MTVZA-GY microwave radiometer measurements // Computational technologies. 2020. V. 25. ¹ 4. P. 83-98
|