Article information
2021 , Volume 26, ¹ 1, p.99-111
Kotov K.Y., Maltsev A.S., Prishlyak E.E., Sobolev M.A.
Group control complex for unmanned vehicles
The purpose of this work is to develop the test bench for modelling and controlling a group of wheeled and multi-rotor unmanned vehicles. Such test bench should solve the problems of studying the control algorithms of individual robots and their groups which ensure the formation of a group of robots with a given orientation in space and automatically control their joint movement along the desired trajectory with preserving the spatial configuration. The solution is achieved using the proposed software and hardware architecture, which is a set of independent programs that exchange signals through the Redis shared data server or through the Robot Operating System. The result is the control system for group of mobile robots that includes the motion surface, the technical vision system, mathematical methods of motion control and specialized software. This test bench can reduce the costs associated with the development, implementation, and testing of unmanned vehicle control systems.
[full text] Keywords: mobile robots, motion control, simulation, technical vision
doi: 10.25743/ICT.2021.26.1.008
Author(s): Kotov Konstantin Yurievich PhD. Position: Senior Research Scientist Office: Institute of Automation and Electrometry SB RAS Address: 630090, Russia, Novosibirsk, Academician Koptyug Avenue, 1
Phone Office: (383) 3332625 E-mail: kotov@idisys.iae.nsk.su SPIN-code: 2929-6626Maltsev Alexander Sergeevich PhD. Position: Research Scientist Office: Institute of Automation and Electrometry SB RAS Address: 630090, Russia, Novosibirsk, Academician Koptyug Avenue, 1
Phone Office: (383) 3332625 E-mail: alexandr@idisys.iae.nsk.su SPIN-code: 6104-5922Prishlyak Elizaveta Egorovna Position: Programmer Office: Institute of Automation and Electrometry SB RAS Address: 630090, Russia, Novosibirsk, Academician Koptyug Avenue, 1
Phone Office: (383) 3332625 E-mail: liza-lis01@mail.ru Sobolev Maksim Andreevich Position: Junior Research Scientist Office: Institute of Automation and Electrometry SB RAS Address: 630090, Russia, Novosibirsk, Academician Koptyug Avenue, 1
Phone Office: (383) 3332625 E-mail: max@idisys.iae.nsk.su SPIN-code: 7045-8270 References:
1. Ogren P., Fiorelli E., Ehrich L.N. Cooperative control of mobile sensor networks: Adaptive gradient climbing in a distributed environment. IEEE Transactions on Automatic Control. 2004; 49(8):1292–1302.
2. Jose V., Lounis A., Youcef M. Adaptive leader – follower formation in cluttered environment using dynamic target reconfiguration. Distributed Autonomous Robotic Systems. Part of the Springer Tracts in Advanced Robotics book series. 2016; (112):237–254.
3. Ortiz J.S., Aldas J.V., Andaluz V.H. Mobile manipulators for cooperative transportation of objects in common. Towards Autonomous Robotic Systems: 18th Annual Conference (TAROS, Guildford, UK, July 19–21, 2017). Part of the Lecture Notes in Computer Science. 2017; (10454):651–660. DOI:10.1007/978-3-319-64107-2_53.
4. Hausman K., Muller J., Hariharan A., Ayanian N., Sukhatme G. Cooperative multi-robot control for target tracking with onboard sensing. The International Journal of Robotics Research. 2015; (34):1660–1677.
5. Chamanbaz M., Mateo D., Zoss B.M., Tokic G., Wilhelm E., Bouffanais R., Dick K. Yue P. Swarm-enabling technology for multi-robot systems. Frontiers in Robotics and AI. 2017; (4):11–22.
6. Zheng W., Zhou F., Wang Z. External vision based robust pose estimation system for a quadrotor in outdoor environments. Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods (ICPRAM-2014). Setubal: Science and Technology Publications; 2014: 718–723.
7. Millard A.G., Hilder J.A., Timmis J., Winfield A.F.T. A low-cost real-time tracking infrastructure for ground-based robot swarms. Proceedings of the 9th International Conference (ANTS 2014). Gewerbestr: Springer International Publishing; 2014: 172–184.
8. Borrelli F., Subramanian D., Raghunathan A.U., Biegler L.T. MILP and NLP techniques for centralized trajectory planning of multiple unmanned air vehicles. Proceedings of the 2006 American Control Conference. Minneapolis: IEEE; 2006: 217–223.
9. Figat M., Zielinski C. Methodology of designing multi-agent robot control systems utilising hierarchical Petri nets. IEEE International Conference on Robotics and Automation (ICRA-2019). Montreal: IEEE; 2019: 44–50.
10. Belokon’ S.A., Zolotukhin Yu.N., Kotov K.Yu., Mal’tsev A.S., Nesterov A.A., Sobolev M.A., Filippov M.N., Yan A.P. Control of the mobile robots in a leader – follower formation. Mekhatronika, Avtomatizatsiya, Upravlenie. 2016; 17(3):166–172. (In Russ.)
11. Kalyaev I.A., Kapustyan S.G., Gaiduk A.R. Self-organizing distributed control systems of intellectual robot groups constructed on the basis of network model. Upravlenie Bol’shimi Sistemami. 2010; (30.1):605–639. (In Russ.)
12. Luo L., Chakraborty N., Sycara K. Distributed algorithm design for multirobot task assignment with deadlines for tasks. Proceedings 2013 IEEE International Conference on Robotics and Automation. 2013; 3007–3013.
13. Quigley M., Conley K., Gerkey B.P., Faust J., Foote T., Leibs J., Wheeler R., Ng A.Y. Ros: An open-source robot operating system. Proceedings of ICRA Workshop on Open Source Software. IEEE; 2009; (3):142–146.
14. Lochmatter T., Roduit P., Cianci C., Correll N., Jacot J., Martinoli A. Swistrack — A flexible open source tracking software for multi-agent systems. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE; 2008: 4004–4010.
15. ROS AR TRACK ALVAR Package Summary. Available at: http://wiki.ros.org/ar_track_alvar.
16. Yurkevich E.I. Upravlenie robotami i robototekhnicheskimi sistemami: Uchebnoe posobie [Management of Robots and Robotic Systems]. SPb: SPbGTU; 2000: 171. (In Russ.)
17. Park B.S, Yoo S.J. Adaptive leader – follower formation control of mobile robots with unknown skidding and slipping effects. International Journal of Control, Automation and Systems. 2015; 13(3):587–594.
18. Krutko P.D. Obratnye zadachi dinami v teorii avtomaticheskogo upravleniya [Inverse Problems in Control System Theory]. Moscow: Mashinostroenie; 2004: 576. (In Russ.)
19. Mal’tsev A.S., Mamonova K.E., Shchekochikhin T.P. Design control systems for robotic devices using web technologies and ROS. Proceedings of the X All-Russian youth scientific and technical conference “Youth. Technic. Space”. Saint Petersburg, Russia, April 18–20, 2018. Saint Petersburg: Baltic State Technical University; 2018; (2):116–120. (In Russ.) Bibliography link: Kotov K.Y., Maltsev A.S., Prishlyak E.E., Sobolev M.A. Group control complex for unmanned vehicles // Computational technologies. 2021. V. 26. ¹ 1. P. 99-111
|