Article information
2021 , Volume 26, ¹ 3, p.61-85
Sharaya I.A., Shary S.P.
Reserve of characteristic inclusion for interval linear systems of relations
In this paper, we consider interval linear inclusions 𝐶𝑥 ⊆ 𝑑 in the Kaucher complete interval arithmetic. These inclusions are important both on their own and because they provide equivalent and useful descriptions for the so-called quantifier solutions and AE-solutions to interval systems of linear algebraic relations of the form 𝐴𝑥 𝜎 𝑏, where 𝐴 is an interval 𝑚 × 𝑛-matrix, 𝑥 ∈ R 𝑛 , 𝑏 is an interval 𝑚-vector, and 𝜎 ∈ {=, ≤, ≥}𝑚. In other words, these are interval systems in which equations and non-strict inequalities can be mixed. Considering the inclusion 𝐶𝑥 ⊆ 𝑑 in the Kaucher complete interval arithmetic allows studing simultaneously and in a uniform way all the different special cases of quantifier solutions and AE-solutions of interval systems of linear relations, as well as using interval analysis methods. A quantitative measure, called the “inclusion reserve”, is introduced to characterize how strong the inclusion 𝐶𝑥 ⊆ 𝑑 is fulfilled. In our work, we investigate its properties and applications. It is shown that the inclusion reserve turns out to be a useful tool in the study of AE-solutions and quantifier solutions of interval linear systems of equations and inequalities. In particular, the use of the inclusion reserve helps to determine the position of a point relative to a solution set, in investigating whether the solution set is empty or not, whether a point is in the interior of the solution set, etc.
[full text] [link to elibrary.ru]
Keywords: interval linear systems, AE-solutions, quantifier solutions, solution set, characteristic inclusion, inclusion reserve, recognizing functional
doi: 10.25743/ICT.2021.26.3.005
Author(s): Sharaya Irene Alexandrovna Position: Research Scientist Office: Institute of Computational Technologies SB RAS Address: 630090, Russia, Novosibirsk, Ac. Lavrentiev ave, 6
E-mail: sharia@ict.nsc.ru Shary Sergey Petrovich Dr. , Senior Scientist Position: Leading research officer Office: Federal Research Center for Information and Computational Technologies Address: 630090, Russia, Novosibirsk, Ac. Lavrentiev ave, 6
Phone Office: (3832) 30 86 56 E-mail: shary@ict.nsc.ru SPIN-code: 9938-9344 References:
1. Kaucher E. Algebraische erweiterungen der intervallrechnung unter erhaltung der ordnungsund verbandsstrukturen. Computing Supplement 1. 1977:65–79.
2. Kaucher E. Interval analysis in the extended interval space IR. Computing Supplement 2.
1980:33–49.
3. Shary S.P. Konechnomernyy interval’nyy analiz [Finite-dimensional interval analysis]. Available at: http://www.nsc.ru/interval/InteBooks (In Russ.)
4. Kearfott B., Nakao M., Neumaier A., Rump S., Shary S.P., van Hentenryck P. Standardized notation in interval analysis. Computational Technologies. 2010; 15(1):7–13.
5. Shary S.P. Algebraic solutions to interval linear equations and their applications. Numerical Methods and Error Bounds, Proceedings of IMACS-GAMM International Symposium on Numerical Methods and Error Bounds, Oldenburg, Germany, July 9–12, 1995. Math. Research. Berlin: Akademie Verlag; 1996; (89):224–233. Available at: http://www.nsc.ru/interval/shary/Papers/Herz.pdf
6. Sharyi S.P. Algebraic approach to the analysis of linear static systems with interval uncertainty. International Journal of Computer and System Sciences. 1997; 36(3):378–387.
7. Shary S.P. A new technique in systems analysis under interval uncertainty and ambiguity. Reliable Computing. 2002; 8(5):321–418. Available at: http://www.nsc.ru/interval/shary/Papers
/ANewTech.pdf
8. Sharaya I.A. Quantifier-free descriptions for interval–quantifier linear systems. Proceedings of the Institute of Mathematics and Mechanics UB RAS (Trudy Instituta Matematiki i Mekhaniki UrO RAN).
2014; 20(2):311–323. Available at: http://www.nsc.ru/interval/sharaya/Papers/trIMM14.pdf (In Russ.)
9. Kleene S.C. Mathematical logic. N.Y.: John Wiley & Sons; 1967: 398.
10. Kuratowski K., Mostowski A. Set theory. Amsterdam; N.Y.; Oxford: North-Holland Publishing Co.; PWN — Polish Scientific Publishers; Warszawa; 1968: 417.
11. Dymova L. Soft computing in economics and finance. Springer-Verlag Berlin Heidelberg: Springer; 2011: 295. DOI:10.1007/978-3-642-17719-4.
12. Sainz M.A., Garden˜es E., Jorba L.´ Interval estimations of solution sets to real-valued systems of linear or non-linear equations. Reliable Computing. 2002; (8):283–305. DOI:10.1023/A:1016385132064.
13. Lakeyev A.V. Computational complexity of estimation of generalized solution sets for interval linear systems. Computational Technologies. 2003; 8(1):12–23. Available at: http://www.nsc.ru/interval/ lakeyev/publications/03ct.pdf
14. Goldsztejn A., Chabert G. On the approximation of linear AE-solution sets. Proceedings of the 12th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics SCAN 2006, Duisburg, Germany, September 26–29, 2006. IEEE; 2006: 18. DOI:10.1109/SCAN.2006.33.
15. Popova E. Explicit description of AE-solution sets for parametric linear systems. SIAM Journal on Matrix Analysis and Applications. 2012; 33(4):1172–1189. DOI:10.1137/120870359.
16. Rohn J. A handbook of results on interval linear problems. Electronic book. Prague: Institute of Computer Science, Academy of Sciences of the Czech Republic; 2012. Available at: http://www.nsc. ru/interval/Library/Surveys/ILinProblems.pdf
17. Hlad´ik M. AE-solutions and AE-solvability to general interval linear systems. Linear Algebra and its Applications. 2015; (465):221–238. DOI:10.1016/j.laa.2014.09.030.
18. Shary S.P. Solving the linear interval tolerance problem. Mathematics and Computers in Simulation. 1995; (39):53–85.
19. Shary S.P. An interval linear tolerance problem. Automation and Remote Control. 2004;
(65):1653–1666 DOI:10.1023/B:AURC.0000044274.25098.da.
20. Shary S.P., Sharaya I.A. Recognizing solvability of interval equations and its application to data analysis. Computational Technologies. 2013; 18(3):80–109. (In Russ.)
21. Shary S.P., Sharaya I.A. On solvability recognition for interval linear systems of equations. Optimization Letters. 2015; 10(2):247–260. DOI:10.1007/s11590-015-0891-6.
22. Shary S.P. Maximum consistency method for data fitting under interval uncertainty. Journal of Global Optimization. 2016; 66(1):111–126. DOI:10.1007/s10898-015-0340-1.
23. Shary S.P. New characterizations for the solution set to interval linear systems of equations. Applied Mathematics and Computation. 2015; (265):570–573. DOI:10.1016/j.amc.2015.05.029.
24. Noskov S.I., Lakeyev A.V. RS-solutions and quasisolutions to interval system of linear algebraic equations. Vestnik of Saint-Petersburg University. Applied mathematics. Computer science. Control processes. 2021; 17(3). — in press. (In Russ.)
25. Beeck H. Uber die Struktur und Abschaetzungen der Loesungsmenge von linearen Gleichungssystemen¨mit Intervallkoeffizienten. Computing. 1972; 10(3):231–244. DOI:10.1007/BF02316910.
26. Rockafellar R.T. Convex analysis. Princeton, NJ: Princeton University Press; 1970: 472.
27. Shary S.P. A new method for inner estimation of solution sets to interval linear systems. Modelling, Design, and Simulation of Systems with Uncertainties. Mathematical Engineering. 2011; (3):21–42. DOI:10.1007/978-3-642-15956-5_2.
28. Shary S.P. Weak and strong compatibility in data fitting problems under interval uncertainty. Advances in Data Science and Adaptive Analysis. 2020; 12(1):2050002. DOI:10.1142/S2424922X20500023.
Bibliography link: Sharaya I.A., Shary S.P. Reserve of characteristic inclusion for interval linear systems of relations // Computational technologies. 2021. V. 26. ¹ 3. P. 61-85
|