Article information

2022 , Volume 27, ą 6, p.70-87

Rukavishnikov A.V.

On the optimal set of parameters for an approximate method for solving stationary nonlinear Navier - Stokes equations with singularity

The purpose of this paper is finding the optimal set of parameters for the constructed approximate method for solving the stationary Navier – Stokes equations. The search for a solution to a nonlinear problem is reduced to a sequence of approximate linear problems using values from previous iterations in the nonlinear convective term. The peculiarity of the problem lies in the fact that the computational domain is a non-convex polygon with a re-entranter part of the domain, where the solution has sufficient smoothness. In this case, the order of convergence of the approximate solution to the exact one is significantly less than for convex regions. The proposed numerical method overcomes these difficulties. It is based on two ideas, namely, the introduction into the variational formulation of problems a weight function to some degree and special basis functions.

In the course of numerical experiments, a set of optimal parameters of the method was determined. The order of convergence of the approximate solution to the exact one of the nonlinear problem is the same for angles more than 𝜋 and significantly greater than those which use classical approaches. Part of the optimal set of free parameters of the proposed method does not depend on the value of the re-entrant angle. The optimal convergence rate is achieved without using a mesh refinement in the vicinity of the singularity point.

[full text]
Keywords: nonlinear Navier - Stokes equations, singularity, finite element method

doi: 10.25743/ICT.2022.27.6.007

Author(s):
Rukavishnikov Alexey Victorovich
PhD. , Associate Professor
Position: Leading research officer
Office: Computing Center of the Far-Eastern Branch Russian Academy of Sciences
Address: 680000, Russia, Khabarovsk, 65, Kim Yu Chen Str.
Phone Office: (4212) 70-43-42
SPIN-code: 7680-1450

References:

1. Blum H. The influence of reentrant corners in the numerical approximation of viscous flow problems. Proceedings of the Fifth GAMM-Seminar, Kiel, January 20–22, 1989. Numerical Treatment of the Navier – Stokes Equations. 1990; (30):37–46. DOI:110.1007/978-3-663-14004-7-4. Available at: https:
//link.springer.com/chapter/10.1007/978-3-663-14004-7_4.

2. Cockburn B., Kanschat G., Sch ̈otzau D., Schwab C. Local discontinuous Galerkin methods for the Stokes system. SIAM Journal of Numerical Analysis. 2002; 40(1):319–343. DOI:10.1137/S0036142900380121.

3. Schotzau D., Wihler T. Exponential convergence of mixed hp-DGFEM for Stokes flow in polygons. Numerische Mathematik. 2003; (96):339–361. DOI:10.1007/s00211-003-0478-5.

4. Kim H.H., Chung E., Lee C.S. A staggered discontinuous Galerkin method for the Stokes system. SIAM Journal of Numerical Analysis. 2013; 51(6):3327–3350. DOI:10.1137/120896037.

5. Hou Y., Han Y., Wen J. An equal-order hybridized discontinuous Galerkin method with a small pressure penalty parameter for the Stokes equations. Computers and Mathematics with Applications. 2021; 93(1):58–65. DOI:10.1016/j.camwa.2021.03.031.

6. Zhang F., Cheng J., Liu T. A reconstructed discontinuous Galerkin method for incompressible flows on arbitrary grids. Journal of Computational Physics. 2020; (418):109580. DOI:10.1016/j.jcp.2020.109580.

7. Da Veiga L.B., Brezzi F., Cangiani A., Manzini G., Marini L.D., Russo A. Basic principles of virtual element methods. Mathematical Models and Methods in Applied Sciences. 2013; 23(1):199–214. DOI:10.1142/S0218202512500492.

8. Lipnikov K., Manzini G., Shashkov M. Mimetic finite difference method. Journal of Computational Physics. 2013; (257):1163–1227. DOI:10.1016/j.jcp.2013.07.031.

9. Antonietti P.F., Da Veiga L.B., Mora D., Verani M. A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM Journal on Numerical Analysis. 2014; 52(1):386–404. DOI:10.1137/13091141X.

10. Da Veiga L.B., Lovadina C., Vacca G. Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: Mathematical Modelling and Numerical Analysis. 2017; 51(2):509–535. DOI:10.1051/m2an/2016032.

11. Wang G., Mu L., Wang Y., He Y. A pressure-robust virtual element method for the Stokes problem. Computer Methods in Applied Mechanics and Engineering. 2021; (382):113879. DOI:10.1016/j.cma.2021.113879.

12. John L., Pustejovska P., Wohlmuth B., Rude U. Energy-corrected finite element methods for the Stokes system. IMA Journal of Numerical Analysis. 2017; (37):687–729. DOI:10.1093/imanum/drw008.

13. Lubuma J.M.-S., Patidar K.C. Towards the implementation of the singular function method for singular perturbation problems. Applied Mathematics and Computation. 2009; (209):68–74. DOI:10.1016/j.amc.2008.06.026.

14. Jang D.K., Pyo J.H. Algorithms to apply finite element dual singular function method for the Stokes equations including singularities. Journal of Korean Society for Industrial and Applied Mathematics. 2019; (23):115–138. DOI:10.12941/jksiam.2019.23.115.

15. Choi H.J., Kweon J.R. A finite element method for singular solutions of the Navier – Stokes. Journal of Computational and Applied Mathematics. 2016; (292):342–362. DOI:10.1016/j.cam.2015.07.006.

16. Al Salem A., Chorfi N. Solving the Stokes problem in a domain with corners by the mortar spectral element method. Electronic Journal of Differential Equations. 2016; (337):1–16.

17. Rukavishnikov V.A., Rukavishnikov A.V. Weighted finite element method for the Stokes problem with corner singularity. Journal of Computational and Applied Mathematics. 2018; (341):144–156. DOI:10.1016/j.cam.2018.04.014.

18. Rukavishnikov A.V. A numerical approach for solving one nonlinear problem of hydrodynamics in a non-convex polygonal domain. Computational Continuum Mechanics. 2022; 15(1):19–30. DOI:10.7242/1999-6691/2022.15.1.2.

19. Gresho P.M., Sani R.L. Incompressible flow and the finite element method. Volume 2: isothermal laminar flow. N.Y.: Wiley; 2000: 624.

20. Olshanskii M.A., Reusken A. A Grad – Div stabilization for Stokes equations. Mathematics of Computation. 2004; (73):1699–1718. DOI:10.1090/S0025-5718-0301629-6.

21. Rukavishnikov V.A. Differential properties of an 𝑅𝜈 -generalized solution of the Dirichlet problem. Soviet Mathematics Doklady. 1990; (40):653–655.

22. Rukavishnikov V.A., Rukavishnikova E.I. Existence and uniqueness of an 𝑅𝜈 –generalized solution of the Dirichlet problem for the Lame system with a corner singularity. Differential Equations. 2019; 55(6):832–840. DOI:10.1134/S0012266119060107.

23. Rukavishnikov V.A., Rukavishnikova E.I. Error estimate FEM for the Nikol’skij – Lizorkin problem with degeneracy. Journal of Computational and Applied Mathematics. 2022; (403):113841. DOI:10.1016/j.cam.2021.113841.

24. Rukavishnikov V.A., Mosolapov A.O., Rukavishnikova E.I. Weighted finite element method for elasticity problem with a crack. Computers and Structures. 2021; (243):106400. DOI:10.1016/j.compstruc.2020.106400.

25. Rukavishnikov V.A. Body of optimal parameters in the weighted finite element method for the crack problem. Journal of Applied and Computational Mechanics. 2021; 7(4):2159–2170. DOI:10.22055/JACM.2021.38041.3142.

26. Rukavishnikov V.A., Tkachenko O.P. Approximate resolving equations of mathematical model of a curved thin-walled cylinder. Applied Mathematics and Computation. 2022; (422):126961. DOI:10.1016/j.amc.2022.126961.

27. Elman H.C., Silvester D.J., Wathen A.J. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford: Oxford University Press; 2005: 395.

28. Girault V., Raviart P.A. Finite element methods for Navier – Stokes equations. Theory and algorithms. Berlin; Heidelberg; New York; Tokyo: Springer-Verlag; 1986: 374.

29. Boffi D., Brezzi F., Fortin M. Mixed finite element methods and applications. Berlin: Springer; 2013: 685. DOI:10.1007/978-3-642-36519-5.

30. Rukavishnikov V.A., Rukavishnikov A.V. On the existence and uniqueness of an 𝑅𝜈 -generalized solution to the Stokes problem with corner singularity. Mathematics. 2022; 10(10):1752. DOI:10.3390/math10101752.

31. Rukavishnikov A.V., Rukavishnikov V.A. New numerical approach for the steady-state Navier –Stokes equations with corner singularity. International Journal of Computational Methods. 2022; (19):2250012. DOI:10.1142/S0219876222500128.

32. Rukavishnikov V.A., Rukavishnikov A.V. On the properties of operators of the Stokes problem with corner singularity in nonsymmetric variational formulation. Mathematics. 2022; 10(6):889. DOI:10.3390/math10060889.

33. Ciarlet P. The finite element method for elliptic problems. Amsterdam: North-Holand; 1978: 529.

34. Qin J. On the convergence of some low order mixed finite element for incompressible fluids. PhD thesis. Pennsylvania: Pennsylvania State University; 1994: 104.

35. Rukavishnikov V.A., Rukavishnikov A.V. New numerical method for the rotation form of the Oseen problem with corner singularity. Symmetry. 2019; 11(1):54. DOI:10.3390/sym11010054.

36. Bramble J.H., Pasciak J.E., Vassilev A.T. Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM Journal on Numerical Analysis. 1997; (34):1072–1092. DOI:10.1137/S0036142994273343.

37. Saad Y. Iterative methods for sparse linear systems. Minneapolis: Society for Industrial and Applied Mathematics; 2003: 547.

38. Verf ̈urth R. A review of a posteriori error estimation and adaptive mesh-refinement techniques. Chichester-Stuttgart: Wiley; 1996: 134.

39. Rukavishnikov V.A., Rukavishnikova E.I. Weighted finite-element method for Elasticity problems with singularity. Finite element method. Simulations, numerical analysis and solution techniques, eds. Pacurar Razyan. London: IntechOpen Limited; 2018; (341):295–311.

Bibliography link:
Rukavishnikov A.V. On the optimal set of parameters for an approximate method for solving stationary nonlinear Navier - Stokes equations with singularity // Computational technologies. 2022. V. 27. ą 6. P. 70-87
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2024 FRC ICT