Article information

2022 , Volume 27, ¹ 6, p.115-123

Moskvichev V.V., Nicheporchuk V.V., Postnikova U.S., Taseiko O.V.

Information system of territorial risk assessment

The paper presents the process of creating an intelligent system designed to assess and manage risks. The risk can be anthropogenic, natural, or social in nature, and relate to different territorial groups. The complexity of structuring and collecting information on the state territorial security as well as various risk assessment methods, necessitates the development of a modular multitask system. The information management system support model formalizes the problem area to justify the joint use of innovation technologies. Based on the model, system architecture has been developed. This architecture defines the composition, functionality, interaction interfaces, and organization of information resources, that were used to support management. The operation results of the system prototype is presented.

[full text]
Keywords: information system, territorial security, risk assessment

doi: 10.25743/ICT.2022.27.6.010

Author(s):
Moskvichev Vladimir Viktorovich
Dr. , Professor
Position: Director
Office: Federal Research Center for Information and Computational Technologies,Siberian Federal University
Address: 660049, Russia, Krasnoyarsk, Mira pr., 53
Phone Office: (391) 227-29-12
E-mail: krasn@ict.nsc.ru
SPIN-code: 9332-6468

Nicheporchuk Valeriy Vasilyevich
Dr.
Position: Senior Research Scientist
Office: Institut of Computing Simulation of SB RAS
Address: 660036, Russia, Krasnoyarsk, Akademgorodok, 50/44
Phone Office: (913) 830-5949
E-mail: valera@icm.krasn.ru
SPIN-code: 7018-8279

Postnikova Ulyana Sergeevna
PhD.
Position: Senior Fellow
Office: Reshetnev Siberian State University of Science and Technology,Federal Research Center for Information and Computational Technologies
Address: 660037, Russia, Krasnoyarsk, Office L-409, 410, 31, Krasnoyarsky Rabochy Av.
Phone Office: (923)-281-94-64
E-mail: ulyana-ivanova@inbox.ru
SPIN-code: 5790-6393

Taseiko Olga Viktorovna
PhD. , Associate Professor
Position: Head of Chair
Office: Federal Research Center for Information and Computational Technologies, Reshetnev Siberian State University of Science and Technology
Address: 660037, Russia, Krasnoyarsk, Office L-409, 410, 31, Krasnoyarsky Rabochy Av.
Phone Office: (923)-280-52-10
E-mail: taseiko@gmail.com
SPIN-code: 4032-4299

References:

[1] Dallat C., Salmon P., Goode N. Identifying risks and emergent risks across sociotechnical systems: the NETworked hazard analysis and risk management system (NET-HARMS). Theoretical Issues in Ergonomics Science. 2018; 19(4):456–482. DOI:10.1080/1463922X.2017.1381197. Available at: https://www.tandfonline.com/doi/abs/10.1080/1463922X.2017.1381197?journalCode=ttie20.

[2] Neirotti P., Marco A., Cagliano A.C., Scorrano F. Current trends in Smart City initiatives: some stylised facts. Cities. 2014; (38):25–36. DOI:10.1016/j.cities.2013.12.010. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0264275113001935.

[3] Scheer D. Risk governance and emerging technologies: learning from case study Integration. Journal of Risk Research. 2013; (3–4):355–368. DOI:10.1080/13669877.2012.729519. Available at: https://www.tandfonline.com/doi/abs/10.1080/13669877.2012.729519.

[4] Knijff P., Allford L., Schmelzer P. Process safety leading indicators — a perspective from Europe. Process Safety Management — Improving Performance. 2013; 32(4):332–336. DOI:10.1002/prs.11641. Available at: https://aiche.onlinelibrary.wiley.com/doi/10.1002/prs.11641.

[5] Leveson N. A systems approach to risk management through leading safety indicators. Reliability Engineering and System Safety. 2015; (136):17–34. DOI:10.1016/j.ress.2014.10.008. Available at: http://sunnyday.mit.edu/leadingindicators-published.pdf.

[6] Oien K., Utne I.B., Tinmannsvik R.K., Massaiu S. Building safety indicators: part 2 —application, practices and results. Safety Science. 2011; 49(2):162–171. Available at: https://trid.trb.org/view/1083888.

[7] Goodfellow I., Bengio Y., Courville A. Deep learning. London: MIT Press; 2016: 653.

[8] Kossiakoff A., Sweet W.N., Seymor S.J., Biemer S.M. System engineering principles and practice. New Jersey: Wiley; 2011: 624.

[9] Malinetskii G.G., Podlazov A.V., Kuznetsov I.V. On a national scientific monitoring system. Herald of the Russian Academy of Sciences. 2005; 75(4):323–336. Available at: https: //www.elibrary.ru/item.asp?id=9133358.

[10] Negus C., Henry W. Docker containers. Build and deploy with Kubernetes, Flannel, Cockpit, and Atomic. London: Pearson Education; 2015: 319.

[11] Mouat A. Using Docker: developing and deploying software with containers. Sebastopol: O’Reilly Media; 2015: 328.

[12] Nozhenkova L.F. Information management systems in the territorial and corporate management. Journal of Computational Technologies. 2013; 18(1):52–59. Available at: https: //www.elibrary.ru/item.asp?id=22575114.

[13] ISO 22300:2021 Security and resilience — vocabulary. Available at: https://www.iso.org/ru/standard/77008.html.

[14] PreventionWeb. The knowlege platform for disaster risk reduction. Available at: www.preventionweb.net/Terminology.

[15] Zaki M.J., Wagner M.J. Data mining and machine learning fundamental concepts and algorithms. Cambridge: Cambridge University Press; 2020: 760.

[16] Penkova T.G., Korobko A.V., Nicheporchuk V.V., Nozhenkova L.F. On-line control of the state of technosphere and environment objects in Krasnoyarsk region based on monitoring data. International Journal of Knowledge-Based and Intelligent Engineering Systems. 2016; 20(2):65–74. DOI:10.3233/KES-160330. Available at: https://www.elibrary.ru/item.asp?id=27075197.

[17] Bychkov I.V., Vladimirov D.Ya., Oparin V.N., Potapov V.P., Shokin Yu.I. Mining information science and Big Data concept for integrated safety monitoring in subsoil management. Journal of Mining Science. 2016; 52(6):1195–1209. DOI:10.1134/S1062739116061747. Available at: https://www.elibrary.ru/item.asp?id=31142560.

[18] Ivanova U.S., Taseiko O.V., Chernykh D.A. Probabilistic methods for risk assessment of anthropogenic accidents and emergency. Procedia Structural Integrity. 2019: 136–142. DOI:10.1016/j.prostr.2019.12.129. Available at: https://www.elibrary.ru/item.asp?id=43253864.

[19] Ivanova U.S., Moskvichev V.V., Taseiko O.V. Classifying of Krasnoyarsk territory using a risk-based approach. Issues of Risk Analysis. 2019; 16(4):48–63. DOI:10.32686/1812-5220-2019-16-4-48-63. Available at: https://www.elibrary.ru/item.asp?id=39239488.

[20] Penkova T., Nicheporchuk V. Metus A. Comprehensive operational control of the natural and anthropogenic territory safety based on analytical indicators. Lecture Notes in Computer Science. 2017; (10313):263–270. DOI:10.1007/978-3-319-60837-2 22. Available at: https://www.elibrary.ru/item.asp?id=31044573.

[21] Geoportal of ICM SB RAS. Available at: https://gis.krasn.ru/blog.

[22] DRMKC-INFORM. Country risk profile. Available at: https://drmkc.jrc.ec.europa.eu/inform-index/INFORM-Risk/Country-Risk-Profile.

Bibliography link:
Moskvichev V.V., Nicheporchuk V.V., Postnikova U.S., Taseiko O.V. Information system of territorial risk assessment // Computational technologies. 2022. V. 27. ¹ 6. P. 115-123
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2024 FRC ICT