Article information
2022 , Volume 27, ¹ 6, p.100-114
Gozukirmizi C.
Beam search for space extension in explicit ordinary differential equation conicalization
Space extension for explicit ODEs is considering introduction of new equations to the equation set where the new unknowns are functionally dependent on the original unknowns. The purpose is to convert the ODE set into a form that has purely second degree multinomial right hand side functions. This is a necessary preprocessing step for certain series solution methods. Multinomial ODEs can be converted to ODEs with purely second degree terms through space extension. In a previous work, it is shown that the space extension with the smallest number of new unknowns can be found by a complete search. However, the complete search is not computationally efficient. In this paper, a computationally efficient search (beam search) is utilized but optimality (smallest number of new unknowns) is not guaranteed. The numerical experiments show that beam search is powerful in finding a useful space extension even for multinomials with relatively higher degrees.
[full text] Keywords: ordinary differential equations, space extension, beam search
doi: 10.25743/ICT.2022.27.6.009
Author(s): Gozukirmizi Cosar Dr. , Associate Professor Position: Associate Professor Office: Computer Engineering Department Beykent University Address: 34485, Turkey, Istanbul, Ayazaga, Hadim Koruyolu Cd,19
Phone Office: (90) 212 4441997 E-mail: cosargozukirmizi@beykent.edu.tr
References:
[1] Gozukırmızı C., Demiralp M. Probabilistic evolution theory for explicit autonomous ordinary differential equations: recursion of squarified telescope matrices and optimal space extension. Journal of Mathematical Chemistry. 2018; 56(7):18261848. DOI:10.1007/s10910-017-0849-2.
[2] Gozukırmızı C., Kırkın M.E. Classical symmetric fourth degree potential systems in probabilistic evolution theoretical perspective: most facilitative conicalization and squarification of telescope matrices. AIP Conference Proceedings. 2017; 1798(1):020061. DOI:10.1063/1.4972653.
[3] Gozukırmızı C., Tataroglu E. Squarification of telescope matrices in the probabilistic evolution theoretical approach to the two particle classical mechanics as an illustrative implementation. AIP Conference Proceedings. 2017; 1798(1):020062. DOI:10.1063/1.4972654.
[4] Kırkın M.E., G ̈oz ̈ukırmızı C. Probabilistic evolution theory for ode sets with second degree multinomial right hand side functions: certain reductive cases. AIP Conference Proceedings. 2015; 1702(1):170012. DOI:10.1063/1.4938947.
[5] Gozukırmızı C., Demiralp M. Probabilistic evolution theory for ode sets with second degree multinomial right hand side functions: implementation. AIP Conference Proceedings. 2015; 1702(1):170002. DOI:10.1063/1.4938937.
[6] Gozukırmızı C., Demiralp M. Constancy adding space extension for ode sets with second degree multinomial right hand side functions. AIP Conference Proceedings. 2014; 1618(1):875878. DOI:10.1063/1.4897872.
[7] Gozukırmızı C., Demiralp M. Probabilistic evolution approach for the solution of explicit autonomous ordinary differential equations. Part 1: Arbitrariness and equipartition theorem in kronecker power series. Journal of Mathematical Chemistry. 2014; 52(3):866880. DOI:10.1007/s10910-013-0298-5.
[8] Gozukırmızı C., Demiralp M. Probabilistic evolution approach for the solution of explicit autonomous ordinary differential equations. Part 2: Kernel separability, space extension, and, series solution via telescopic matrices. Journal of Mathematical Chemistry. 2014;52(3):881898. DOI:10.1007/s10910-013-0299-4.
[9] Demiralp M. Probabilistic evolution theory in its basic aspects, and, its fundamental progressive stages. Mathematics in Engineering, Science, Aerospace (MESA). 2018; 9(2):245275.
[10] Gozukırmızı C., Demiralp M. Solving odes by obtaining purely second degree multinomials via branch and bound with admissible heuristic. Mathematics. 2019; 7(4):367. DOI:10.3390/math7040367.
[11] Gozukırmızı C., Kırkın M.E., Demiralp M. Probabilistic evolution theory for the solution of explicit autonomous ordinary differential equations: squarified telescope matrices. Journal of Mathematical Chemistry. 2017; 55(1):175194. DOI:10.1007/s10910-016-0678-8.
[12] Bychkov A., Pogudin G. Optimal monomial quadratization for ODE systems. Flocchini P., Moura L. (Eds). Combinatorial algorithms. Springer International Publishing; 2021: 122136. DOI:10.1007/978-3-030-79987-8 9.
[13] Winston P.H. Artificial intelligence (3rd ed.). USA: Addison-Wesley Longman Publishing Co.; 1992: 737. DOI:10.5555/129914.
[14] Habenicht K., Monch L. A finite-capacity beam-search-algorithm for production scheduling in semiconductor manufacturing. Proceedings of the Winter Simulation Conference. 2002; (2):14061413. DOI:10.1109/WSC.2002.1166411.
[15] Ow P.S., Morton T.E. Filtered beam search in scheduling. International Journal of Production Research. 1988; 26(1):3562. DOI:10.1080/00207548808947840.
[16] Koehn P. Pharaoh: a beam search decoder for phrase-based statistical machine translation models. Frederking R.E., Taylor K.B. (eds) Machine translation: from real users to research. Berlin, Heidelberg; Springer Berlin Heidelberg; 2004: 115124. DOI:10.1007/978-3-540-30194-3 13.
[17] Tillmann C., Ney H. Word reordering and a dynamic programming beam search algorithm for statistical machine translation. Computational Linguistics. 2003; 29(1):97133. DOI:10.1162/089120103321337458.
[18] Ney H., Haeb-Umbach R., Tran B.-H., Oerder M. Improvements in beam search for 10000-word continuous speech recognition. 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing. 1992; (1):912. DOI:10.1109/ICASSP.1992.225985.
[19] Ortmanns S., Ney H. Look-ahead techniques for fast beam search. Computer Speech and Language. 2000; 14(1):1532. DOI:10.1006/csla.1999.0131.
[20] Blum C., Blesa M.J., Lopez-Ibanez M. Beam search for the longest common subsequence problem. Computers and Operations Research. 2009; 36(12):31783186. DOI:10.1016/j.cor.2009.02.00 Bibliography link: Gozukirmizi C. Beam search for space extension in explicit ordinary differential equation conicalization // Computational technologies. 2022. V. 27. ¹ 6. P. 100-114
|