Article information
2023 , Volume 28, ¹ 3, p.167-181
Potapov V.P., Popov S.E., Stchastlivtsev E.L.
Digital twins: strategies and approaches to creating environmental monitoring systems
The purpose of this work is to investigate the possibility of using the concept of digital twins applied to the designing of environmental monitoring systems. Their classification is given, and the conclusion about possibility of application of a certain type of digital twins to systems of ecological monitoring representing a complex of means of gathering, structured storage, the subsequent processing and the analysis of the information streams providing data on a condition of environment is made. As a basic element for the design of the twin, it is proposed to use a digital factory, which is a direct analogue of digital shadows, and providing direct interaction with the environment. The basic tools realizing the digital factory are defined and the conclusion about possibility of application of the approach developed in work to design of object-oriented digital twin for ecological monitoring system is made. The proposed approach is implemented for the environmental monitoring system of coal industry enterprises
Keywords: digital twins, digital factory, containerization, monitoring, information flows,orchestration
doi: 10.25743/ICT.2023.28.3.010
Author(s): Potapov Vadim Petrovich Dr. , Professor Position: Leading research officer Office: Federal Research Center for Information and Computational Technologies Address: 650003, Russia, Kemerovo
Phone Office: (3842) 21-14-00 E-mail: vadimptpv@gmail.com SPIN-code: 8947-1880Popov Semen Evgenievich PhD. Position: Senior Research Scientist Office: Federal Research Center for Information and Computational Technologies Address: 630090, Russia, Novosibirsk, Lavrentiev avenue, 6
Phone Office: (905)9692107 E-mail: popov@ict.sbras.ru SPIN-code: 5627-9584Stchastlivtsev Evgenii Leonidivich Address: 650610, Russia, Kemerovo, Lavrentiev avenue, 6
Phone Office: (3842) 281883 E-mail: prezid@tranzit.kemerovo.su
References: 1. Crelin J. Principles of information technology. Grey House Publishing, Inc.; 2020: 410.ISBN:9781642656954.
2. Karimi H.A. Big Data: techniques and technologies in geoinformatics. CRC Press; 2014: 306.
3. Dow C. Mastering IoT: build modern IoT solutions that secure and monitor your IoT infrastructure.Packt Publishing; 2019: 782.
4. Ranjan R., Mitra K., Jayaraman P.P., Wang L., Zomaya A.Y. Handbook of integration of cloud computing, cyber physical systems and Internet of Things. Springer; 2020: 331.ISBN:978-3-030-43794-7.
5. Acharjya D.P., Mitra A., Zaman N. Deep learning in data analytics: recent techniques, practices and applications. Springer; 2022: 271. ISBN:978-3-030-75854-7.
6. Polkowski Z., Kumar M.S., Vasilev J. Data science in engineering and management. CRC Press;2022: 152. ISBN:978-1-032-10625-0.
7. Banerjee J.S., Bhattacharyya S., Obaid A.J., Yeh W.-C. Intelligent cyberphysical systems security for Industry 4.0: applications, challenges and management. CRC Press; 2022: 284.ISBN:978-1-032-14835-9.
8. Pal S.K., Mishra D., Pal A., Dutta S., Chakravarty D., Pal S. Digital twin — fundamental concepts to applications in advanced manufacturing. Springer; 2022: 495. ISBN:978-3-030-81814-2.
9. Grieves M.W. Digital twin: manufacturing excellence through virtual factory replication. LLC;2014: 7. Available at: https://www.researchgate.net/publication/275211047_Digital_Twin_Manufacturing_Excellence_through_Virtual_Factory_Replication.
10. Tao F., Sui F., Liu A., Qi Q. Digital twin-driven product design framework. International Journal of Production Research. 2019; (57):3935–3953. DOI:10.1080/00207543.2018.1443229. Available at:https://www.tandfonline.com/doi/abs/10.1080/00207543.2018.1443229?journalCode=tprs20.
11. Datta S. Emergence of digital twins. Journal of Innovation Management. 2017; (5):14–34.
12. Miller P. Digital twins combine enterprise data and IoT to drive new business value. Principal analyst. 2019. Available at: https://go.forrester.com/blogs/digital-twin-iotnew-businessvalue.
13. Mottura S., Vigan´o G., Greci L., Sacco M., Carpanzano E. New challenges in collaborative virtual factory design. International Conference on Information Technology for Balanced Automation Systems. Springer; 2008: 17–24. Available at: https://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.1088.9509&rep=rep1&type=pdf.
14. Ducree J. Digital twin: an oracle for efficient crowdsourcing of research and technology development through blockchain. Oracle Corporation Preprint. 2021: 15. DOI:10.20944/preprints202110.0148.v1.Available at: https://www.preprints.org/manuscript/202110.0148/v1.
15. The promise of a digital twin strategy. Best practices for designers and manufacturers of products and industrial equipment. Microsoft Services. 2022: 23. Available at: https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE1IMIi.
16. Kukushkin K., Ryabov Yu., Borovkov A. Digital twins: a systematic literature review based on data analysis and topic modeling. MDPI, Data. 2022; 7(12):21.
17. Unhelkar B., Gonsalves T. Artificial intelligence for business optimization: research and applications. CRC Press; 2021: 325. ISBN:978-1-032-02886-6.
18. Prokhorov A., Lysachev M. Tsifrovoy dvoynik. Analiz, trendy, mirovoy opyt [Digital twin. Analysis,trends, world experience] / A. Borovkov (ed.). Moscow: OOO “Al’yans Print”; 2020: 401. (In Russ.)
19. Infrastruktura prostranstvennykh dannykh. Trebovaniya k informatsionnomu obespecheniyu [Spatial data infrastructure Requirements for information support]. GOST R 58571. 2019: 17. (In Russ.)
20. Maryse C. Digital organizations manufacturing: scripts, performativity and semiopolitics. Wiley;2018: 318. ISBN:978-1-119-52766-4.
21. Dolgui A., Bernard A., Lemoine D., von Cieminski G., Romero D. Advances in production management systems. Artificial intelligence for sustainable and resilient production systems. IFIP WG 5.7 International Conference, APMS 2021, Nantes, France, September 5–9, 2021. Proceedings,pt II. Springer; 2021: 730. ISBN:978-3-030-85901-5. Available at: https://link.springer.com/book/10.1007/978-3-030-85902-2.
22. Sharma S. The DevOps adoption playbook: a guide to adopting DevOps in a multi-speed IT enterprise. John Wiley & Sons; 2017: 416.
23. Deepak V. Kubernetes microservices with Docker. Apress; 2016: 456.
24. Alok K. Practical full stack machine learning: a guide to build reliable, reusable, and productionready full stack ML solutions. BPB Publications; 2022: 751. ISBN:978-93-91030-42-1.
25. Crickard P. Data engineering with Python. Packt Publishing; 2020: 357. Bibliography link: Potapov V.P., Popov S.E., Stchastlivtsev E.L. Digital twins: strategies and approaches to creating environmental monitoring systems // Computational technologies. 2023. V. 28. ¹ 3. P. 167-181
|