Article information

2004 , Volume 9, ¹ 6, p.40-48

Ergenc T., Weber G.W.

Modeling and prediction of gene-expression patterns reconsidered with Runge-Kutta discretization

Many problems in computational genetics and bioinformatics consist in modeling and prediction of gene-expression patterns. Established on a finite time-series of experiments or samples and using least squares approximation, we obtain a nonlinear system of ordinary differential equations which represents the time-continuous dynamics of the genetical process, before we turn it to a time-discrete system. In this paper, we partially sophisticate pioneering work by using Runge-Kutta instead of Euler discretization, especially, Trapezoidal rule. Herewith, we prepare a modification for the Euler discretization based time-discrete dynamics and stability analysis such that it becomes more appropriate for the underlying genetical or medical process.

[full text] Classificator Msc2000:
*65L06 Multistep, Runge-Kutta and extrapolation methods
92D10 Genetics

Keywords: genome, transcriptome, nucleotides, trapezoidal rule

Author(s):
Ergenc T.
Address: Germany, Berlin

Weber GerhardW.
Office: Institute of Applied Mathematics, METU
Address: 64289, Turkey, Ankara
E-mail: gweber@metu.edu.tr


Bibliography link:
Ergenc T., Weber G.W. Modeling and prediction of gene-expression patterns reconsidered with Runge-Kutta discretization // Computational technologies. 2004. V. 9. ¹ 6. P. 40-48
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2025 FRC ICT