РАСЧЕТ ДВИЖЕНИЯ ЖИДКОСТИ С ПЕРЕМЕННОЙ ВЯЗКОСТЬЮ В ОБЛАСТИ С КРИВОЛИНЕЙНОЙ ГРАНИЦЕЙ

Ю.В. ПИВОВАРОВ

Институт гидродинамики им. М. А. Лаврентьева СО РАН, Новосибирск, Россия

In this paper an axisymmetric non-stationary flow of a liquid under the combined action of thermo-capillary, ponderomotive, buoyancy forces and rotation is considered in application to the problem of a floating-zone melting in the magnetic field. The conservative monotonous difference scheme and the orthogonal coordinate system is used. A calculation of the convection in the floating zone with the specified shape of its boundary is performed.

Введение

Рассматривается нестационарное осесимметричное движение жидкости, вязкость которой зависит от температуры. Сечение области течения плоскостью $\varphi = {\rm const}$, где $\varphi - {\rm поляр}$ ный угол, имеет форму криволинейного четырехугольника. Предполагается, что известно конформное отображение прямоугольника на этот криволинейный четырехугольник. (В данной работе рассчитывается пример, в котором такое отображение задано аналитически. В общем случае следует использовать численный алгоритм, описанный в работах [1, 2].) Задача ставится в переменных вихрь — функция тока в соответствии с приближением Буссинеска. Дифференциальные уравнения для вихря, функции тока, азимутальной компоненты скорости и температуры записываются в дивергентной форме. Дифференциальные операторы конвективного и диффузионного переноса аппроксимируются монотонными консервативными разностными операторами, имеющими второй порядок аппроксимации по пространству при малых числах Рейнольдса и Пекле и первый — при больших числах Рейнольдса и Пекле (здесь используются результаты работы [3, с. 280–288]). При решении разностных уравнений используется метод, позволяющий точным образом разделить задачи вычисления вихря и функции тока, описанный в работах [4, 5]. При решении на каждом временном шаге уравнения для функции тока используется эффективный итерационный алгоритм, не требующий информации о свойствах и границах спектра разностного оператора, обобщающий алгоритм, описанный в работе [6].

Рассматриваемый метод прилагается к моделированию процесса бестигельной зонной плавки в магнитном поле, используемого для выращивания монокристаллов кремния большого радиуса, который состоит в следующем. Верхняя (заготовка) и нижняя (выращиваемый монокристалл) части цилиндрического вертикального образца движутся вниз с

[©] Институт вычислительных технологий Сибирского отделения Российской академии наук, 2005.

малыми скоростями и вращаются в противоположных направлениях. Между ними находится плавающая зона, поддерживаемая в жидком состоянии неподвижным источником высокочастотного электромагнитного поля — индуктором. Токи, наводимые индуктором, сосредоточены в тонком скин-слое, примыкающем к свободной границе расплава. Они создают пондеромоторную силу, направленную ортогонально свободной границе, экспоненциально убывающую при удалении от нее и являющуюся одним из источников конвекции в расплаве. Форма функции пондеромоторной силы на свободной границе задается в данной работе аналитически. Но размеры области и энергетические характеристики процесса, принятые при расчете, соответствуют реальным. На основе разработанного метода решается гидродинамическая часть задачи — производится расчет конвекции в плавающей зоне при заданной форме ее границы.

1. Размерные параметры задачи

Плотность ρ и поверхностное натяжение σ расплава будем считать линейными функциями температуры T (переменность плотности учитывается в приближении Буссинеска). Кроме того, ρ терпит скачок при фазовом переходе. Кинематическую вязкость представим функцией вида

$$\nu(T) = a_{\nu} + b_{\nu}/(T - c_{\nu}).$$

Ниже приведены названия, обозначения и значения материальных констант [7, 8]. Символ m означает жидкую, s — твердую фазу кремния. Коэффициент a_{ν} вычисляется по формуле

$$a_{\nu} = \nu_m - b_{\nu} / (T_m - c_{\nu}).$$

Кроме перечисленных нам понадобятся следующие размерные параметры: толщина скин-слоя [9] $\varepsilon_m = c/\sqrt{2\pi\gamma_m\omega_0} = 2.85 \cdot 10^{-2}$ см, радиус монокристалла $r_c = 5$ см, скорость протягивания монокристалла $v_c = -5.52 \cdot 10^{-3}$ см/с, угловая скорость вращения верхней $\omega_f = -2.16$ рад/с и нижней $\omega_c = 5.24 \cdot 10^{-1}$ рад/с границ фазового перехода (соответствующих заготовке и монокристаллу) [7], характерный размер в плавающей зоне l = 2 см,

Название параметра	Символ	Значение
Круговая частота тока	ω_0	$1.76\cdot 10^7 \mathrm{pag/c}$
Постоянная Больцмана	σ_1	$5.67\cdot 10^{-5}$ эрг/(с \cdot см $^2\cdot$ К 4)
Коэффициент серости	f_{bm}	0.27
Температура плавления	T_m	1700 K
Значения ρ при $T = T_m$	$ ho_m$	2.53 г/см 3
	$ ho_s$	2.30 г/см 3
Значение ν при $T = T_m$	$ u_m$	$3.2 \cdot 10^{-3} \text{ cm}^2/\text{c}$
$-d ho/dT$ при $T>T_m$	$ ho_T$	$1.52\cdot 10^{-4}$ г/(см $^3\cdot { m K})$
$-d\sigma/dT$	σ_T	$0.1\;$ дин $/(\mathrm{cm}{\cdot}\mathrm{K})$
Коэффициенты уравнения для $ u$	$b_{ u}$	$4,776 \cdot 10^{-2} \text{ K} \cdot \text{cm}^2/\text{c}$
	c_{ν}	1661 K
Ускорение свободного падения	g	$980\mathrm{cm/c^2}$
Удельная теплоемкость	c_{pm}	$7,45 \cdot 10^6 \text{ cm}^2/(\text{K} \cdot \text{c}^2)$
Коэффициент теплопроводности	λ_m	$5.2\cdot10^6$ г·см $/(\mathrm{K\cdot~c^3})$
Скорость света	с	$3\cdot 10^{10}\mathrm{cm/c}$
Коэффициент электропроводности	γ_m	$10^{16} \ 1/c$

характерная скорость движения расплава $v_1 = 10$ см/с [10], характерный перегрев расплава $\Delta T = 50$ K [7], максимум напряженности магнитного поля на свободной границе $H_0 = 300 \text{ r}^{1/2}/(\text{c}\cdot\text{см}^{1/2})$ [10]. Будем считать, что радиус заготовки $r_f = r_c$. Тогда и скорость протягивания заготовки $v_f = v_c$.

2. Безразмерные критерии подобия

Выберем в качестве масштабов длины, скорости, времени, вязкости и температуры соответственно $l, v_1, l/v_1, \nu_m$ и ΔT . Тогда в задаче появятся следующие безразмерные параметры:

$$\begin{aligned} \operatorname{Re} &= \frac{v_1 l}{\nu_m} = 6250, \quad \operatorname{Gr} = \frac{g \rho_T \Delta T l^3}{\rho_m \nu_m^2} = 2.300 \cdot 10^6, \\ \operatorname{E} u_m &= \frac{H_0^2 l}{8\pi \varepsilon_m \rho_m v_1^2} = 993.3, \quad \operatorname{Ma} = \frac{\sigma_T \Delta T l}{\rho_m \nu_m^2} = 3.860 \cdot 10^5, \\ V_c &= \frac{v_c}{v_1} = -5.520 \cdot 10^{-4}, \quad V_f = \frac{v_f}{v_1} = -5.520 \cdot 10^{-4}, \\ \Omega_f &= \frac{\omega_f l}{v_1} = -0.4320, \quad \Omega_c = \frac{\omega_c l}{v_1} = 0.1048, \quad S = \frac{\rho_s}{\rho_m} = 0.9091, \\ \operatorname{Pe} &= \frac{v_1 l \rho_m c_{pm}}{\lambda_m} = 72.49, \quad \operatorname{Qe} = \frac{\omega_0 H_0^2 l}{8\pi \rho_m c_{pm} v_1 \Delta T} = 13.37, \\ \operatorname{Bi} &= \frac{f_{bm} \sigma_1 T_m^4 l}{\lambda_m \Delta T} = 0.9836, \quad T_0 = \frac{T_m}{\Delta T} = 34, \\ A_\nu &= \frac{a_\nu}{\nu_m} = 0.6173, \quad B_\nu = \frac{b_\nu}{\Delta T \nu_m} = 0.2985, \quad C_\nu = \frac{c_\nu}{\Delta T} = 33.22, \\ R_c &= \frac{r_c}{l} = 2.5, \quad R_f = \frac{r_f}{l} = 2.5, \quad E_m = \frac{\varepsilon_m}{l} = 1.425 \cdot 10^{-2}. \end{aligned}$$

Здесь Re — число Рейнольдса; Gr — число Грасгофа; E u_m — магнитное число Эйлера; Ma — число Марангони; V_c , V_f — безразмерные скорости протягивания; Ω_c , Ω_f — безразмерные скорости вращения; S — отношение плотностей; Pe — число Пекле; Qe — отношение характерных интенсивностей джоулева тепловыделения и конвективного теплопереноса; Bi — число Био; T_0 — безразмерная температура плавления; A_{ν} , B_{ν} , C_{ν} — коэффициенты уравнения для безразмерной вязкости

$$\nu = A_{\nu} + B_{\nu} / (T - C_{\nu});$$

 R_c, R_f — безразмерные радиусы монокристалла и заготовки; E_m — безразмерная толщина скин-слоя.

3. Уравнения и граничные условия

Пусть Or, z, φ — цилиндрическая система координат, где r — полярный радиус, φ — полярный угол. Рассмотрим сечение φ = const. Направим ось Or вправо, а ось Oz — вверх. Пусть функции r(x, y), z(x, y) осуществляют конформное отображение прямоугольника $0 \le x \le 1, 0 \le y \le Y$ на область, занятую расплавом, так, что стороны x = 0, x = 1,

y = 0, y = Y прямоугольника переходят соответственно в ось симметрии (r = 0) Γ_0 , свободную (правую) границу Γ_m , фронт кристаллизации Γ_c (нижнюю границу расплав — монокристалл) и фронт плавления Γ_f (верхнюю границу расплав — заготовка).

Пусть u(x, y, t), v(x, y, t), w(x, y, t) — компоненты скорости расплава в направлениях x, y, φ . Введем функцию тока Ψ и вихрь ω по формулам

$$u = \frac{1}{rH} \frac{\partial \Psi}{\partial y}, \quad v = -\frac{1}{rH} \frac{\partial \Psi}{\partial x}, \quad \omega = \frac{1}{H^2} \left(\frac{\partial (uH)}{\partial y} - \frac{\partial (vH)}{\partial x} \right), \tag{1}$$

где

$$H = \sqrt{(\partial r/\partial x)^2 + (\partial r/\partial y)^2}$$

— коэффициент Ламэ.

Форма уравнений осесимметричного движения жидкости с переменной вязкостью следует из тождеств

$$\frac{1}{\rho_m} (\operatorname{div} \mathbb{P})_{\varphi} = \frac{1}{r^2 H^2} \left(\frac{\partial}{\partial x} \left(r^3 \nu \frac{\partial}{\partial x} \left(\frac{w}{r} \right) \right) + \frac{\partial}{\partial y} \left(r^3 \nu \frac{\partial}{\partial y} \left(\frac{w}{r} \right) \right) \right) = \\ = \frac{1}{r^2 H^2} \left(-\frac{\partial}{\partial x} \left(2\nu \frac{\partial r}{\partial x} rw \right) - \frac{\partial}{\partial y} \left(2\nu \frac{\partial r}{\partial y} rw \right) + \\ + \frac{\partial}{\partial x} \left(r\nu \frac{\partial}{\partial x} \left(rw \right) \right) + \frac{\partial}{\partial y} \left(r\nu \frac{\partial}{\partial y} \left(rw \right) \right) \right), \\ \frac{1}{\rho_m H^2} \left[\frac{\partial (H(\operatorname{div} \mathbb{P})_x)}{\partial y} - \frac{\partial (H(\operatorname{div} \mathbb{P})_y)}{\partial x} \right] = \\ = \frac{1}{H^2} \left[\frac{\partial}{\partial x} \left(\frac{1}{r} \frac{\partial}{\partial x} \left(r\nu \omega \right) \right) + \frac{\partial}{\partial y} \left(\frac{1}{r} \frac{\partial}{\partial y} \left(r\nu \omega \right) \right) + \frac{\partial A}{\partial x} + \frac{\partial B}{\partial y} \right] = \\ = \frac{1}{H^2} \left[\frac{\partial}{\partial x} \left(\left(2\nu \frac{\partial r}{\partial x} + r \frac{\partial \nu}{\partial x} \right) \frac{\omega}{r} \right) + \frac{\partial}{\partial y} \left(\left(2\nu \frac{\partial r}{\partial y} + r \frac{\partial \nu}{\partial y} \right) \frac{\omega}{r} \right) + \\ + \frac{\partial}{\partial x} \left(r\nu \frac{\partial}{\partial x} \left(\frac{\omega}{r} \right) \right) + \frac{\partial}{\partial y} \left(r\nu \frac{\partial}{\partial y} \left(\frac{\omega}{r} \right) \right) + \frac{\partial A}{\partial x} + \frac{\partial B}{\partial y} \right], \\ \frac{\partial \nu} \left(2 \partial u - 2 \partial u - 2 \partial H \right) = \frac{\partial \nu}{\partial y} \left(2 \partial v - 2 \partial H \right)$$

где

$$A = \frac{\partial\nu}{\partial x} \left(-\frac{2}{H} \frac{\partial u}{\partial y} + \frac{2}{H^2} \frac{\partial H}{\partial x} v \right) - \frac{\partial\nu}{\partial y} \left(\frac{2}{H} \frac{\partial v}{\partial y} + \frac{2}{H^2} \frac{\partial H}{\partial x} u \right);$$

$$B = \frac{\partial\nu}{\partial x} \left(\frac{2}{H} \frac{\partial u}{\partial x} + \frac{2}{H^2} \frac{\partial H}{\partial y} v \right) - \frac{\partial\nu}{\partial y} \left(-\frac{2}{H} \frac{\partial v}{\partial x} + \frac{2}{H^2} \frac{\partial H}{\partial y} u \right);$$

ℙ — тензор напряжений. Эти тождества устанавливаются прямым вычислением. При этом используются формулы для компонент ℙ согласно [11] и компонент divℙ согласно [12]. Формулы проверены в пакете "Математика" для конкретного случая, когда

$$r = e^x \cos y, \ z = e^x \sin y, \ H = e^x.$$

Введем модифицированные скорост
иU,~V,~Wи модифицированный вихр
ь Ω по формулам

$$W = rw, \quad \Omega = \frac{\omega}{r},\tag{2}$$

$$U = \frac{\partial \Psi}{\partial y}, \quad V = -\frac{\partial \Psi}{\partial x}.$$
(3)

Поставим задачу определения поля скоростей и температуры в безразмерных переменных. Для Ω должно выполняться уравнение импульса

$$\frac{\partial\Omega}{\partial t} + \frac{1}{rH^2} \left[\frac{\partial}{\partial x} \left(\left(-\frac{1}{\operatorname{Re}} \left(2\nu \frac{\partial r}{\partial x} + r \frac{\partial \nu}{\partial x} \right) + U \right) \Omega \right) + \frac{\partial}{\partial y} \left(\left(-\frac{1}{\operatorname{Re}} \left(2\nu \frac{\partial r}{\partial y} + r \frac{\partial \nu}{\partial y} \right) + V \right) \Omega \right) - \frac{1}{\operatorname{Re}} \left(\frac{\partial}{\partial x} \left(\nu r \frac{\partial\Omega}{\partial x} \right) + \frac{\partial}{\partial y} \left(\nu r \frac{\partial\Omega}{\partial y} \right) \right) \right] = G^1,$$
(4)

где

$$G^{1} = \frac{1}{rH^{2}} \left[-\frac{\partial}{\partial x} \left(\frac{\partial r}{\partial y} \frac{W^{2}}{r^{3}} \right) + \frac{\partial}{\partial y} \left(\frac{\partial r}{\partial x} \frac{W^{2}}{r^{3}} \right) + \right. \\ \left. + \frac{2}{\text{Re}} \left(\frac{\partial}{\partial x} \left(\frac{\partial \nu}{\partial x} \left(-\frac{1}{H} \frac{\partial}{\partial y} \left(\frac{1}{rH} \frac{\partial \Psi}{\partial y} \right) - \frac{1}{rH^{3}} \frac{\partial H}{\partial x} \frac{\partial \Psi}{\partial x} \right) - \right. \\ \left. -\frac{\partial \nu}{\partial y} \left(-\frac{1}{H} \frac{\partial}{\partial y} \left(\frac{1}{rH} \frac{\partial \Psi}{\partial x} \right) + \frac{1}{rH^{3}} \frac{\partial H}{\partial x} \frac{\partial \Psi}{\partial y} \right) \right) + \right. \\ \left. + \frac{\partial}{\partial y} \left(\frac{\partial \nu}{\partial x} \left(\frac{1}{H} \frac{\partial}{\partial x} \left(\frac{1}{rH} \frac{\partial \Psi}{\partial y} \right) - \frac{1}{rH^{3}} \frac{\partial H}{\partial y} \frac{\partial \Psi}{\partial x} \right) - \right. \\ \left. -\frac{\partial \nu}{\partial y} \left(\frac{1}{H} \frac{\partial}{\partial x} \left(\frac{1}{rH} \frac{\partial \Psi}{\partial y} \right) + \frac{1}{rH^{3}} \frac{\partial H}{\partial y} \frac{\partial \Psi}{\partial y} \right) \right) \right) - \left. -\frac{\partial}{Re^{2}} \left(\frac{\partial}{\partial x} \left(\frac{\partial r}{\partial x} T \right) + \frac{\partial}{\partial y} \left(\frac{\partial r}{\partial y} T \right) \right) - \text{E}u_{m} \frac{\partial}{\partial y} \left(H\bar{f}_{n} \right) \right];$$
(5)

— безразмерная пондеромоторная сила [9];

$$s_l = \int_0^Y H(1, y) dy;$$

 $\bar{f}_n(x)$ — функция пондеромоторной силы на границе Γ_m , имеющая единичный максимум и заданная на единичном отрезке.

Выведем граничные условия для $\Omega.$ На оси симметрии должно выполняться условие симметрии

$$\frac{\partial\Omega}{\partial x} = 0, \ x = 0. \tag{6}$$

На свободной границе Γ_m — условие Марангони [13, с. 195]

$$\vec{s} \cdot \mathbb{P} \cdot \vec{n} = \frac{\partial \sigma}{\partial s},$$

где \vec{n} — внешняя нормаль к границе; \vec{s} — вектор, получающийся поворотом \vec{n} на 90° по часовой стрелке, или

$$-p_{xy} = -\frac{1}{H}\frac{\partial\sigma}{\partial y} = \frac{\sigma_T}{H}\frac{\partial T}{\partial y}.$$
(7)

Согласно [11]

$$p_{xy} = \rho_m \nu \left(\frac{1}{H} \frac{\partial u}{\partial y} + \frac{1}{H} \frac{\partial v}{\partial x} - \frac{u}{H^2} \frac{\partial H}{\partial y} - \frac{v}{H^2} \frac{\partial H}{\partial x} \right).$$
(8)

Используя (1), (2) и условия $u = \partial u / \partial y = 0$ на Γ_m , представим p_{xy} в виде

$$p_{xy} = -\rho_m \nu \left(r\Omega + \frac{2v}{H^2} \frac{\partial H}{\partial x} \right), \ x = 1$$

Подставляя это выражение в (7), обезразмеривая и пренебрегая членом, содержащим множитель v, ввиду большого отношения параметров Ма и Re, окончательно получим

$$\Omega = \frac{\mathrm{Ma}}{\mathrm{Re}} \cdot \frac{1}{rH\nu} \frac{\partial T}{\partial y}, \ x = 1.$$
(9)

Член, содержащий множитель v, мы отбросили для того, чтобы в дальнейшем точно расщепить задачи вычисления для Ω и Ψ.

На границах фазового перехода поставим условия проскальзывания [14, с. 129]

$$\vec{s} \cdot \mathbb{P} \cdot \vec{n} = p_{xy} = k\vec{s} \cdot (\vec{v} - \vec{u}), \ y = 0, \ y = Y,$$

где \vec{v} — скорость стенки (твердого кремния); \vec{u} — скорость расплава; k — коэффициент проскальзывания. Используя (1), (2), (8), представим p_{xy} в виде

$$p_{xy} = \rho_m \nu \left(r\Omega + \frac{2}{H} \frac{\partial v}{\partial x} - \frac{2u}{H^2} \frac{\partial H}{\partial y} \right).$$

Компонента v скорости \vec{u} на $\Gamma_{c,f}$ равна проекции скорости стенки на направление y, умноженной на S:

$$v = v_{c,f} S \frac{1}{H} \frac{\partial z}{\partial y}$$

Используя определение Н и условия Коши — Римана, находим, что

$$\frac{\partial v}{\partial x} = -v_{c,f} S \frac{\partial z}{\partial x} K_{c,f}, \quad \frac{1}{H^2} \frac{\partial H}{\partial y} \bigg|_{\Gamma_{c,f}} = -K_{c,f},$$

где

$$K_{c,f} = \left. \frac{1}{H^3} \left(\frac{\partial^2 z}{\partial x^2} \frac{\partial r}{\partial x} - \frac{\partial^2 r}{\partial x^2} \frac{\partial z}{\partial x} \right) \right|_{\Gamma_{c,f}}$$
(10)

— кривизна границ фазового перехода. Кроме того,

$$\vec{s} \cdot \vec{v} = i_{c,f} \frac{v_{c,f}}{H} \frac{\partial z}{\partial x}, \quad \vec{s} \cdot \vec{u} = i_{c,f} u,$$

где $i_c = -1$, $i_f = 1$. Проведя обезразмеривание, получим условия проскальзывания в следующем виде:

$$\Omega = -(2K_c - Al)\frac{1}{r^2H}\frac{\partial\Psi}{\partial y} + (2K_cS - Al)\frac{V_c}{rH}\frac{\partial z}{\partial x}, \ y = 0,$$

$$\Omega = -(2K_f + Al)\frac{1}{r^2H}\frac{\partial\Psi}{\partial y} + (2K_fS + Al)\frac{V_f}{rH}\frac{\partial z}{\partial x}, \ y = Y,$$
(11)

где $K_{c,f}$ определено в (10); Al — безразмерный параметр проскальзывания,

$$Al = \frac{kl}{\rho_m \nu_m}$$

(В дальнейшем при расчетах полагается Al = 100.) Здесь учтено, что на $\Gamma_{c,f}$ безразмерная вязкость $\nu = 1$.

Отметим, что постановка условий проскальзывания вместо условий типа прилипания обусловлена тем, что последние вызывают разрыв вектора скорости в точках трехфазного контакта, так как протяжка осуществляется параллельно оси z, а свободная граница в этих точках не параллельна оси z. При численном решении задачи такого разрыва не возникает, так как вместо точных используются приближенные условия типа условий Тома. Можно показать, что главные при $h \to 0$ члены в этих условиях определяют условия проскальзывания с непостоянным Al = 1/(hH), где h — шаг сетки в направлении, ортогональном к рассматриваемой границе.

Задача для функции тока

$$\frac{\partial}{\partial x} \left(\frac{1}{r} \frac{\partial \Psi}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{1}{r} \frac{\partial \Psi}{\partial y} \right) = r H^2 \Omega, \tag{12}$$

$$\Psi = 0, \ x = 0, \ \Psi = -\frac{R_f^2}{2} V_f S, \ x = 1,$$

$$\Psi = -\frac{r^2}{2} V_c S, \ y = 0, \ \Psi = -\frac{r^2}{2} V_f S, \ y = Y.$$
 (13)

Функция W должна удовлетворять уравнению импульса

$$\frac{\partial W}{\partial t} + \frac{1}{rH^2} \left[\frac{\partial}{\partial x} \left(\left(\frac{2\nu}{\operatorname{Re}} \frac{\partial r}{\partial x} + U \right) W \right) + \frac{\partial}{\partial y} \left(\left(\frac{2\nu}{\operatorname{Re}} \frac{\partial r}{\partial y} + V \right) W \right) - \frac{1}{\operatorname{Re}} \left(\frac{\partial}{\partial x} \left(\nu r \frac{\partial W}{\partial x} \right) + \frac{\partial}{\partial y} \left(\nu r \frac{\partial W}{\partial y} \right) \right) \right] = 0,$$
(14)

граничным условиям

$$W = 0, \ x = 0$$
 (15)

(это следствие из (2)), условию отсутствия касательного напряжения в направлении φ на свободной границе [11]

$$p_{x\varphi} = \frac{1}{H} \frac{\partial (W/r)}{\partial x} - \frac{W}{r^2 H} \frac{\partial r}{\partial x} = 0$$
$$\frac{\partial W}{\partial x} - 2 \frac{\partial r}{\partial x} \frac{W}{r} = 0, \ x = 1$$
(16)

ИЛИ

$$W = \Omega_c r^2, \ y = 0, \ W = \Omega_f r^2, \ y = Y.$$
 (17)

Для Т должны выполняться уравнение энергии

$$\frac{\partial T}{\partial t} + \frac{1}{rH^2} \left[\frac{\partial (UT)}{\partial x} + \frac{\partial (VT)}{\partial y} - \frac{1}{\text{Pe}} \left(\frac{\partial}{\partial x} \left(r \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(r \frac{\partial T}{\partial y} \right) \right) \right] = \text{Qe}\bar{f}_n \tag{18}$$

и граничные условия: условие симметрии

$$\frac{\partial T}{\partial x} = 0, \ x = 0, \tag{19}$$

закон Стефана — Больцмана на свободной границе

$$\frac{1}{H}\frac{\partial T}{\partial x} + \operatorname{Bi}\left(\frac{T}{T_0}\right)^4 = 0, \ x = 1$$
(20)

и условия первого рода на фронтах плавления и кристаллизации

$$T = T_0, \ y = 0, \ y = Y.$$
 (21)

Зададим также начальные условия

$$\Psi = \Psi_b, \ \Omega = \Omega_b, \ W = W_b, \ T = T_b, \ t = 0.$$

Итак, задача (3), (4), (6), (9), (11)–(22) служит для определения неизвестных функций Ψ , Ω , U, V, W, T. Компоненты скорости u, v, w восстанавливаются с помощью первых двух равенств (1) и первого равенства (2).

4. Численный алгоритм решения задачи

Введем обозначения

$$F^{1} = \Omega, \ p^{1} = -\frac{1}{\operatorname{Re}} \left(2\frac{\partial r}{\partial x}\nu + r\frac{\partial \nu}{\partial x} \right), \ q^{1} = -\frac{1}{\operatorname{Re}} \left(2\frac{\partial r}{\partial y}\nu + r\frac{\partial \nu}{\partial y} \right),$$
$$\mu^{1} = \frac{\nu r}{\operatorname{Re}}, \ F^{2} = W, \ p^{2} = \frac{2}{\operatorname{Re}}\frac{\partial r}{\partial x}\nu, \ q^{2} = \frac{2}{\operatorname{Re}}\frac{\partial r}{\partial y}\nu, \ \mu^{2} = \frac{\nu r}{\operatorname{Re}},$$
$$G^{2} = 0, \ F^{3} = T, \ p^{3} = 0, \ q^{3} = 0, \ \mu^{3} = \frac{r}{\operatorname{Pe}}, \ G^{3} = \operatorname{Qe}\bar{f}_{n}.$$
(23)

Тогда уравнения (4), (14), (18) можно записать в универсальной форме

$$\left(\frac{\partial}{\partial t} + L_1^i + L_2^i\right)F^i = G^i, \ i = 1, 2, 3,$$
(24)

где

$$L_{1}^{i}F^{i} = \frac{1}{rH^{2}} \left[\frac{\partial((p^{i} + U)F^{i})}{\partial x} - \frac{\partial}{\partial x} \left(\mu^{i} \frac{\partial F^{i}}{\partial x} \right) \right],$$

$$L_{2}^{i}F^{i} = \frac{1}{rH^{2}} \left[\frac{\partial((q^{i} + V)F^{i})}{\partial y} - \frac{\partial}{\partial y} \left(\mu^{i} \frac{\partial F^{i}}{\partial y} \right) \right].$$
(25)

Пусть задана неравномерная сетка

$$0 = x_0 < x_1 < \ldots < x_{N-1} < x_N = 1, \quad 0 = y_0 < y_1 < \ldots < y_{M-1} < y_M = Y.$$

Обозначим

$$x_{n-1/2} = (x_{n-1} + x_n)/2, \quad h_{xn-1/2} = (x_n - x_{n-1}), \quad n = \overline{1, N},$$

$$y_{m-1/2} = (y_{m-1} + y_m)/2, \quad h_{ym-1/2} = (y_m - y_{m-1}), \quad m = \overline{1, M},$$
$$\bar{h}_{xn} = (x_{n+1} - x_{n-1})/2, \quad n = \overline{1, N-1},$$
$$\bar{h}_{ym} = (y_{m+1} - y_{m-1})/2, \quad m = \overline{1, M-1}.$$

Будем считать, что

$$h_{xn+1/2} - h_{xn-1/2} = O(h_{xn+1/2}^2), \quad h_{ym+1/2} - h_{ym-1/2} = O(h_{ym+1/2}^2).$$

Введем также равномерную сетку на полуос
и $t \geq 0$ с шагом $\tau.$ Примем для любой функци
и $f^i(x,y,t)$ обозначение

$$f^i(x_n, y_m, k\tau) = f^{ik}_{nm},$$

причем индексы n, m могут быть дробными, а индексы n, m, i или k — отсутствовать, если f не зависит от x, y, i или t или когда они несущественны.

В работе [3] для дифференциального оператора

$$\bar{L}F = \bar{U}\frac{\partial F}{\partial x} - \frac{\partial}{\partial x}\left(\mu\frac{\partial F}{\partial x}\right)$$

получено разностное представление

$$\bar{\Lambda}F_n = \frac{\bar{U}_{n-1/2}}{2} \frac{(F_n - F_{n-1})}{\bar{h}_{xn}} + \frac{\bar{U}_{n+1/2}}{2} \frac{(F_{n+1} - F_n)}{\bar{h}_{xn}} - I_n,$$

где

$$I_{n} = \frac{1}{\bar{h}_{xn}} \left[\alpha_{n+1/2} \operatorname{cth} \alpha_{n+1/2} \frac{\mu_{n+1/2} (F_{n+1} - F_{n})}{h_{xn+1/2}} - \alpha_{n-1/2} \operatorname{cth} \alpha_{n-1/2} \frac{\mu_{n-1/2} (F_{n} - F_{n-1})}{h_{xn-1/2}} \right];$$

$$\alpha_{n-1/2} = \left(\frac{h_{x} \bar{U}}{2\mu} \right) \Big|_{n-1/2}.$$
(26)

Рассмотрим дифференциальное тождество

$$\frac{\partial(\bar{U}F)}{\partial x} = \bar{U}\frac{\partial F}{\partial x} + F\frac{\partial\bar{U}}{\partial x}.$$

Аналогично ему имеет место разностное тождество

$$\frac{1}{\bar{h}_{xn}} \left(\bar{U}_{n+1/2} \frac{(F_{n+1} + F_n)}{2} - \bar{U}_{n-1/2} \frac{(F_n + F_{n-1})}{2} \right) =$$
$$= \frac{\bar{U}_{n+1/2}}{2} \frac{(F_{n+1} - F_n)}{\bar{h}_{xn}} + \frac{\bar{U}_{n-1/2}}{2} \frac{(F_n - F_{n-1})}{\bar{h}_{xn}} + F_n \frac{(\bar{U}_{n+1/2} - \bar{U}_{n-1/2})}{\bar{h}_{xn}}.$$

Исходя из этих двух тождеств для дифференциального оператора

$$LF = \frac{\partial(\bar{U}F)}{\partial x} - \frac{\partial}{\partial x}\left(\mu\frac{\partial F}{\partial x}\right)$$

получим следующее разностное представление:

$$\Lambda F_n = \frac{1}{\bar{h}_{xn}} \left(\bar{U}_{n+1/2} \frac{(F_{n+1} + F_n)}{2} - \bar{U}_{n-1/2} \frac{(F_n + F_{n-1})}{2} \right) - I_n,$$

где I_n определено в (26).

С учетом этого аппроксимируем дифференциальные операторы L_1^i , L_2^i разностными операторами Λ_1^i , Λ_2^i следующим образом:

$$\begin{split} \Lambda_{1}^{ik}F_{nm}^{ik} &= \frac{1}{r_{nm}H_{nm}^{2}\bar{h}_{xn}} [(U_{n+1/2m}^{k} + p_{n+1/2m}^{ik})F_{n+1/2m}^{ik} - \\ &-(U_{n-1/2m}^{k} + p_{n-1/2m}^{ik})F_{n-1/2m}^{ik} - \frac{\mu_{n+1/2m}^{ik}\alpha_{n+1/2m}^{ik}\cosh\alpha_{n+1/2m}^{ik}}{h_{xn+1/2}}(F_{n+1m}^{ik} - F_{nm}^{ik}) + \\ &+ \frac{\mu_{n-1/2m}^{ik}\alpha_{n-1/2m}^{ik}\cosh\alpha_{n-1/2m}^{ik}}{h_{xn-1/2}}(F_{nm}^{ik} - F_{n-1m}^{ik})], \\ &n = \overline{1, N-1}, \ m = \overline{1, M-1}, \ i = 1, 2, 3, \\ &\Lambda_{2}^{ik}F_{nm}^{ik} = \frac{1}{r_{nm}H_{2m}^{2}\bar{h}_{ym}}[(V_{nm+1/2}^{k} + q_{nm+1/2}^{ik})F_{nm+1/2}^{ik} - \\ &-(V_{nm-1/2}^{k} + q_{nm-1/2}^{ik})F_{nm-1/2}^{ik} - \frac{\mu_{nm+1/2}^{ik}\beta_{nm+1/2}^{ik}\cosh\beta_{nm+1/2}^{ik}}{h_{ym+1/2}}(F_{nm+1}^{ik} - F_{nm}^{ik}) + \\ &+ \frac{\mu_{nm-1/2}^{ik}\beta_{nm-1/2}^{ik}\cosh\beta_{nm-1/2}^{ik}}{h_{ym-1/2}}(F_{nm}^{ik} - F_{nm-1}^{ik})], \\ &n = \overline{1, N^{1}}, \ m = \overline{1, M-1}, \ i = 1, 2, 3, \end{split}$$

где

$$\alpha_{n+1/2m}^{ik} = h_{xn+1/2} (U_{n+1/2m}^k + p_{n+1/2m}^{ik}) / (2\mu_{n+1/2m}^{ik});$$

$$\beta_{nm+1/2}^{ik} = h_{ym+1/2} (V_{nm+1/2}^k + q_{nm+1/2}^{ik}) / (2\mu_{nm+1/2}^{ik});$$

$$n_1^1 = N - 1; \ n_1^2 = n_1^3 = N.$$
(27)

Распространим операторы L_1^i , L_2^i и Λ_1^i , Λ_2^i при i = 1, 3, когда при x = 0 ставятся условия второго рода (6), (19), и функцию G^1 на случай x = 0. Переходя к пределу (по правилу Лопиталя) при $x \to 0$, в (25) с учетом $\mu = 0$, U = 0, $F_x^i = 0$, $H = r_x$ при x = 0 получим (нижний индекс обозначает взятие производной по соответствующей переменной)

$$L_1^i F^i = \frac{1}{r_x^3} [((p_x^i + U_x)F^i)_x - ((2\mu_x^i - p^i)F_x^i)_x],$$
$$L_2^i F^i = \frac{1}{r_x^3} [((q_x^i + V_x)F^i)_y - (\mu_x^i F_y^i)_y], \ x = 0, \ i = 1, 3.$$

Продолжим сетку x_n на один узел влево и учтем, что функции p_x , U_x — нечетные, а функции μ_x , p, F, r_x — четные по x. Получим следующую разностную аппроксимацию оператора L_1 :

$$\Lambda_1^{ik} F_{0m}^{ik} = \frac{2}{r_{x0m}^3} \left[\frac{(p_{x1/2m}^{ik} + U_{x1/2m}^k) F_{1/2m}^{ik}}{h_{x1/2}} - \frac{(2\mu_{x1/2m}^{ik} - p_{1/2m}^{ik}) (F_{1m}^{ik} - F_{0m}^{ik})}{h_{x1/2}^2} \right].$$
(28)

Аппроксимация оператора L_2 при x = 0 имеет вид

$$\begin{split} \Lambda_{2}^{ik}F_{0m}^{ik} &= \frac{x_{1}^{3}}{r_{1m}^{3}\bar{h}_{ym}} [(V_{x0m+1/2}^{k} + q_{x0m+1/2}^{ik})F_{0m+1/2}^{ik} - \\ -(V_{x0m-1/2}^{k} + q_{x0m-1/2}^{ik})F_{0m-1/2}^{ik} - \frac{\mu_{x0m+1/2}^{ik}\beta_{1m+1/2}^{ik}}{h_{ym+1/2}}(F_{0m+1}^{ik} - F_{0m}^{ik}) + \\ + \frac{\mu_{x0m-1/2}^{ik}\beta_{1m-1/2}^{ik}}{h_{ym-1/2}}(F_{0m}^{ik} - F_{0m-1}^{ik})], \quad m = \overline{1, M-1}, \ i = 1, 3. \end{split}$$

Функция G^1 при x = 0 имеет следующий предел:

$$G^{1} = \frac{1}{r_{x}^{3}} \left[-I_{1} + I_{2} + \frac{2}{\operatorname{Re}} (-I_{3} - I_{4} + I_{5} - I_{6} + I_{7} - I_{8} - I_{9} - I_{10}) - \frac{\operatorname{Gr}}{\operatorname{Re}^{2}} (I_{11} + I_{12}) \right],$$

где

$$\begin{split} I_{1} &= \frac{W_{xx}^{2} r_{yx}}{2r_{x}^{3}}, \quad I_{2} = \frac{1}{4} \left[\frac{W_{xx}^{2}}{r_{x}^{2}} \right]_{y}, \quad I_{3} = \frac{\nu_{xx}}{r_{x}} \left[\frac{\Psi_{yxx}}{r_{x}^{2}} \right]_{y}, \quad I_{4} = \frac{2\nu_{xx} r_{xxx} \Psi_{xx}}{r_{x}^{4}}, \\ I_{5} &= \left[\frac{\nu_{yxx}}{r_{x}} - \frac{\nu_{y} r_{xxx}}{r_{x}^{2}} \right] \left[\frac{\Psi_{xx}}{r_{x}^{2}} \right]_{y} + \frac{\nu_{y}}{r_{x}} \left[\frac{1}{3} \frac{\Psi_{xxxx}}{r_{x}^{2}} - \frac{4}{3} \frac{\Psi_{xx} r_{xxx}}{r_{x}^{3}} \right]_{y}, \\ I_{6} &= \frac{\nu_{y} r_{xxx} \Psi_{yxx}}{r_{x}^{4}}, \quad I_{7} = \frac{1}{2} \left[\frac{\nu_{xx} \Psi_{yxx}}{r_{x}^{3}} \right]_{y}; \quad I_{8} = \left[\frac{\nu_{xx} r_{xy} \Psi_{xx}}{r_{x}^{4}} \right]_{y}, \\ I_{9} &= \left[\frac{\nu_{y}}{r_{x}} \left(\frac{1}{3} \frac{\Psi_{xxxx}}{r_{x}^{2}} - \frac{4}{3} \frac{\Psi_{xx} r_{xxx}}{r_{x}^{3}} \right) \right]_{y}, \quad I_{10} = \frac{1}{2} \left[\frac{\nu_{y} r_{xy} \Psi_{yxx}}{r_{x}^{4}} \right]_{y}, \\ I_{11} &= z_{y} T_{xx} + z_{yxx} T, \quad I_{12} = -[z_{xx}T]_{y}. \end{split}$$

Причем с точностью $O(x_1^2)$

$$\begin{aligned} r_x &= \frac{r_{1m}}{x_1}, \quad r_{xxx} = -\frac{6r_{1m}}{x_1(x_2^2 - x_1^2)} + \frac{6r_{2m}}{x_2(x_2^2 - x_1^2)}, \\ \Psi_{xx} &= \frac{2\Psi_{1m}}{x_1^2}, \quad \Psi_{xxxx} = -\frac{24\Psi_{1m}}{x_1^2(x_2^2 - x_1^2)} + \frac{24\Psi_{2m}}{x_2^2(x_2^2 - x_1^2)}, \quad W_{xx} = \frac{2W_{1m}}{x_1^2}, \\ \nu_{xx} &= \frac{2(\nu_{1m} - \nu_{0m})}{x_1^2}, \quad z_{xx} = \frac{2(z_{1m} - z_{0m})}{x_1^2}, \quad T_{xx} = \frac{2(T_{1m} - T_{0m})}{x_1^2}. \end{aligned}$$

Для получения этих формул достаточно разложить все функции, входящие в правую часть (5), в ряды Тейлора по x и перейти к пределу при $x \to 0$.

Граничные условия (16), (20) запишем в универсальной форме

$$\frac{\partial F^{i}}{\partial x} = \frac{p^{i}}{\mu^{i}}F^{i} - \frac{(i-2)\mathrm{Bi}H}{T_{0}^{4}}F^{i4}, \ x = 1, \ i = 2, 3.$$

С учетом этого распространим операторы $\Lambda_1^i,\ i=2,3,$ на случа
йn=N [15, с. 45]:

$$\Lambda_1^{ik} F_{Nm}^{ik} = \frac{2}{r_{Nm} H_{Nm}^2 h_{xN-1/2}} \left[-(U_{N-1/2m}^k + p_{N-1/2m}^{ik}) F_{N-1/2m}^{ik} + \right]$$

$$+\frac{(i-2)\operatorname{Bi}H_{Nm}\mu_{Nm}^{ik}}{T_0^4}F_{Nm}^{ik4} + \frac{\mu_{N-1/2m}^{ik}\alpha_{N-1/2m}^{ik}\operatorname{cth}\alpha_{N-1/2m}^{ik}}{h_{xN-1/2}}(F_{Nm}^{ik} - F_{N-1m}^{ik})],$$

$$i = 2, 3.$$

Аппроксимируем (24) следующим образом:

$$(E + \gamma^{2} \tau^{2} \bar{\Lambda}_{1}^{ik} \Lambda_{2}^{ik}) \frac{(F_{nm}^{ik+1} - F_{nm}^{ik})}{\tau} + \gamma (\bar{\Lambda}_{1}^{ik} + \Lambda_{2}^{ik}) (F_{nm}^{ik+1} - F_{nm}^{ik}) + (\Lambda_{1}^{ik} + \Lambda_{2}^{ik}) F_{nm}^{ik} = G_{nm}^{ik}, \ n = \overline{n_{0}^{i}, n_{1}^{i}}, \ m = \overline{1, M-1}, \ i = 1, 2, 3,$$

$$(29)$$

где E-тождественный оператор; $\bar{\Lambda}_1^{ik}-$ оператор, отличающийся от Λ_1^{ik} только при i=3,n = N:

$$\bar{\Lambda}_{1}^{ik}\bar{\zeta}_{Nm}^{ik} = \frac{2}{r_{Nm}H_{Nm}^{2}h_{xN-1/2}} \left[-(U_{N-1/2m}^{k} + p_{N-1/2m}^{ik})\bar{\zeta}_{N-1/2m}^{ik} + \frac{4(i-2)\text{Bi}H_{Nm}\mu_{Nm}^{ik}F_{Nm}^{ik3}}{T_{0}^{4}}\bar{\zeta}_{Nm}^{ik} + \frac{\mu_{N-1/2m}^{ik}\alpha_{N-1/2m}^{ik}\coth\alpha_{N-1/2m}^{ik}}{h_{xN-1/2}} \times (\bar{\zeta}_{Nm}^{ik} - \bar{\zeta}_{N-1m}^{ik}) \right], \ i = 3;$$

 $\gamma \in [0,1]$ — весовой коэффициент; $n_0^1 = n_0^3 = 0, \ n_0^2 = 1.$

Уравнение (29) можно переписать в факторизованном виде:

$$(E + \gamma \tau \bar{\Lambda}_{1}^{ik})(E + \gamma \tau \Lambda_{2}^{ik})\frac{(F_{nm}^{ik+1} - F_{nm}^{ik})}{\tau} = G_{nm}^{ik} - (\Lambda_{1}^{ik} + \Lambda_{2}^{ik})F_{nm}^{ik}, \ n = \overline{n_{0}^{i}, n_{1}^{i}}, \ m = \overline{1, M-1}, \ i = 1, 2, 3.$$

Поэтому переход с k-го на (k + 1)-й временной слой при фиксированном i может быть осуществлен по приведенному алгоритму:

1. Определяем невязку

$$\eta_{nm}^{ik} = G_{nm}^{ik} - (\Lambda_1^{ik} + \Lambda_2^{ik}) F_{nm}^{ik}, \ n = \overline{n_0^i, n_1^i}, \ m = \overline{1, M - 1}.$$

2. Для всех $m=\overline{1,M-1}$ решаем системы уравнений относительно $\bar{\zeta}^{ik}_{nm}$:

$$ar{\zeta}_{0m}^{ik} = 0$$
 при $i = 2$,
 $(E + \gamma \tau \bar{\Lambda}_1^{ik}) \bar{\zeta}_{nm}^{ik} = \eta_{nm}^{ik}, \ n = \overline{n_0^i, n_1^i},$
 $ar{\zeta}_{Nm}^{ik} = (E + \gamma \tau \Lambda_2^{ik}) \frac{(g_{1m}^{ik+1} - g_{1m}^{ik})}{\tau}$ при $i = 1$,

где g_{1m}^{1k} — аппроксимация правой части (9). 3. При всех $n = \overline{n_0^i, n_1^i}$ решаем системы уравнений относительно поправки ζ_{nm}^{ik} :

$$\zeta_{n0}^{ik} = \frac{(g_{2n}^{ik+1} - g_{2n}^{ik})}{\tau}; \tag{30}$$

$$(E + \gamma \tau \Lambda_2^{ik}) \zeta_{nm}^{ik} = \overline{\zeta}_{nm}^{ik}, \ m = \overline{1, M - 1};$$

$$\zeta_{nM}^{ik} = \frac{(g_{3n}^{ik+1} - g_{3n}^{ik})}{\tau},$$
(31)

где g_{2n}^{ik} , g_{3n}^{ik} — аппроксимация правых частей (11) при i = 1, (17) при i = 2 и (21) при i = 3. Далее полагаем

$$\zeta_{0m}^{ik} = 0$$
, если $i = 2$, $\zeta_{Nm}^{ik} = \frac{(g_{1m}^{ik+1} - g_{1m}^{ik})}{\tau}$, если $i = 1$, $m = \overline{0, M}$.

4. Для всех $n = \overline{0, N}, m = \overline{0, M}$ вычисляем

$$F_{nm}^{ik+1} = F_{nm}^{ik} + \tau \zeta_{nm}^{ik}.$$

Описанная разностная схема является монотонной при достаточно малом τ и консервативной [3, 16]. Если функции U, V и μ^i одного порядка, то она превращается в схему с центральными разностями для конвективных членов, которая имеет второй порядок аппроксимации по пространству. Если U, $V \gg \mu^i$, то она близка к схеме для уравнений Эйлера с разностями против потока и имеет первый порядок аппроксимации по пространству. По времени описанная схема имеет первый порядок аппроксимации.

Обратимся теперь к способу реализации алгоритма нахождения функций Ω , Ψ , при котором разностные аналоги условий (11) выполняются точно. Представим Ω в виде (несколько иначе, чем в [4, 5])

$$\Omega_{nm}^{k+1} = \hat{\Omega}_{nm}^{k+1} + P_{nm}^{k+1}(g_{2n}^{1k+1} - g_{2n}^{1k}) + Q_{nm}^{k+1}(g_{3n}^{1k+1} - g_{3n}^{1k}),$$
(32)

где функци
и $P_{nm}^{k+1}, \; Q_{nm}^{k+1}$ удовлетворяют условиям

$$(E + \gamma \tau \Lambda_2^{1k}) P_{nm}^{k+1} = 0, \quad P_{n0}^{k+1} = 1, \quad P_{nM}^{k+1} = 0,$$
$$(E + \gamma \tau \Lambda_2^{1k}) Q_{nm}^{k+1} = 0, \quad Q_{n0}^{k+1} = 0, \quad Q_{nM}^{k+1} = 1.$$

Тогда при реализации алгоритма для Ω следует положить $F_{nm}^{1k} = \Omega_{nm}^k$, $F_{nm}^{1k+1} = \hat{\Omega}_{nm}^{k+1}$, а правые части формул (30), (31) при i = 1 заменить нулями.

Разностная задача для Ψ выглядит следующим образом:

$$a_{nm}^{x}\Psi_{n-1m}^{k+1} + b_{nm}^{x}\Psi_{n+1m}^{k+1} + a_{nm}^{y}\Psi_{nm-1}^{k+1} + b_{nm}^{y}\Psi_{nm+1}^{k+1} - c_{nm}\Psi_{nm}^{k+1} + + d_{nm}^{yk+1}\Psi_{n1}^{k+1} + e_{nm}^{yk+1}\Psi_{nM-1}^{k+1} = -f_{nm}^{k+1}, \ n = \overline{1, N-1}, \ m = \overline{1, M-1};$$
(33)
$$\Psi_{0m}^{k+1} = 0, \ \Psi_{Nm}^{k+1} = -\frac{R_{c}^{2}}{2}V_{c}S, \ m = \overline{0, M};$$
$$\Psi_{n0}^{k+1} = -\frac{r_{n0}^{2}}{2}V_{c}S, \ \Psi_{nM}^{k+1} = -\frac{r_{nM}^{2}}{2}V_{f}S, \ n = \overline{0, N},$$
(34)

где

$$\begin{aligned} a_{nm}^{x} &= \frac{1}{r_{n-1/2m}h_{xn-1/2}\bar{h}_{xn}}; \ b_{nm}^{x} &= \frac{1}{r_{n+1/2m}h_{xn+1/2}\bar{h}_{xn}}; \\ a_{nm}^{y} &= \frac{1}{r_{nm-1/2}h_{ym-1/2}\bar{h}_{ym}}; \ b_{nm}^{y} &= \frac{1}{r_{nm+1/2}h_{ym+1/2}\bar{h}_{ym}}; \\ c_{nm} &= a_{nm}^{x} + b_{nm}^{x} + a_{nm}^{y} + b_{nm}^{y}; \\ d_{nm}^{yk+1} &= -\frac{P_{nm}^{k+1}H_{nm}^{2}r_{nm}(Al - 2K_{cn})}{H_{n0}r_{n0}^{2}h_{y1/2}}; \ e_{nm}^{yk+1} &= -\frac{Q_{nm}^{k+1}H_{nm}^{2}r_{nm}(Al + 2K_{fn})}{H_{nM}r_{nM}^{2}h_{yM-1/2}}; \\ f_{nm} &= -r_{nm}H_{nm}^{2}(\hat{\Omega}_{nm}^{k+1} - P_{nm}^{k+1}g_{2n}^{1k} - Q_{nm}^{k+1}g_{3n}^{1k}) - d_{nm}^{yk+1}\Psi_{n0}^{k+1} - e_{nm}^{yk+1}\Psi_{nM}^{k+1} - \end{aligned}$$

$$-\frac{r_{nm}H_{nm}^2V_cP_{nm}^{k+1}(2K_{cn}S-Al)(z_{n+10}-z_{n-10})}{2\bar{h}_{xn}r_{n0}H_{n0}}-\frac{r_{nm}H_{nm}^2V_fQ_{nm}^{k+1}(2K_{fn}S+Al)(z_{n+1M}-z_{n-1M})}{2\bar{h}_{xn}r_{nM}H_{nM}}.$$

Для решения задачи (33), (34) используем подход, предложенный В. Г. Зверевым в работе [6]. Сначала рассмотрим так называемый полинейный метод решения данной задачи (для простоты записи опустим верхний индекс k + 1):

$$a_{nm}^{x}\Psi_{n-1m}^{l+1/2} - c_{nm}\Psi_{nm}^{l+1/2} + b_{nm}^{x}\Psi_{n+1m}^{l+1/2} = -a_{nm}^{y}\Psi_{nm-1}^{l+1/2} - b_{nm}^{y}\Psi_{nm+1}^{l} - -d_{nm}^{y}\Psi_{n1}^{l+1/2} - e_{nm}^{y}\Psi_{nM-1}^{l} - f_{nm}, \ n = \overline{1, N-1}, \ m = \overline{1, M-1};$$

$$a_{nm}^{y}\Psi_{nm-1}^{l+1} - c_{nm}\Psi_{nm}^{l+1} + b_{nm}^{y}\Psi_{nm+1}^{l+1} + d_{nm}^{y}\Psi_{n1}^{l+1} + e_{nm}^{y}\Psi_{nM-1}^{l+1} =$$
(35)

$$= -a_{nm}^{x}\Psi_{n-1m}^{l+1} - b_{nm}^{x}\Psi_{n+1m}^{l+1/2} - f_{nm}, \ m = \overline{1, M-1}, \ n = \overline{1, N-1}.$$
 (36)

Недостатком этого алгоритма является то, что члены Ψ_{nm+1} , Ψ_{nM-1} в формулах (35) и член Ψ_{n+1m} в формулах (36) берутся с нижнего итерационного слоя, что сильно ухудшает сходимость алгоритма. Поэтому, следуя [6], предположим, что

$$\Psi_{nm+1} = \hat{\alpha}_{nm}\Psi_{nm} + \hat{\beta}_{nm}\Psi_{n1} + \hat{\gamma}_{nm}\Psi_{nM-1} + \hat{\delta}_{nm}; \qquad (37)$$

$$\Psi_{n+1m} = \hat{\xi}_{nm} \Psi_{nm} + \hat{\eta}_{nm}. \tag{38}$$

Подставляя эти выражения в (35), (36) и учитывая неявно Ψ_{nm}, Ψ_{n1} , получим

$$a_{nm}^{x}\Psi_{n-1m}^{l+1/2} - (c_{nm} - b_{nm}^{y}\hat{\alpha}_{nm})\Psi_{nm}^{l+1/2} + b_{nm}^{x}\Psi_{n+1m}^{l+1/2} = -a_{nm}^{y}\Psi_{nm-1}^{l+1/2} - (d_{nm}^{y} + b_{nm}^{y}\hat{\beta}_{nm})\Psi_{n1}^{l+1/2} - (e_{nm}^{y} + b_{nm}^{y}\hat{\gamma}_{nm})\Psi_{nM-1}^{l} - (f_{nm} + b_{nm}^{y}\hat{\delta}_{nm}^{l});$$

$$a_{nm}^{y}\Psi_{nm-1}^{l+1} - (c_{nm} - b_{nm}^{x}\hat{\xi}_{nm})\Psi_{nm}^{l+1} + b_{nm}^{y}\Psi_{nm+1}^{l+1} + d_{nm}^{y}\Psi_{n1}^{l+1} + e_{nm}^{y}\Psi_{nM-1}^{l+1} = -a_{nm}^{x}\Psi_{n-1m}^{l+1} - (f_{nm} + b_{nm}^{x}\hat{\eta}_{nm}^{l+1/2}).$$

$$(40)$$

Следуя [6], аналогично методу неполной факторизации запишем уравнение (33) в двух вариантах:

$$a_{nm}^{y}\Psi_{nm-1} - (c_{nm} - \hat{\theta}(a_{nm}^{x} + b_{nm}^{x}))\Psi_{nm} + b_{nm}^{y}\Psi_{nm+1} + d_{nm}^{y}\Psi_{n1} + e_{nm}^{y}\Psi_{nM-1} =$$

$$= -a_{nm}^{x}\Psi_{n-1m} - b_{nm}^{x}\Psi_{n+1m} + \hat{\theta}(a_{nm}^{x} + b_{nm}^{x})\Psi_{nm} - f_{nm}; \qquad (41)$$

$$a_{nm}^{x}\Psi_{n-1m} - (c_{nm} - \hat{\theta}(a_{nm}^{y} + b_{nm}^{y}))\Psi_{nm} + b_{nm}^{x}\Psi_{n+1m} = -a_{nm}^{y}\Psi_{nm-1} -$$

$$\sum_{nm}^{\infty} \Psi_{n-1m} - (c_{nm} - \theta(a_{nm}^{y} + b_{nm}^{y}))\Psi_{nm} + b_{nm}^{\infty}\Psi_{n+1m} = -a_{nm}^{y}\Psi_{nm-1} - b_{nm}^{y}\Psi_{nm+1} + \hat{\theta}(a_{nm}^{y} + b_{nm}^{y})\Psi_{nm} - d_{nm}^{y}\Psi_{n1} - e_{nm}^{y}\Psi_{nM-1} - f_{nm},$$
(42)

где $\hat{\theta}$ — коэффициент нижней релаксации, $0 \leq \hat{\theta} \leq 1$.

Подставляя в (41), (42) выражения (37), (38), получим рекуррентные формулы для определения коэффициентов связи:

$$\hat{\alpha}_{nM-1} = 0, \quad \hat{\beta}_{nM-1} = 0, \quad \hat{\gamma}_{nM-1} = 0, \quad \hat{\delta}_{nM-1}^{l} = \Psi_{nM},$$
$$\hat{\alpha}_{nM-2} = k_{n}^{y} a_{nM-1}^{y}, \quad \hat{\beta}_{nM-2} = k_{n}^{y} d_{nM-1}^{y},$$
$$\hat{\gamma}_{nM-2} = 1 + k_{n}^{y} (-c_{nM-1}^{\prime} + e_{nM-1}^{y}), \quad \hat{\delta}_{nM-2}^{l} = k_{n}^{y} (b_{nM-1}^{y} \hat{\delta}_{nM-1}^{l} + f_{nM-1}^{\prime l}),$$

$$\hat{\alpha}_{nm-1} = \frac{a_{nm}^y}{c'_{nm} - b_{nm}^y \hat{\alpha}_{nm}}, \quad \hat{\beta}_{nm-1} = \frac{b_{nm}^y \hat{\beta}_{nm} + d_{nm}^y}{c'_{nm} - b_{nm}^y \hat{\alpha}_{nm}}, \quad \hat{\gamma}_{nm-1} = \frac{b_{nm}^y \hat{\gamma}_{nm} + e_{nm}^y}{c'_{nm} - b_{nm}^y \hat{\alpha}_{nm}}, \quad \hat{\delta}_{nm-1}^l = \frac{b_{nm}^y \hat{\delta}_{nm}^l + f_{nm}^{\prime l}}{c'_{nm} - b_{nm}^y \hat{\alpha}_{nm}}, \quad m = \overline{M - 2.2}, \quad n = \overline{1, N - 1}, \quad (43)$$

где

$$k_n^y = \frac{1}{c'_{nM-1}}; \ f_{nm}'' = a_{nm}^x \Psi_{n-1m}^l + b_{nm}^x \Psi_{n+1m}^l - \hat{\theta}(a_{nm}^x + b_{nm}^x) \Psi_{nm}^l + f_{nm};$$

$$c'_{nm} = c_{nm} - \hat{\theta}(a_{nm}^x + b_{nm}^x);$$

$$\hat{\xi}_{N-1m} = 0; \ \hat{\eta}_{N-1m}^{l+1/2} = \Psi_{Nm}; \ \hat{\xi}_{N-2m} = \frac{a_{N-1m}^x}{c''_{N-1m}};$$

$$\hat{\eta}_{N-2m}^{l+1/2} = \frac{b_{N-1m}^x \hat{\eta}_{N-1m}^{l+1/2} + f_{N-1m}''^{l+1/2}}{c''_{N-1m}}; \ \hat{\xi}_{n-1m} = \frac{a_{nm}^x}{c''_{mm} - b_{nm}^x \hat{\xi}_{nm}};$$

$$\hat{\eta}_{n-1m}^{l+1/2} = \frac{b_{nm}^x \hat{\eta}_{nm}^{l+1/2} + f_{nm}''^{l+1/2}}{c''_{N-1m}}, \ n = \overline{N-2.2}; \ m = \overline{1, M-1}.$$
(45)

Здесь

$$f_{nm}^{\prime\prime l+1/2} = a_{nm}^{y} \Psi_{nm-1}^{l+1/2} + b_{nm}^{y} \Psi_{nm+1}^{l+1/2} - \hat{\theta} (a_{nm}^{y} + b_{nm}^{y}) \Psi_{nm}^{l+1/2} + d_{nm}^{y} \Psi_{n1}^{l+1/2} + e_{nm}^{y} \Psi_{nM-1}^{l+1/2} + f_{nm}; \ c_{nm}^{\prime\prime} = c_{nm} - \hat{\theta} (a_{nm}^{y} + b_{nm}^{y}).$$

Заметим, что выбор коэффициента k_n^y в формулах (43) находится в нашем распоряжении. В формулах (44) он определен так, чтобы $\hat{\alpha}_{nM-2}$, $\hat{\beta}_{nM-2}$, $\hat{\gamma}_{nM-2}$ и $\hat{\delta}_{nM-2}$ вычислялись по тем же формулам, что и $\hat{\alpha}_{nm-1}$, $\hat{\beta}_{nm-1}$, $\hat{\gamma}_{nm-1}$ и $\hat{\delta}_{nm-1}$ при m < M - 1.

Запишем алгоритм перехода с l-го на (l+1)-й итерационный слой при решении системы (33), (34), l = 1, 2, ..., L.

1. Если l = 1, то по формулам (43) определяются коэффициенты $\hat{\alpha}_{nm}$, $\hat{\beta}_{nm}$, $\hat{\gamma}_{nm}$, по формулам (45) — коэффициенты $\hat{\xi}_{nm}$.

2. По формулам (43) определяются $\hat{\delta}_{nm}^l$.

3. Для всех m = 1, M - 1 решаются системы уравнений (39) с учетом граничных условий (34).

4. По формулам (45) определяются $\hat{\eta}_{nm}^{l+1/2}$.

5. Для всех $n = \overline{1, N-1}$ решаются системы уравнений (40) с учетом граничных условий (34) [17, с. 90].

Описанный алгоритм на порядок эффективнее полинейного метода, так как в нем члены Ψ_{nm+1} , Ψ_{n+1m} уже учитываются неявно и только Ψ_{nM-1} — явно. Оптимальное значение коэффициента $\hat{\theta}$ можно подобрать экспериментально.

После решения задачи для Ψ_{nm}^{k+1} вычисляются функции g_{2n}^{1k+1} и g_{3n}^{1k+1} и по формуле (32) восстанавливается функция Ω_{nm}^{k+1} .

5. Тесты

Если некоторая дифференциальная задача имеет стационарное решение и аналогичным свойством обладает ее дискретный аналог, то можно исследовать дискретное решение на сходимость к решению дифференциальной задачи. Если ε_1 и ε_2 — нормы погрешности

какой-либо из искомых функций дискретного решения на сетках $N \times M$ и $2N \times 2M$ соответственно, то порядок сходимости α для этой функции определяется формулой Рунге

$$\alpha = \log_2(\varepsilon_1/\varepsilon_2).$$

Если точное решение дифференциальной задачи известно, то погрешность решения понимается в ее обычном смысле. В противном случае под ε_i здесь следует понимать норму разности между дискретными решениями на сетках $iN \times iM$ и $2iN \times 2iM$. Таким образом, в первом случае нужно провести минимум два, а во втором — минимум три расчета (на сетках $N \times M$, $2N \times 2M$ и $4N \times 4M$). В первом случае можно говорить о сходимости к точному решению, а во втором — о сходимости "в себе".

Рассмотрим следующую задачу:

$$\begin{split} \frac{\partial \Psi}{\partial y} \frac{\partial \Omega}{\partial x} &- \frac{\partial \Psi}{\partial x} \frac{\partial \Omega}{\partial y} - \frac{1}{\operatorname{Re}} \left(\frac{\partial^2 \Omega}{\partial x^2} + \frac{\partial^2 \Omega}{\partial y^2} \right) = G, \\ \frac{\partial^2 \Psi}{\partial x^2} &+ \frac{\partial^2 \Psi}{\partial y^2} = \Omega \text{ при } 0 < x < 1, \ 0 < y < 1, \\ \Psi &= \frac{\partial \Psi}{\partial y} = 0, \ y = 0 \text{ и } y = 1, \ \Psi = 0, \ x = 0 \text{ и } x = 1, \\ \frac{\partial \Omega}{\partial x} &= 0, \ x = 0, \ \Omega = g(y), \ x = 1. \end{split}$$

Функции G(x, y) и g(y) подберем так, чтобы функция $\Psi = \Psi_T = \sin^2 \pi x \sin^2 \pi y$ являлась точным решением этой задачи. В дискретном аналоге вместо условий $\partial \Psi / \partial y = 0$ поставим условия Тома [4]:

$$\Omega(x,0) = \frac{2}{h_{y1/2}^2} \Psi(x,y_1), \quad \Omega(x,1) = \frac{2}{h_{yM-1/2}^2} \Psi(x,y_{M-1}).$$

Эта задача решалась на последовательности сеток методом установления по времени с помощью разностной схемы, описанной в предыдущем разделе. Для каждой из функций Ψ , Ω , $U = \partial \Psi / \partial y$ и $V = -\partial \Psi / \partial x$ вычислялись две нормы погрешности R_i (норма в C и в L_2):

$$\varepsilon_i = \max |R_i|$$
 и $\sigma_i = \left(\int_0^1 dx \int_0^1 R_i^2 dy \right)^{1/2}, \ i = 1, 2.$

При Re = 0.1 в обеих нормах имел место второй порядок сходимости, при Re = 100 — первый. Причем в последнем случае он начинал проявляться при бо́льших числах разбиений, чем в первом. При Re = 10 000 численное решение не сходилось к точному, так как последнее становилось неустойчивым, но наблюдалась сходимость "в себе" с порядками, лежащими в пределах 0.6...1.0 для всех функций, кроме Ω . Для Ω порядок, вычисленный по нормам ε_i , был отрицательным, а порядок, вычисленный по нормам σ_i , равен 0.4. Эти результаты получены при 4N = 4M = 160. Отличие порядков сходимости для некоторых функций от 1 при Re = 10 000 может быть объяснено недостаточным числом разбиений и разрывностью функции Ω в угловых точках.

Был также произведен расчет порядков сходимости "в себе" α_{ε} и α_{σ} , соответствующих нормам ε_i и σ_i погрешности в определении функций Ψ , Ω , W, T, U, V при решении задачи,

$4N \times 4M$	Параметр	Функция						
		Ψ	Ω	W	T	U	V	
80×80	α_{ε}	1.76	1.94	1.95	1.82	1.65	2.02	
	α_{σ}	1.93	1.91	2.03	2.02	1.76	1.92	
80×160	α_{ε}	1.90	2.32	1.87	1.99	2.01	1.50	
	α_{σ}	1.95	1.94	2.01	2.01	1.96	1.92	
160×160	α_{ε}	1.62	1.90	2.01	1.91	1.57	1.70	
	α_{σ}	1.57	1.69	2.03	2.03	1.85	1.84	
160×320	α_{ε}	1.84	1.78	1.94	2.01	1.99	1.68	
	α_{σ}	1.75	1.27	2.02	2.01	1.86	1.87	

Таблица 1

Т	a	б	Л	И	П	а	2
-	~~	~	• •			~~	_

Параметр		Φ	ункция	I	
	Ψ	Ω	T	U	V
$lpha_arepsilon$	-0.21	0.15	1.02	0.28	0.50
α_{σ}	-0.60	0.51	0.67	0.47	0.49

описанной в предыдущих разделах, но с некоторыми упрощениями. Так был произведен расчет при Re = 1, Ma = 0, Gr = 0, Eu_m = 0, Qe $\neq 0$, $\Omega_c \neq 0$, $\Omega_f \neq 0$, вязкость переменная, геометрия области такая же, как в следующем разделе. Результаты приведены в табл. 1.

Из табл. 1 видно, что почти все порядки сходимости лежат в пределах 1.5...2.3 и большинство близки к 2 (теоретическое значение). Исключение составляет порядок α_{σ} сходимости функции Ω при 4N = 160, 4M = 320. Возможной причиной является то, что коэффициент $\alpha_{n+1/2m}^{1k}$ при n = 1 близок к 2 (см. формулы (27), (23)), а при n = 0 равен нулю (см. формулу (28)). Другой возможной причиной является влияние ошибок округления.

Был также произведен расчет порядков сходимости "в себе" при 4N = 4M = 120, Gr = 0, E $u_m = 0$, $\Omega_c = 0$, $\Omega_f = 0$, вязкость постоянная, остальные параметры приняты такими, как в разд. 2, геометрия области — как в следующем разделе, т. е. расчет конвекции Марангони при реальном (т. е. очень большом) числе Рейнольдса. Результаты приведены в табл. 2. Отличие большинства порядков от 1 (теоретическое значение) может быть объяснено такими причинами, как недостаточное число разбиений, влияние ошибок округления и разрывность коэффициента $\alpha_{n+1/2m}^{1k}$ при переходе n от 0 к 1.

6. Пример расчета

Зададим конформное отображение квадрата $0 \le x \le 1, \ 0 \le y \le 1$ на область, занимаемую расплавом, по формулам

$$r(x,y) = \frac{c \, \mathrm{sh} \, x}{\mathrm{ch} \, x - \cos(\pi - 0.5 + y)}, \quad z(x,y) = -\frac{c \, \sin(\pi - 0.5 + y)}{\mathrm{ch} \, x - \cos(\pi - 0.5 + y)},$$

где *с* выбирается из условия $r(1,0) = R_c$. Тогда

$$H(x,y) = \frac{c}{\operatorname{ch} x - \cos(\pi - 0.5 + y)}$$

Сетку на отрезке $0 \le x \le 1$ построим следующим образом. Положим

$$h_{x1/2} = \frac{3.75E_m}{NH(0,0)}, \quad h_{xN-1/2} = \frac{3.75E_m}{2NH(1,0)}.$$

Тогда в плоскости переменных r, z максимумы соответствующих шагов сетки будут примерно в N/3.75 раз меньше толщины погранслоя в окрестности оси симметрии и свободной границы. (Для свободной границы роль толщины погранслоя играет величина $\varepsilon_m/2$, для остальных границ она примерно в два раза больше.) Отношение $h_{xn+1/2}/h_{xn-1/2}$ примем постоянным и бо́льшим 1 при $1 \le n \le N/2 - 1$. Это же отношение при $N/2 + 1 \le n \le N - 1$ примем постоянным и меньшим 1. Значения постоянных подберем так, чтобы $h_{xN/2-1/2} =$ $h_{xN/2+1/2}$ (здесь искомой величиной является также $x_{N/2}$). Описанными условиями сетка определяется однозначно. Сетку на отрезке $0 \le y \le 1$ построим аналогично, приняв

$$h_{y1/2} = h_{x1/2}N/M, \quad h_{yM-1/2} = h_{x1/2}N/M.$$

На рис. 1, a и b показаны расчетные сетки в плоскости Orz размерности 30×30 и 120×120 соответственно.

Функцию пондеромоторной силы $\bar{\bar{f}}_n(x)$ зададим в виде

$$\bar{f}_n(x) = 0.5(1 + \sin(\pi x)), \ 0 \le x \le 1.$$

Приводимые ниже примеры расчета относятся к нестационарным течениям. Задача решалась следующим образом. На сетке 30×30 задавались аналитически некоторое начальное приближение функций Ψ , Ω , T, удовлетворяющее граничным условиям на линиях фазового перехода, и начальное приближение, тождественно равное нулю, для функции W. Если решалась задача с вращением, то задавалась угловая скорость вращения нижнего $\Omega_{ct}(t)$ и верхнего $\Omega_{ft}(t)$ цилиндров по закону

$$\Omega_{c,ft}(t) = (1 - e^{-0.04t})\Omega_{c,f}, \ t \in [0, \ 250).$$

При $t \ge 250$ полагалось $\Omega_{c,ft}(t) \equiv \Omega_{c,f}$. Шаг τ при всех расчетах был равен 10^{-3} , а число итераций для функции тока L = 10, что обеспечивало для сетки 120×120 норму невязки в $L_2 \sim 10^{-6} - 10^{-7}$ при норме невязки начального приближения $\sim 10^{-4}$. Сначала производили от 300 до 750 тысяч итераций по времени (в зависимости от варианта) на сетке

Рис. 1.

Рис. 2.

 30×30 . Затем все функции интерполировались на сетку размерности 30×60 и результат брался за начальное приближение при расчете на этой сетке. Производили 15 тысяч итераций и делали интерполяцию на следующую сетку, попеременно удваивая число узлов то по y, то по x, пока не достигалась размерность сетки 120×120 . На этой сетке производили 500 тысяч итераций, что соответствует 100 с размерного времени. Последний этап занимал более одних суток машинного времени на ПЭВМ Pentium-4 с частотой 3 ГГц.

На рис 2, *a*, *б*, *в* показаны соответственно изолинии функции тока Ψ , температуры *T* и модифицированной азимутальной компоненты скорости *W* при решении задачи без какихлибо упрощений (вариант 1). Далее показаны изолинии функции тока Ψ при постоянной вязкости (*z*) (вариант 2), при отсутствии термокапиллярной и пондеромоторной сил (*d*)

гаолицаэ	Т	a	б	Л	И	Ц	a	3
----------	---	---	---	---	---	---	---	---

Вариант	Функция	x_{\min}	y_{\min}	\min	x_{\max}	$y_{\rm max}$	\max
1	Ψ	0.57	0.11	-0.050	0.86	0.91	0.090
1	v_{xy}			0	1.0	0.997	2.80
1	T			34, 0	0.9992	0.59	37, 5
1, 2, 3	W	1.0	1.0	-2.7	1.0	0.0	0.655
2	Ψ	0.61	0.11	-0.049	0.88	0.91	0.093
2	v_{xy}			0	1.0	0.997	2.74
3	Ψ	0.83	0.14	-0.020	0.91	0.41	0.051
3	v_{xy}			0	1.0	0.37	0.216
4	Ψ	0.81	0.84	-0.125	0.65	0.37	0.199
4	v_{xy}			0	1.0	0.31	1.160
					-		

(вариант 3) и при отсутствии вращения (e) (вариант 4). Параметр θ был равен 0.8, а $\gamma = 0.99$. Число итераций на сетке 30×30 составляло 750 тысяч для вариантов 1 и 2, 400 тысяч для варианта 3 (так как через некоторое время итерации для этого варианта разошлись) и 300 тысяч для варианта 4 (так как было получено стационарное решение). Характеристики течений приведены в табл. 3 (здесь обозначено $v_{xy} = \sqrt{u^2 + v^2}$, x_{\min} , y_{\min} — координаты x, y точки минимума; x_{\max} , y_{\max} — координаты x, y точки максимума соответствующей функции).

Заметим, что на сетке 120×120 все полученные решения являются нестационарными.

Список литературы

- ВЕРЕТЕНЦЕВ В.А. Построение разностной сетки в области с криволинейными границами с помощью конформного отображения // Актуальные вопросы прикл. математики. М.: Изд-во МГУ, 1989. С. 88–93.
- [2] ПИВОВАРОВ Ю.В. О построении ортогональной разностной сетки в криволинейном четырехугольнике // Вычисл. технологии. 2003. Т. 8, № 5. С. 94–101.
- [3] Булеев Н.И. Пространственная модель турбулентного обмена. М.: Наука, 1989. 344 с.
- [4] ВОЕВОДИН А.Ф., ЮШКОВА Т.В. Численный метод решения начально-краевых задач для уравнений Навье — Стокса в замкнутых областях на основе метода расщепления // Сиб. журн. вычисл. математики. 1999. Т. 2, № 4. С. 321–332.
- [5] ОВЧАРОВА А.С. Метод расчета стационарных течений вязкой жидкости со свободной границей в переменных вихрь — функция тока // ПМТФ. 1998. Т. 39, № 2. С. 59–68.
- [6] ЗВЕРЕВ В.Г. Об одном итерационном алгоритме решения разностных эллиптических уравнений // Вычисл. технологии. 1999. Т. 4, № 1. С. 55–65.
- [7] MUHLBAUER A., MUIZNIEKS A. ET AL. Interface shape, heat transfer and fluid flow in the floating zone growth of large silicon crystals with the needle-eye technique // J. Crystal Growth. 1995. Vol. 151. P. 66–79.
- [8] РЕГЕЛЬ А.Р., ГЛАЗОВ В.М. Физические свойства электронных расплавов. М.: Наука, 1980.
 295 с.
- [9] ПИВОВАРОВ Ю.В. Одномерная тепловая задача о бестигельной зонной плавке в быстропеременном магнитном поле // Динамика сплошной среды: Сб. науч. тр. / РАН. Сиб. отд-ние. Ин-т гидродинамики. 1996. Вып. 111. С. 100–108.
- [10] ПИВОВАРОВ Ю.В. Параметрический анализ задачи о бестигельной зонной плавке в магнитном поле // Динамика сплошной среды: Сб. науч. тр. / РАН. Сиб. отд-ние. Ин-т гидродинамики. 2000. Вып. 116. С. 142–147.
- [11] КОЧИН Н.Е., КИБЕЛЬ И.А. И ДР. Теоретическая гидромеханика. Ч. II. М.: Гос. изд-во физ.-мат. лит., 1963. 727 с.
- [12] ЛОЙЦЯНСКИЙ Л.Г. Механика жидкости и газа. М.: Наука, 1973. 736 с.
- [13] АНДРЕЕВ В.К., КАПЦОВ О.В. И ДР. Применение теоретико-групповых методов в гидродинамике. Новосибирск: Наука, 1994. 318 с.

- [14] ВОЕВОДИН А.Ф., ОСТАПЕНКО В.В. И ДР. Проблемы вычислительной математики. Новосибирск: Изд-во Сиб. отд-ния РАН, 1995. 154 с.
- [15] ПАТАНКАР С. Численные методы решения задач теплообмена и динамики жидкости. М.: Энергоатомиздат, 1984. 150 с.
- [16] ПИВОВАРОВ Ю.В. Условия монотонности факторизованной разностной схемы для эволюционного уравнения с двумя пространственными переменными // Вычисл. технологии. 2001. Т. 6, № 4. С. 81–91.
- [17] САМАРСКИЙ А.А., НИКОЛАЕВ Е.С. Методы решения сеточных уравнений. М.: Наука, 1978. 592 с.

Поступила в редакцию 12 декабря 2004 г.