Конечномерная инвариантная аппроксимация и периодические режимы течения Блазиуса

Т.Г. ДАРМАЕВ

Бурятский государственный университет, Улан-Удэ, Россия e-mail: dtg@bsu.ru

In this article the method of the finite-dimensional invariant projection of the Navier—Stokes equations is applied for the parallel Blasius flow of viscous incompressible fluid on a semi-infinite flat plate. A numerical study of the periodical regimes was presented.

Введение

Известно, что в области ламинарно-турбулентного перехода в пограничном слое быстро нарастают возмущения. Первая попытка оценить влияние нелинейности на судьбу возмущений была предпринята Л.Д. Ландау [1]. С помощью качественных рассуждений он показал, что нелинейность может как стабилизировать нарастающие возмущения, создавая новый устойчивый режим течения, так и вызвать рост возмущений, устойчивых в линейном приближении. Дж. Стюарт и Дж. Ватсон [2, 3] количественно нашли уравнение Ландау для слабонеустойчивых возмущений плоскопараллельных течений в виде асимптотических рядов. Численные расчеты для течения Пуазейля выполнили В. Рейнольдс и М. Поттер [4]. Существенный вклад в развитие нелинейной теории был сделан В.В. Струминским [5]. Он получил решение уравнений Навье—Стокса для слабонелинейных возмущений в виде сходящихся рядов. Просуммировав бесконечные ряды для амплитуд возмущений, он показал, что нарастающие возмущения стабилизируются, а затухающие в линейном приближении затухают и при нелинейном рассмотрении. Решения Струминского сходились на некотором расстоянии от линейной нейтральной кривой. Но вышеуказанные слабонелинейные теории гидродинамической устойчивости [1-5] и прямое численное интегрирование уравнений Навье—Стокса [6] хорошо описывают начальную стадию ламинарно-турбулентного перехода. Слабонелинейная теория не применима для описания последующих стадий, поскольку нужно рассматривать члены высших порядков по амплитуде. Прямое численное интегрирование уравнений Навье-Стокса неэкономично и не гарантирует правильного описания асимптотического поведения решения. Б.Ю. Скобелев [7] разработал метод инвариантной конечномерной проекции уравнений Навье-Стокса, который позволяет получать нелинейные решения в окрестности нейтральной кривой в виде сходящихся рядов. Существенным достоинством метода инвариантной проекции является то, что он гарантирует правильное описание асимптотического поведения решений (т.е. при $t \to \infty$), а также то, что начально-краевая задача для возмущений ламинарного течения сводится к конечномер-

[©] Институт вычислительных технологий Сибирского отделения Российской академии наук, 2008.

ной системе обыкновенных дифференциальных уравнений с аналитическими правыми частями. Правые части находятся из рекуррентной системы линейных краевых задач.

В данной работе метод инвариантной конечномерной проекции уравнений Навье— Стокса применяется для плоскопараллельного течения Блазиуса вязкой несжимаемой жидкости над плоской полубесконечной пластиной.

1. Эволюционные уравнения для трехмерных моногармонических периодических возмущений

Выберем систему координат так, чтобы ось *x* была направлена вдоль пластины, *z*-координата — поперек пластины, *y*-координата — перпендикулярно пластине, начало координат совпадает с передней кромкой пластины.

Рассмотрим уравнение Навье—Стокса для завихренности:

$$\frac{\partial \boldsymbol{\omega}}{\partial t} = (\boldsymbol{\omega} \cdot \nabla) \mathbf{u} - (\mathbf{u} \cdot \nabla) \boldsymbol{\omega} + \nu \Delta \boldsymbol{\omega}, \qquad (1)$$

и уравнение неразрывности:

$$(\nabla \mathbf{u}) \equiv \frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial y} + \frac{\partial u_3}{\partial z} = 0, \qquad (2)$$

где ν — коэффициент кинематической вязкости, $\mathbf{x} = (x, y, z)$ — координаты, $\mathbf{u} = (u_1, u_2, u_3)$ — скорость, $\boldsymbol{\omega} = (\omega_1, \omega_2, \omega_3)$ — завихренность, $\boldsymbol{\omega} = \nabla \times \mathbf{u}$ или

$$\omega_1 = \frac{\partial u_3}{\partial y} - \frac{\partial u_2}{\partial z}, \quad \omega_2 = \frac{\partial u_1}{\partial z} - \frac{\partial u_3}{\partial x}, \quad \omega_3 = \frac{\partial u_2}{\partial x} - \frac{\partial u_1}{\partial y}, \quad \boldsymbol{\omega} \cdot \nabla = \omega_1 \frac{\partial}{\partial x} + \omega_2 \frac{\partial}{\partial y} + \omega_3 \frac{\partial}{\partial z}.$$

Предположим, что уравнения (1) и (2) имеют стационарное решение $\mathbf{u}^{(0)}$, $\boldsymbol{\omega}^{(0)}$. Положим $\mathbf{u} = \mathbf{u}^{(0)}(y) + \tilde{\mathbf{u}}$, $\boldsymbol{\omega} = \boldsymbol{\omega}^{(0)}(y) + \tilde{\boldsymbol{\omega}}$. Решение \mathbf{u} удовлетворяет естественным граничным условиям на пластине. В дальнейшем будут рассматриваться уравнения для возмущений $\tilde{\mathbf{u}}, \tilde{\boldsymbol{\omega}}$, и поэтому знак тильды будем опускать. Подставляя \mathbf{u} , и $\boldsymbol{\omega}$ в (1), получаем уравнение для возмущений:

$$\frac{\partial \boldsymbol{\omega}}{\partial t} = (\boldsymbol{\omega}^{(0)} \cdot \nabla) \mathbf{u} + (\boldsymbol{\omega} \cdot \nabla) \mathbf{u}^{(0)} - (\mathbf{u}^{(0)} \cdot \nabla) \boldsymbol{\omega} - (\mathbf{u} \cdot \nabla) \boldsymbol{\omega}^{(0)} + (\boldsymbol{\omega} \cdot \nabla) \mathbf{u} - (\mathbf{u} \cdot \nabla) \boldsymbol{\omega} + \nu \Delta \boldsymbol{\omega}.$$
(3)

Для плоскопараллельных течений скорость $u_1^{(0)} = U(y)$ — профиль стационарного решения, $u_2^{(0)} = u_3^{(0)} = 0$, а завихренность $\omega_3^{(0)} = -\frac{dU}{dy}$, $\omega_1^{(0)} = \omega_2^{(0)} = 0$. Учитывая

соотношения для ω , а также уравнение (2), и преобразовывая (3), получим следующую систему уравнений:

$$\begin{cases}
\left(\frac{\partial}{\partial t} + U\frac{\partial}{\partial x} - \nu\Delta\right)\Delta u_{2} - \frac{d^{2}U}{dy^{2}}\frac{\partial u_{2}}{\partial x} = \\
= \frac{\partial}{\partial x}\left[(\boldsymbol{\omega}\cdot\nabla)u_{3} - (\mathbf{u}\cdot\nabla)\omega_{3}\right] - \frac{\partial}{\partial z}\left[(\boldsymbol{\omega}\cdot\nabla)u_{1} - (\mathbf{u}\cdot\nabla)\omega_{1}\right], \\
\left(\frac{\partial}{\partial t} + U\frac{\partial}{\partial x} - \nu\Delta\right)\omega_{2} = (\boldsymbol{\omega}\cdot\nabla)u_{2} - (\mathbf{u}\cdot\nabla)\omega_{2} - \frac{dU}{dy}\frac{\partial u_{2}}{\partial z}, \\
\left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial z^{2}}\right)u_{1} = -\frac{\partial^{2}u_{2}}{\partial x\partial y} + \frac{\partial\omega_{2}}{\partial z}, \\
\left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial}{\partial z^{2}}\right)u_{3} = -\frac{\partial^{2}u_{2}}{\partial x\partial y} - \frac{\partial\omega_{2}}{\partial x}.
\end{cases}$$
(4)

Положим давление $p = p^{(0)}(y) + \tilde{p}$, тогда из уравнения для скорости, опуская знак тильды для \tilde{p} , имеем

$$\begin{cases}
\left(\frac{\partial}{\partial t} - \nu\Delta\right)u_1 + U\frac{\partial u_1}{\partial x} - u_2\frac{dU}{dy} = -\frac{\partial p}{\partial x} - (\mathbf{u}\cdot\nabla)u_1, \\
\left(\frac{\partial}{\partial t} - \nu\Delta\right)u_2 + U\frac{\partial u_2}{\partial x} = -\frac{\partial p}{\partial y} - (\mathbf{u}\cdot\nabla)u_2, \\
\left(\frac{\partial}{\partial t} - \nu\Delta\right)u_3 + U\frac{\partial u_3}{\partial x} = -\frac{\partial p}{\partial z} - (\mathbf{u}\cdot\nabla)u_3.
\end{cases}$$
(5)

Рассмотрим трехмерные моногармонические возмущения, периодические по продольной координате x с волновым числом α и по поперечной координате z с волновым числом $\beta: u_j^{km}(y, \theta_{km}) = \hat{u}_j^{km}(y)e^{i\theta_{km}}, \ j = 1, 2, 3; \ -\infty < k, m < \infty, \ \theta_{km} = k\alpha x + m\beta z, \ i - (1 - 1) - (1$ мнимая единица.

Положим:

$$\begin{cases} u_j = \sum_{k,m} u_j^{km}(y,\theta_{km}), \quad j = 1, 2, 3; \\ p = \sum_{k,m} p^{km}(y,\theta_{km}) \end{cases}$$

и $u_2^{00} = 0$ с учетом граничных условий. Подставляя u_j в уравнение неразрывности (2) и приравнивая члены при $e^{i\theta_{km}}$, получаем:

$$k\alpha \frac{\partial u_1^{km}}{\partial \theta_{km}} + m\beta (1 - \delta_{\lambda 0}) \frac{\partial u_3^{km}}{\partial \theta_{km}} + (1 - \delta_{\lambda 0}) \frac{\partial u_2^{km}}{\partial y} = 0,$$

где δ — символ Кронекера, $\lambda = |k| + |m|$.

Таким образом, уравнение неразрывности удовлетворяется введением функций тока:

$$\begin{cases}
\frac{\partial \psi^{km}}{\partial y} = k \alpha u_1^{km} + m \beta u_3^{km} + \delta_{\lambda 0} (u_1^{00} + c u_3^{00}), \\
(1 - \delta_{\lambda 0}) \frac{\partial \psi^{km}}{\partial \theta_{km}} = -u_2^{km},
\end{cases}$$
(6)

где *с* — произвольная постоянная.

Из последних двух уравнений системы (4) и (6) находим:

$$\begin{cases} u_1^{km} = \frac{(1 - \delta_{\lambda 0})}{\gamma_{km}^2} \left[k\alpha \, \frac{\partial \psi^{km}}{\partial y} + im\beta\omega_2^{km} \right] + \delta_{\lambda 0} u_1^{00}, \\ u_2^{km} = -i(1 - \delta_{\lambda 0})\psi^{km}, \\ u_3^{km} = \frac{(1 - \delta_{\lambda 0})}{\gamma_{km}^2} \left[m\beta \, \frac{\partial \psi^{km}}{\partial y} - ik\alpha\omega_2^{km} \right] + \delta_{\lambda 0} u_3^{00}, \\ + (m\beta)^2, \, \omega_2 = (1 - \delta_{\lambda 0}) \sum \omega_2^{km} (y, \theta_{km}). \end{cases}$$
(7)

где $\gamma_{km}^2 = (k\alpha)^2 + (m\beta)^2, \ \omega_2 = (1 - \delta_{\lambda 0}) \sum_{k,m} \omega_2^{km}(y, \theta_{km}).$

Складывая в (5) уравнения для u_1^{km} , умноженное на $k\alpha$, для u_3^{km} — на $m\beta$ $(k, m \neq 0)$, для u_1^{00} — на $\delta_{\lambda 0}$ и для u_3^{00} — на $c\delta_{\lambda 0}$, и учитывая (7), получим

$$\left(\frac{\partial}{\partial t} - \nu\Delta + k\alpha U \frac{\partial}{\partial \theta_{km}}\right) \frac{\partial \psi^{km}}{\partial y} - k\alpha \frac{\partial U}{\partial y} \frac{\partial \psi^{km}}{\partial \theta_{km}} = -c\delta_{\lambda 0} \left[(\mathbf{u}^{k_1m_1} \cdot \nabla) u_3^{k_2m_2} \right]^{00} - \gamma_{km}^2 \frac{\partial p^{km}}{\partial \theta_{km}} - \left[k\alpha (\mathbf{u}^{k_1m_1} \cdot \nabla) u_1^{k_2m_2} + m\beta (\mathbf{u}^{k_1m_1} \cdot \nabla) u_3^{k_2m_2} \right]^{km} - \delta_{\lambda 0} \left[(\mathbf{u}^{km} \cdot \nabla) u_1^{k_2m_2} \right]^{00}.$$
(8)

Из второго уравнения системы (5) с учетом (7) получаем

$$\left(\frac{\partial}{\partial t} - \nu\Delta + k\alpha U \frac{\partial}{\partial \theta_{km}}\right) \frac{\partial \psi^{km}}{\partial \theta_{km}} = \frac{\partial p^{km}}{\partial y} + \left[(\mathbf{u}^{k_1 m_1} \cdot \nabla) u_2^{k_2 m_2} \right]^{km}$$

Используя соотношения (7), продифференцируем первое уравнение системы (5) по y, второе — по θ_{km} , умножим на γ_{km}^2 и сложим:

$$\begin{pmatrix} \frac{\partial}{\partial t} - \nu \tilde{\Delta} + k\alpha U \frac{\partial}{\partial \theta_{km}} \end{pmatrix} \tilde{\Delta} \psi^{km} - k\alpha \frac{d^2 U}{dy^2} \frac{\partial \psi^{km}}{\partial \theta_{km}} = \gamma_{km}^2 \frac{\partial}{\partial \theta_{km}} \left[(\mathbf{u}^{k_1 m_1} \cdot \nabla) u_2^{k_2 m_2} \right]^{km} - \delta_{\lambda 0} \left[\frac{\partial}{\partial y} (\mathbf{u}^{k_1 m_1} \cdot \nabla) u_1^{k_2 m_2} \right]^{00} - c\delta_{\lambda 0} \left[\frac{\partial}{\partial y} (\mathbf{u}^{k_1 m_1} \cdot \nabla) u_3^{k_2 m_2} \right]^{00} - \frac{\partial}{\partial y} \left[k\alpha (\mathbf{u}^{k_1 m_1} \cdot \nabla) u_1^{k_2 m_2} + m\beta (\mathbf{u}^{k_1 m_1} \cdot \nabla) u_3^{k_2 m_2} \right]^{km}, \quad (9)$$

где $\tilde{\Delta} = \frac{\partial}{\partial y^2} + \gamma_{km}^2 \frac{\partial}{\partial \theta_{km}^2}.$

Обозначим:

$$Z_{k_1k_2} \equiv (k_1k_2\alpha^2 + m_1m_2\beta^2)\frac{\partial\psi^{k_1m_1}}{\partial y} + i\alpha\beta(m_1k_2 - k_1m_2)\omega_2^{k_1m_1},$$

$$\hat{Z}_{k_1k_2} \equiv (k_1k_2\alpha^2 + m_1m_2\beta^2)\frac{d\hat{\psi}^{k_1m_1}}{dy} + i\alpha\beta(m_1k_2 - k_1m_2)\hat{\omega}_2^{k_1m_1},$$

$$\hat{\Delta} \equiv \left(\frac{d^2}{dy^2} - \gamma_{km}^2\right), R_{km} \equiv k\alpha u_1^{00} + m\beta u_3^{00}, \hat{Y}_{kmc} \equiv (k\alpha + cm\beta)\frac{d\hat{\psi}^{km}}{dy} + i(m\beta - ck\alpha)\hat{\omega}_2^{km},$$

где $\omega_2 = \sum_{k,m} \hat{\omega}_2^{km}(y,t)e^{i\theta_{km}}, \ \psi^{km} = \hat{\psi}^{km}(y,t)e^{i\theta_{km}}, \ \eta_{\lambda 0} = 1 - \delta_{\lambda 0},$ причем $\hat{\omega}_2^{00} = 0$ и $Z_{k_1k_2} = \hat{Z}_{k_1k_2}e^{i\theta_{k_1m_1}}.$

Выражая u_j^{km} через ψ^{km} и ω_2^{km} , с помощью (6) и (7) получаем из (9):

$$\begin{bmatrix} \frac{\partial}{\partial t} \hat{\Delta} + ik\alpha(U\hat{\Delta} - \frac{d^2U}{dy^2}) - \nu\hat{\Delta}^2 \end{bmatrix} \hat{\psi}^{km} = i\gamma_{km}^2 \eta_{\lambda_1 0} \eta_{\lambda_2 0} \begin{bmatrix} \frac{\hat{Z}_{k_1 k_2}}{\gamma_{k_1 m_1}^2} \hat{\psi}^{k_2 m_2} - \hat{\psi}^{k_1 m_1} \frac{\partial\hat{\psi}^{k_2 m_2}}{\partial y} \end{bmatrix}^{km} - i\frac{\eta_{\lambda_1 0} \eta_{\lambda_2 0}}{\gamma_{k_2 m_2}^2} \begin{bmatrix} \frac{1}{\gamma_{k_1 m_1}^2} \left(\hat{Z}_{k_2 k} \frac{\partial}{\partial y} \hat{Z}_{k_1 k_2} + \hat{Z}_{k_1 k_2} \frac{\partial}{\partial y} \hat{Z}_{k_2 k} \right) - \frac{\partial\hat{\psi}^{k_1 m_1}}{\partial y} \frac{\partial Z_{k_2 k}}{\partial y} - \hat{\psi}^{k_1 m_1} \frac{\partial^2 \hat{Z}_{k_2 k}}{\partial y^2} \end{bmatrix}^{km} - i\left(\frac{\partial^2 \hat{\psi}^{km}}{\partial y^2} R_{km} - \hat{\psi}^{km} \frac{\partial^2 R_{km}}{\partial y^2} \right) + i\gamma_{km}^2 \hat{\psi}^{km} R_{km} - i\delta_{\lambda_0} \frac{\eta_{\lambda_1 0} \eta_{\lambda_2 0}}{\gamma_{k_2 m_2}^2} \times \begin{bmatrix} \frac{1}{\gamma_{k_1 m_1}^2} \left(\hat{Y}_{k_2 m_2 c} \frac{\partial \hat{Z}_{k_1 k_2}}{\partial y} + \hat{Z}_{k_1 k_2} \frac{\partial \hat{Y}_{k_2 m_2 c}}{\partial y} \right) - 2\hat{\psi}^{k_1 m_1} \frac{\partial^2 \hat{Y}_{k_2 m_2 c}}{\partial y^2} - \frac{\partial\hat{\psi}^{k_1 m_1}}{\partial y} \frac{\partial \hat{Y}_{k_2 m_2 c}}{\partial y} \end{bmatrix}^{00}. \quad (10)$$

Используя (7), из второго уравнения системы (4) находим ω_2^{km} :

$$\left(\frac{\partial}{\partial t} - \nu\tilde{\Delta} + k\alpha U \frac{\partial}{\partial\theta_{km}}\right)\omega_2^{km} = \left[\omega_2^{k_1m_1} \frac{\partial u_2^{k_2m_2}}{\partial y} + (k_2\alpha\omega_1^{k_1m_1} + m_2\beta\omega_3^{k_1m_1})\frac{\partial u_2^{k_2m_2}}{\partial\theta_{k_2m_2}} - (\mathbf{u}^{k_1m_1} \cdot \nabla)\omega_2^{k_2m_2} - m\beta\frac{dU}{dy}\frac{\partial u_2^{km}}{\partial\theta_{km}}\right]^{km}.$$
(11)

Обозначая

$$\hat{V}_{k_1k_2} \equiv \frac{1 - \delta_{\lambda_1 0}}{\gamma_{k_1 m_1}^2} \left[\alpha \beta (k_2 m_1 - k_1 m_2) \frac{\partial^2 \hat{\psi}^{k_1 m_1}}{\partial y^2} - i(k_1 k_2 \alpha^2 + m_1 m_2 \beta^2) \frac{\partial \hat{\omega}_2^{k_1 m_1}}{\partial y} \right]$$

и учитывая, что

$$\omega_2^{k_1m_1} \frac{\partial u_2^{k_2m_2}}{\partial y} = -i(1-\delta_{\lambda_20})\omega_2^{k_1m_1} \frac{\partial \psi^{k_2m_2}}{\partial y},$$

получаем далее

$$\left(\frac{\partial}{\partial t} - \nu \hat{\Delta} + ik\alpha U\right) \hat{\omega}_{2}^{km} = \left[i\eta_{\lambda_{2}0}\hat{\omega}_{2}^{k_{1}m_{1}}\frac{\partial\hat{\psi}^{k_{2}m_{2}}}{\partial y} + \alpha\beta(k_{1}m_{2} - k_{2}m_{1})\hat{\psi}^{k_{1}m_{1}}\hat{\psi}^{k_{2}m_{2}} + \hat{\psi}^{k_{2}m_{2}}\hat{V}_{kk_{2}} - i\eta_{\lambda_{1}0}\left(\frac{1}{\gamma_{k_{1}m_{1}}^{2}}\hat{Z}_{k_{1}k_{2}}\hat{\omega}_{2}^{k_{2}m_{2}} - \hat{\psi}^{k_{1}m_{1}}\frac{\partial\hat{\omega}_{2}^{k_{2}m_{2}}}{\partial y}\right)\right]^{km} + \hat{\psi}^{km}\frac{\partial}{\partial y}(k\alpha u_{3}^{00} - m\beta u_{1}^{00}) - i\omega_{2}^{km}(k\alpha u_{1}^{00} + m\beta u_{3}^{00}) - m\beta\frac{dU}{dy}\hat{\psi}^{km}.$$
(12)

Учитывая $\omega_2^{00} = 0$, получаем

$$u_1^{00} = \frac{\partial \psi^{00}}{\partial y} - c u_3^{00}.$$
 (13)

С помощью (5) находим уравнение для u_3^{00} :

$$\left(\frac{\partial}{\partial t} - \nu \frac{\partial^2}{\partial y^2}\right) u_3^{00} = i \left\{ \frac{\eta_{\lambda_1 0} \eta_{\lambda_2 0}}{\gamma_{k_2 m_2}^2} \left[\hat{\psi}^{k_1 m_1} \left(m_2 \beta \frac{\partial^2 \hat{\psi}^{k_2 m_2}}{\partial y^2} - i k_2 \alpha \frac{\partial \hat{\omega}_2^{k_2 m_2}}{\partial y} \right) - \frac{1}{\gamma_{k_1 m_1}^2} \hat{Z}_{k_1 k_2} \left(m_2 \beta \frac{\partial \hat{\psi}^{k_2 m_2}}{\partial y} - i k_2 \alpha \hat{\omega}_2^{k_2 m_2} \right) \right] \right\}^{00}.$$

$$(14)$$

Система уравнений (10), (12)–(14) полностью определяет величины $\hat{\psi}^{km}$, $\hat{\omega}_2^{km}$, u_1^{00} и u_3^{00} , при этом ставятся следующие граничные условия:

$$\hat{\psi}^{km}(0) = \frac{d}{dy}\hat{\psi}^{km}(0) = \hat{\psi}^{km}(\infty) = \frac{d}{dy}\hat{\psi}^{km}(\infty) = 0;$$

$$\hat{\omega}_2^{km}(0) = \hat{\omega}_2^{km}(\infty) = 0, \quad u_1^{00}(0) = u_3^{00}(\infty) = 0.$$
(15)

Таким образом, нужно решить систему трех уравнений для $\hat{\psi}^{km}$, $\hat{\omega}_2^{km}$ и u_3^{00} , а u_1^{00} находится по формуле (13).

Систему уравнений (10), (12), (14) можно записать в виде системы эволюционных уравнений для векторов $\mathbf{v}^{km} = (\hat{\Delta}\hat{\psi}^{km}, \hat{\omega}_2^{km}, \delta_{\lambda 0} u_3^{00})$ в виде

$$\frac{d\mathbf{v}^{km}}{dt} = -L_{\nu}^{km}\mathbf{v}^{km} + N^{km}(\mathbf{v}^{jl}), \quad -\infty < j, l < \infty,$$

или в виде одного уравнения для вектора $\mathbf{v} = \left\{ \mathbf{v}^{km}(y) e^{i\theta_{km}} \right\}, \ -\infty < k, m < \infty,$

$$\frac{d\mathbf{v}}{dt} = -L_{\nu}\mathbf{v} + N(\mathbf{v}),\tag{16}$$

где L_{ν} и N — замкнутые неограниченные операторы в гильбертовом пространстве H.

2. Двумерная инвариантная проекция для течения Блазиуса

Согласно теории, изложенной в [7], спектр ρ оператора $(-L_{\nu})$ допускает разбиение: $\rho(\nu) = \rho_1(\nu) \cup \rho_2(\nu), \ \rho_1(\nu) \cap \rho_2(\nu) = \emptyset$, где $\rho_1(\nu)$ — ограниченная часть спектра, и существует проекционный оператор P_{ν} такой, что пространство H представимо в виде прямой суммы ортогональных подпространств:

$$H = P_{\nu}H \oplus (I - P_{\nu})H.$$

Оператор $(-L_1) = -P_{\nu}L_{\nu}$ действует в подпространстве $P_{\nu}H$, его спектр ограничен и равен $\rho_1(\nu)$. Спектр неограниченного оператора $(-L_2) = -(I - P_{\nu})L_{\nu}$ равен $\rho_2(\nu)$. Ограниченная часть спектра $\rho_1(\nu)$ состоит из *n* пар простых изолированных собственных значений $(\lambda_k, \bar{\lambda}_k)$, где $\bar{\lambda}_k$ — комплексно-сопряженное к λ_k . Обозначим $P^{(k)}$ проектор на собственное пространство оператора $(-L_{\nu})$, отвечающее паре собственных значений $(\lambda_k, \bar{\lambda}_k)$:

$$P^{(k)}\mathbf{v} = (\mathbf{v}, \psi_k)_H \varphi_k + (\mathbf{v}, \bar{\psi}_k)_H \bar{\varphi}_k \equiv y_k, \quad (\varphi_k, \psi_k) = 1,$$

где φ_k — собственная функция оператора $(-L_{\nu})$, ψ_k — собственная функция сопряженного оператора $(-L_{\nu}^*)$, $(.,.)_H$ — скалярное произведение в комплексификации вещественного пространства H.

Система уравнений (16) принимает вид

$$\begin{cases} \frac{dy_k}{dt} = -L^{(k)}y_k + N^{(k)}\mathbf{v}, & k = 1, 2, ..., n, \\ \frac{dz}{dt} = -L_2 z + N_2 \mathbf{v}, \end{cases}$$
(17)

где $\mathbf{v} = y_1 + y_2 + \ldots + y_n + z$, $z = (I - P_{\nu})\mathbf{v}$; $L^{(k)} = P^{(k)}L_{\nu}$, $N^{(k)} = P^{(k)}N$, $N_2 = (I - P_{\nu})N$.

Введем в подпространствах $P^{(k)}H$ полярные системы координат и будем искать решение (17) в виде

$$\begin{cases} y_k = 2\operatorname{Re}(r'_k e^{i\theta_k}\varphi_k) = 2\operatorname{Re}(r_k e^{i\theta_k}\varphi_k) + Y_k(r_1, ..., r_n, \theta_1, ..., \theta_n), \\ z = Z(r_1, ..., r_n, \theta_1, ..., \theta_n). \end{cases}$$
(18)

Динамическая система

$$\frac{dr_k}{dt} = (\eta_k + b^{(k)})r_k, \quad \frac{d\theta_k}{dt} = (\sigma_k + c^{(k)})r_k, \quad k = 1, 2, ..., n,$$

определяет поведение траекторий уравнения (18) на 2*n*-мерном инвариантном многообразии, где $\lambda_k = \eta_k + i\sigma_k$, а $b^{(k)}, c^{(k)}$ — некоторые функции, зависящие только от координат r_k, θ_k .

Предельное многообразие определяется функциями $g^*(r, \theta), b^{(k)}(r, \theta), c^{(k)}(r, \theta)$ в виде рядов по степеням r_k :

$$g^* = \sum_{|S|=2}^{\infty} g_S r^S$$
, $b^{(k)} = \sum_{|S|=1}^{\infty} b_S^{(k)} r^S$, $c^{(k)} = \sum_{|S|=1}^{\infty} c_S^{(k)} r^S$,

где $g_S = \sum_{k=1}^n Y_k^S + Z^S$, $r^S = r_1^{s_1} \cdot r_2^{s_2} \cdot \ldots \cdot r_n^{s_n}$, $|S| = s_1 + \ldots + s_n$. Функции g_S определяются следующей рекуррентной системой линейных уравнений:

$$\sigma_1 \frac{\partial g_S}{\partial \theta_1} + L_{\nu} g_S = -2 \operatorname{Re} \sum_{k=1}^n \left[(b_{S_k}^{(k)} + i c_{S_k}^{(k)}) e^{i\theta_k} \varphi_k \right] - \sum_{k+p=S} c_k^{(1)} \frac{\partial g_p}{\partial \theta_1} + N_S,$$

$$N = \sum_{|S|=2}^\infty N_S r^S, \quad S_k = (s_1, ..., s_k - 1, ..., s_n).$$
(19)

В соответствии с теорией, изложенной в [7], рассмотрим собственные векторы оператора $(-L_{\nu})$:

$$\lambda + L_{\nu} \mathbf{v} = 0.$$

В покомпонентной записи это уравнение принимает следующий вид:

$$\begin{cases} (\lambda + ik\alpha U) \left(\frac{d^2}{dy^2} - \gamma_{km}^2\right) \hat{\psi}^{km} - ik\alpha\beta \frac{d^2 U}{dy^2} \hat{\psi}^{km} - \nu \left(\frac{d^2}{dy^2} - \gamma_{km}^2\right)^2 \hat{\psi}^{km} = 0, \\ (\lambda + ik\alpha U) \hat{\omega}_2^{km} - \nu \left(\frac{d^2}{dy^2} - \gamma_{km}^2\right) \hat{\omega}_2^{km} = -m\beta \frac{dU}{dy} \hat{\psi}^{km}, \\ \lambda u_3^{00} - \nu \frac{d^2 u_3^{00}}{dy^2} = 0. \end{cases}$$
(20)

Легко видеть, что первое уравнение — это уравнение Орра—Зоммерфельда для трехмерных возмущений ($\lambda = -ik\alpha c$ и без ограничения общности можно положить $k = 1, m = \pm 1$).

Для двумерной инвариантной проекции рассмотрим первое собственное число задачи Орра—Зоммерфельда $\lambda = \eta + i\sigma$. Тогда оператор $(-L_{\nu})$ имеет однопараметрические семейства собственных функций вида

$$\varphi(x, y, z) = \left(\tilde{\Delta}\psi(x, y, z), \omega_2(x, y, z), 0\right),$$

$$\psi(x, y, z) = f(y) \left[e^{i(\alpha x + \beta z)} + \tau e^{i(\alpha x - \beta z)}\right],$$

$$\omega_2(x, y, z) = f_1(y) \left[e^{i(\alpha x + \beta z)} - \tau e^{i(\alpha x - \beta z)}\right],$$
(21)

где f(y) — собственная функция задачи Орра—Зоммерфельда для течения Блазиуса, а $f_1(y)$ — решение второго уравнения в (20) при k = m - 1.

Значение параметра $0 \le \tau \le 1$ определяется постановкой задачи. При $\tau = 1$ мы имеем дело с возмущением в виде стоячей волны в направлении *z*-координаты:

$$\psi(x, y, z) = f(y)e^{i\alpha x}\cos\beta z.$$

При $\tau = 0$ имеем бегущую трехмерную волну, при промежуточных значениях τ — смесь двух предыдущих возмущений.

Сопряженный собственный вектор $\varphi^{*km} = \left(\psi^{*km}, \omega_2^{*km}, \delta_{\lambda 0} u_3^{*00}\right)$ удовлетворяет системе

$$\begin{cases} \left(\bar{\lambda} - ik\alpha U\right) \left(\frac{d^2}{dy^2} - \gamma_{km}^2\right) \psi^{*km} - 2ik\alpha U \frac{d}{dy} \psi^{*km} - \nu \left(\frac{d^2}{dy^2} - \gamma_{km}^2\right)^2 \psi^{*km} = -m\beta \frac{dU}{dy} \omega_2^{*km}, \\ \left(\bar{\lambda} - ik\alpha U\right) \omega_2^{*km} - \nu \left(\frac{d^2}{dy^2} - \gamma_{km}^2\right) \omega_2^{*km} = 0, \\ \bar{\lambda} u_3^{*00} - \nu \frac{d^2}{dy^2} u_3^{*00} = 0. \end{cases}$$

Очевидно, что собственному вектору системы (21) соответствует сопряженный собственный вектор вида

$$\varphi^{*}(x, y, z) = (\psi^{*}(x, y, z), 0, 0).$$

Здесь $\psi^*(x, y, z) = f^*(y) \left(e^{i(\alpha x + \beta z)} + \tau_1 e^{i(\alpha x - \beta z)} \right)$, где $f^*(y)$ — решение следующего (сопряженного с уравнением Орра—Зоммерфельда) уравнения (τ_1 можно положить равным нулю):

$$\left(\bar{\lambda} - i\alpha U\right) \left(\frac{d^2}{dy^2} - \tilde{\alpha}^2\right) f^* - 2i\alpha \frac{dU}{dy} \frac{df^*}{dy} - v \left(\frac{d^2}{dy^2} - \tilde{\alpha}^2\right)^2 f^* = 0, \quad \tilde{\alpha}^2 = \alpha^2 + \beta^2.$$

В случае двумерной инвариантной проекции предельное многообразие определяется функциями

$$g^* = \sum_{|S|=2}^{\infty} g_S r^S, \quad b(r) = \sum_{n=1}^{\infty} b_{2n} r^{2n}, \quad c(r) = \sum_{n=1}^{\infty} c_{2n} r^{2n},$$
$$g_S = \sum_{k=-s}^{s} g_{sk} e^{ik\theta^*}, \quad \theta^* = \theta - \alpha x.$$

Из (19) получаем следующую рекуррентную систему уравнений для g_{sk} :

$$ik \left[(\sigma - \alpha U) \Delta_k + \alpha D^2 U \right] g_{sk} - \frac{1}{\text{Re}} \Delta_k^2 g_{sk} =$$

$$= -\delta_{k1} (b_{s-1} + ic_{s-1}) \Delta_1 f - \delta_{k,-1} (b_{s-1} - ic_{s-1}) \Delta_1 \bar{f} -$$

$$-ik \sum_{q+p=s} c_q \Delta_k g_{pk} - i\alpha \sum_{q+p=s} \sum_{l+j=k} \left[lg_{ql} D \Delta_j^2 g_{pj} - j D g_{ql} \Delta_j^2 g_{pj} \right], \qquad (22)$$

где Re — число Рейнольдса, $D \equiv \frac{d}{dy}, \ \Delta_k = D^2 - (k\tilde{\alpha})^2.$

Функции g_{sk} удовлетворяют следующим граничным условиям:

$$g_{sk}(0) = Dg_{sk}(0) = g_{sk}(\infty) = Dg_{sk}(\infty) = 0.$$

Будем искать решения (18) в классе 2π -периодических функций от θ_k , удовлетворяющих условиям ортогональности вида

$$\int_{0}^{2\pi} e^{-i\theta^*} \left(g_s, \boldsymbol{\varphi}^*\right)_B d\theta^* = 0, \qquad (23)$$

где φ^* — собственный вектор сопряженного оператора $(-L_{\nu}^*)$, а скалярное произведение $(\cdot, \cdot)_B$ в данном случае имеет вид

$$(x^{(1)}, x^{(2)})_B = \int_{0}^{2\pi/\alpha} dx \int_{0}^{2\pi/\beta} dz \int_{0}^{\infty} (x_1^{(1)} \cdot \bar{x}_1^{(2)} + x_2^{(1)} \cdot \bar{x}_2^{(2)} + x_3^{(1)} \cdot \bar{x}_3^{(2)}) dy,$$

$$x_1 = \psi, \quad x_2 = \omega_2, \quad x_3 = u_3^{00}.$$

Так как \mathbf{g}_{S}^{mk} — вектор вида

$$\mathbf{g}_{S} = \left(\hat{\Delta}\psi_{s}^{mk}, \omega_{2s}^{mk}, \delta_{\lambda 0}u_{33}^{00}\right) \quad (s \ge 2)$$

то условие ортогональности (23) принимает следующий вид:

$$\int_{0}^{\infty} \bar{f}^* \left(\frac{d^2}{dy^2} - \tilde{\alpha}^2\right) \psi_s^{11} dy = 0.$$

Нормируем f^* и f условием

$$\int_{0}^{\infty} \bar{f}^* \left(\frac{d^2}{dy^2} - \tilde{\alpha}^2\right) f dy = 1.$$

Тогда коэффициенты b_s, c_s определяются формулой

$$b_{s-1} + ic_{s-1} = \int_{0}^{\infty} \bar{f}^* \left[\left(N_s^{11} \right)_1 - i \sum_{q+p=s} c_q \left(\frac{d^2}{dy^2} - \tilde{\alpha}^2 \right) \psi_s^{11} \right] dy,$$

где через $(N_s^{11})_1$ обозначена правая часть уравнения (10) для $\psi_s^{11}.$

3. Численные расчеты

Амплитуда периодических режимов определяется из уравнения

$$\mu + \sum_{n=1}^{N} b_{2n} \mathcal{A}^{2n} = 0, \quad N \to \infty,$$

где $\mu = \alpha \sigma$ — линейный коэффициент нарастания.

Рекуррентная система (22) для нахождения коэффициентов b_s при N = 2, 3, 4, 5 решалась методом ортогональной прогонки [8] на неравномерной разностной сетке, сгущающейся в пограничном слое.

В данной работе проводилось численное исследование поперечных возмущений ($\beta = 0$). В результате вычислений выявилась следующая картина (рис. 1). При некотором значении волнового числа $\alpha = \alpha^*$ от нижней ветви линейной нейтральной кривой течения Блазиуса (рис. 1 — сплошная линия) ответвляются устойчивый и неустойчивый режимы. Неустойчивый режим соответствует верхней части, а устойчивый — нижней части амплитудной поверхности. На рис. 2 представлен срез амплитудной поверхности при $\alpha = 0.206906$. При некоторых числах Рейнольдса происходит слияние этих режимов в точках тангенциальной бифуркации [9], соответствующих точкам складки в теории катастроф [10]. С некоторого α передняя складка амплитудной поверхности из нефизической области отрицательных значений квадратов амплитуд выходит в область положительных значений. Эти точки передних складок, полученные численными расчетами при $\beta = 0$, отображены на рис. 1 пунктиром. С увеличением α амплитудная поверхность периодических решений отрывается от линейной нейтральной кривой, и при некотором значении α периодические решения исчезают.

Рис. 1. Линейная и нелинейная нейтральные кривые

Рис. 2. Срез амплитудной поверхности при $\alpha = 0.206906$

В работе [11] были проведены эксперименты при малых значениях волнового числа α и выяснено, что линейная теория достаточно хорошо описывает развитие таких возмущений. Результаты данной работы показывают, что требуются тщательные исследования в области значений $\alpha > \alpha^*$ для обнаружения новых нелинейных эффектов в экспериментах.

Список литературы

- [1] ЛАНДАУ Л.Д. К проблеме турбулентности // Докл. АН СССР. 1944. Т. 44. С. 339-342.
- STUART J.T. On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 1. The basic behavior in plane Pouseuille flow // J. Fluid Mech. 1960. Vol. 9, pt. 3. P. 353-370.
- [3] WATSON J. On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 2. The development of a solution for plane Pouseuille flow and for plane Couette flow // J. Fluid Mech. 1960. Vol. 9, pt. 3. P. 371–389.
- [4] REYNOLDS W.C., POTTER M.C. Finite-amplitude instability of parallel shear flows // J. Fluid Mech. 1967. Vol. 27, pt. 3. P. 465–492.
- [5] СТРУМИНСКИЙ В.В. К нелинейной теории развития аэродинамических возмущений // Докл. АН СССР. 1963. Т. 153, № 3. С. 547–550.
- [6] RIST U., FASEL H. Direct numerical simulation of controlled transition in a flat-plate boundary layer // J. Fluid Mech. 1995. Vol. 298. P. 211-248.
- [7] СКОБЕЛЕВ Б.Ю. Конечномерная инвариантная аппроксимация уравнений Навье— Стокса и автоколебательные режимы течения Пуазейля // Приклад. мат. и механика. 1990. Т. 54, вып. 3. С. 416–429.
- [8] ГОДУНОВ С.К. О численном решении краевых задач для систем линейных обыкновенных дифференциальных уравнений // Успехи мат. наук. 1961. Вып. 3(99). С. 171–174.
- [9] Йосс Ж., Джозеф Д. Элементарная теория устойчивости и бифуркаций. М.: Мир, 1983. 301 с.
- [10] ПОСТОН Т., СТЮАРТ И. Теория катастроф и ее приложения. М.: Мир, I980. 607 с.
- [11] БОЙКО А.В., ГРЕК Г.Р., СБОЕВ Д.С. Спектральный анализ локализованных возмущений в пограничном слое при докритических числах Рейнольдса. Новосибирск, 2002. (Препр./ИТПМ СО РАН; № 1-2002).

Поступила в редакцию 18 декабря 2007 г., в переработанном виде — 12 апреля 2008 г.