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Рассматривается функция Грина оператора ⊕k, определенного следующим обра-

зом:
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где p + q = n — размерность пространства Cn векторов x = (x1, x2, . . . , xn) с n ком-

плексными компонентами xj , k — целое неотрицательное число. Выполнено исследо-

вание функции Грина, которая затем применяется для построения слабого решения

уравнения K(x), такого что

⊕kK(x) = f(x),

где f — обобщенная функция.

1. Introduction

The operator ⊕k can be factorized in the following form
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(1.1)

where i =
√
−1 and p + q = n. The operator
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−
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has first been

introduced by A. Kananthai [4] and is named the Diamond operator which is denoted by

♦k =





(

p
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∂2
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)2

−
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k

. (1.2)

Let us denote the operators

Lk
1 =

[

p
∑

i=1

∂2

∂x2
i

+ i

p+q
∑

j=p+1

∂2

∂x2
j

]k

(1.3)
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and

Lk
2 =

[

p
∑

i=1

∂2

∂x2
i

− i

p+q
∑

j=p+1

∂2

∂x2
j

]k

. (1.4)

Thus the operator ⊕k, iterated k-times defined by (1.1) can be written in the form

⊕k = ♦kLk
1L

k
2. (1.5)

In this work, we obtain the Green function of the operator ⊕k, i. e. ⊕kG(x) = δ where δ is the
Dirac-delta distribution and G(x) is the Green function and x ∈ Rn.

Moreover, we find the weak solution of the equation

⊕kK(x) = f(x) (1.6)

where f is a given generalized function and K(x) is an unknown and x ∈ Rn.

2. Preliminary

Definition 2.1. Let x = (x1, x2, ..., xn) ∈ Rn

Let us denote by

u =

p
∑

i=1

x2
i −

p+q
∑

j=p+1

x2
j (2.1)

the nondegenerated quadratic form, whereas p + q = n is the dimension of Rn.
Let Γ+ = {x ∈ Rn : x1 > 0 and u > 0} and Γ+ denotes its closure.
For any complex number α, we define the function

RH
α (u) =











u
(α−n)

2

Kn(α)
for x ∈ Γ+,

0 for x 6∈ Γ+,

(2.2)

where the constant Kn(α) is given by the formula

Kn(α) =

π
(n−1)

2 Γ

(

2 + α − n

2

)

Γ

(

1 − α

2

)

Γ(α)

Γ

(

2 + α − p

2

)

Γ

(

p − α

2

) .

The function RH
α is called The Ultra-Hyperbolic Kernel of Marcel Riesz and was introduced by

Y . Nozaki (see [3], p. 72).
It is well known that RH

α is an ordinary function if Re(α) ≥ n and is a distribution of α if
Re(α) < n. Let us supp RH

α (u) denote the support of RH
α (u). Assume RH

α (u) ⊂ Γ+.
Definition 2.2. Let x = (x1, x2, ..., xn) be a point of the Euclidean space Rn and

v =
n

∑

i=1

x2
i . (2.3)
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Define the function

Re
α(v) =

v
α−n

2

Hn(α)
, (2.4)

where α is any complex number and the constant Hn(α) is given by the formula

Hn(α) =
π

1
2 2αΓ

(α

2

)

Γ

(

n − α

2

) . (2.5)

Now the function Re
α(v) is called the Elliptic Kernel of Marcel Riesz.

Definition 2.3. Let x = (x1, x2, ..., xn) be a point of the Cn and let

w = x2
1 + x2

2 + ... + x2
p − i(x2

p+1 + x2
p+2 + ... + x2

p+q), (2.6)

where i =
√
−1 and p + q = n is the dimension of Rn.

Define the function

Sα(w) =
w

α−n

2

Hn(α)
, (2.7)

where α is any complex number and Hn(α) is defined as the formula (2.5).
Definition 2.4. Define the function

Tα(z) =
z

α−n

2

Hn(α)
, (2.8)

where
z = x2

1 + x2
2 + ... + x2

p + i(x2
p+1 + x2

p+2 + ... + x2
p+q) (2.9)

and i =
√
−1, p + q = n and Hn(α) is defined as (2.5).

Lemma 2.1. The convolution RH
2k(u)∗(−1)kRe

2k(v) is an elementary solution of the operator
remove off ♦k where ♦k is defined by (1.2) and RH

2k(u) and Re
2k(v) are defined by (2.2) and

(2.4) respectively with α = 2k.
Proof. The elementary solution of ♦k is the solution of the equation ♦kK(x) = δ where δ

is the Dirac-delta distribution, K(x) is an unknown and x ∈ Rn. Now we need to prove that

K(x) = RH
2k(u) ∗ (−1)kRe

2k(v).

To prove this , see ([4], p. 33).
Lemma 2.2. (i) The function K(x) = S2(w) is the solution of the equation L1K(x) = 0

where L1 is defined by (1.3) and S2(w) is defined by (2.7) with α = 2.
(ii) The function K(x) = (−1)k(−i)

q

2 S2k(w) is an elementary solution of the operator Lk
1,

where Lk
1 is the operator iterated k times defined by (1.3) and S2k(w) is defined by (2.7) with

α = 2k.

Proof. (i) Now L1 =

p
∑

i=1

∂2

∂x2
i

+ i

p+q
∑

j=p+1

∂2

∂x2
j

.

We need to show that L1S2(w) = 0. Now if α is real, we have for 1 ≤ r ≤ p

∂

∂xr

Sα(w) =
∂

∂xr

(

w
α−n

2

Hn(α)

)

=
(α − n)

2

w
α−n−2

2

Hn(α)
2xr = (α − n)xr

w
α−n−2

2

Hn(α)
,
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∂x2
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w
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2

Hn(α)
+
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Hn(α)
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α−n−4
2 x2

r.

Thus
p
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r=1

∂2

∂x2
r

Sα(w) = p
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Hn(α)
w

α−n−2
2 +
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Hn(α)
(α − n − 2)w

α−n−4
2

p
∑

r=1

x2
r.

Similarly

i

p+q
∑

j=p+1

∂2

∂x2
j

Sα(w) =
q(α − n)

Hn(α)
w

α−n−2
2 − i

α − n

Hn(α)
(α − n − 2)w

α−n−4
2

p+q
∑

j=p+1

x2
j .

Thus

L1Sα(w) =
(p + q)

Hn(α)
(α − n)w

α−n−2
2 +

(α − n)(α − n − 2)

Hn(α)
w

α−n−4
2

(

p
∑

i=1

x2
i − i

q+p
∑

j=p+1

x2
j

)

=

=
n(α − n)

Hn(α)
w

α−n−2
2 +

(α − n)(α − n − 2)

Hn(α)
w

α−n−2
2 = (α − 2)(α − n)

w
α−n−2

2

Hn(α)
. (2.10)

For α = 2, we have L1S2 = 0. That is K(x) = S2(w) is a solution of the homogeneous
equation L1K(x) = 0.

(ii) To show that K(x) = (−1)k(−i)
q

2 S2k(w) is an elelmentary solution of Lk
1, that is

Lk
1(−1)k(−i)

q

2 S2k(w) = δ. At first we need to show that Lk
1(−1)kSα(w) = Sα−2k(w) and

S
−2k(w) = (−1)k(i)

q

2 Lk
1δ.

Now, from (2.10) and (2.5)

L1Sα(w) = (α − 2)(α − n)
w

α−n−2
2

Hn(α)
=

(α − 2)(α − n)w
α−n−2

2

π
n

2
2αΓ(α

2 )
Γ(n−α

2
)

.

By direct calculation with the property of Gamma function we obtain

L1Sα(w) = − w
α−n−2

2

π
n

2 · 2α−2
Γ(α−2

2
)

Γ(n−(α−2)
2

)

= − w
α−n−2

2

Hn(α − 2)
= −Sα−2(w).

By keeping on operating the operator L1 k-times to the function Sα(w), we obtain

Lk
1Sα(w) = (−1)kSα−2k(w)

or
Lk

1(−1)kSα(w) = Sα−2k(w). (2.11)

Then we show that S
−2k = (−1)k(i)

q

2 δ.

Now

S
−2k(w) = lim

α→−2k
Sα(w) = lim

α→−2k

[

w
α−n

2

Hn(α)

]

=
lim

α→−2k

[

w
α−n

2

]

lim
α→−2k

[

Γ(α
2
)
] · π−n

2 · lim
α→−2k

2−αΓ

(

n − α

2

)

.

(2.12)
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Now consider lim
α→−2k

[w
α−n

2 ]. We have w = x2
1+x2

2+...+x2
p−i(x2

p+1+x2
p+2+...+x2

p+q). By changing

the variables, let x1 = y1, x2 = y2, ..., xp = yp and xp+1 =
yp+1√
−i

, xp+2 =
yp+2√
−i

, ..., xp+q =
yp+q√
−i

.

Thus w = y2
1 + y2

2 + ... + y2
p + y2

p+1 + ... + y2
p+q, where yi(i = 1, 2, ..., n) is real and p + q = n.

Let r2 = w = y2
1 + y2

2 + ... + y2
n and consider the distribution wλ, where λ is a complex

parameter. Since < wλ, Q >=
∫

Q

wλQ(x)dx, where Q(x) is the element of the space D of the

infinitely differentiable functions with compact supports and x ∈ Rn, dx = dx1dx2...dxn. Thus

< wλ, Q >=

∫

Rn

r2λ ∂(x1, x2, ..., xn)

∂(y1, y2, ..., yn)
· Qdy1dy2...dyn =

=
1

(−i)
q

2

∫

Rn

r2λQdy1dy2...dyn =
1

(−i)
q

2

< r2λ, Q > .

Now, by Gelfand and Shilov (see [1], p. 271), < wλ, Q > hase simple poles at λ =
−n

2
− k

and for k = 0 the residue of r2λ at λ =
−n

2
is given by res

λ=−n

2

r2λ =
2π

n

2

Γ(n
2
)
δ(x).

Thus

res
λ=−n

2

< wλ, Q >=
1

(−i)
q

2

res
λ=−n

2

< r2λ, Q >=
1

(−i)
q

2

2π
n

2

Γ
(

n
2

) < δ(x), Q >

or

res
λ=−n

2

wλ =
1

(−i)
q

2

2π
n

2

Γ
(

n
2

)δ(x). (2.13)

Now we find res
λ=−n

2
−k

wλ for k is nonnegative integer by, Gelfand and Shilov (see [1], p. 272) we

have

wλ =
1

4k(λ + 1)(λ + 2)...(λ + k)(λ + n
2
)(λ + n

2
+ 1)...(λ + n

2
+ k − 1)

Lk
1w

λ+k.

Thus

res
λ=−n

2
−k

wλ = res
λ=−n

2

L1w
λ· 1

4k(λ + 1)...(λ + k)(λ + n
2
)...(λ + n

2
+ k − 1)

∣

∣

∣

∣

∣

λ=−n

2
−k

by (2.12) we have

res
λ=−n

2
−k

wλ =
1

(−i)
q

2

2π
n

2

4kk!Γ(n
2

+ k)
Lk

1δ(x). (2.14)

Thus
lim

α→−2k
[w

α−n

2 ] = lim
λ→−n

2
−k

wλ.

Now from (2.12), we have

S
−2k(w) =

lim
α→−2k

(α + 2k)w
α−n

2

lim
α→−2k

(α + 2k)Γ
(

α
2

)π
−n

2 22kΓ
(n

2
+ k

)

=
res

α=−2k
w

α−n

2

res
α=−2k

Γ
(

α
2

)π
−n

2 4kΓ
(n

2
+ k

)

.
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Now

res
α=−2k

Γ
(α

2

)

=
2(−1)k

k!
.

Thus by (2.14), we obtain

S
−2k(w) =

(−1)k

(−i)
q

2

2π
n

2 π
−n

2 k!4kΓ
(

n
2

+ k
)

2 · 4kk!Γ
(

n
2

+ k
) Lk

1δ(x) =

=
(−1)k

(−i)
q

2

Lk
1δ(x) = (−1)k(i)

q

2 Lk
1δ(x).

Thus

S0(w) = (i)
q

2 δ(x). (2.15)

From (2.11) and (2.15), we obtain

Lk
1(−1)kS2k(w) = S2k−2k(w) = S0(w) = (i)

q

2 δ(x)

or

Lk
1(−1)k(−i)

q

2 S2k(w) = δ.

It follows that K(x) = (−1)k(−i)
q

2 S2k(w) is an elementary solution of the operator Lk
1. Similary

K(x) = (−1)k(i)
q

2 T2k(z) is an elementary solution of the operator Lk
2 where z is defined by (2.9)

and T2k is defined by (2.8) with α = 2k.

3. Main results

Theorem 3.1. Given the equation

⊕kK(x) = δ (3.1)

where ⊕k is the operator iterated k-times defined by (1.1), δ is the Dirac-delta distribution,
x = (x1, x2, ..., xn) ∈ Rn and k is a nonnegative integer. Then the convolution

K(x) = RH
2k(u) ∗ (−1)kRe

2k(v) ∗ (−1)k(−i)
q

2 S2k(w) ∗ (−1)k(i)
q

2 T2k(z) (3.2)

is an elementary solution or the Green function of the equation (3.1) where RH
2k(u), Re

2k(v), S2k(w)
and T2k(z) are defined by (2.2), (2.4), (2.7) and (2.8) respectively with α = 2k.

Proof. By (1.5) the equation (3.1) can be written as

⊕kK(x) = ♦kLk
1L

k
2K(x) = δ. (3.3)

Since the function RH
2k(u), Re

2k(v), S2k(w) and T2k(z) are tempered distributions (see [5],
p. 34, Lemma 2.1) and the convolution of functions in (3.2) exists and is a tempered distribution
(see [5], p. 35, Lemma 2.2 and [2], pp. 156–159). Now convolving both sides of (3.3) by RH

2k(u)∗
(−1)kRe

2k(v) ∗ (−1)k(−i)
q

2 S2k(w) ∗ (−1)k(i)
q

2 T2k(z) we obtain

♦k[RH
2k(u) ∗ (−1)kRe

2k(v)] ∗ Lk
1[(−1)k(−i)

q

2 S2k(w)] ∗ Lk
2[(−1)k(i)

q

2 T2k(z)] ∗ K(x) =

= [RH
2k(u) ∗ (−1)kRe

2k(v) ∗ (−1)k(−i)
q

2 S2k(w) ∗ (−1)k(i)
q

2 T2k(z)] ∗ δ.
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By Lemma 2.1 and Lemma 2.2 (ii), we obtain (3.2) as required, we call the solution K(x)
in (3.2) the Green function of the operator ⊕k we denote the Green function

G(x) = RH
2k(u) ∗ (−1)kRe

2k(v) ∗ (−1)k(−i)
q

2 S2k(w) ∗ (−1)k(i)
q

2 T2k(z). (3.4)

Theorem 3.2. Given the equation

⊕kK(x) = f(x) (3.5)

where ⊕k is defined by (1.1) and f(x) is a generalized function, then K(x) = G(x) ∗ f(x) is a
weak solution for (3.5) where G(x) is a Green function of ⊕k defined by (3.4).

Proof. Convolving both sides of (3.5) by G(x) defined by (3.4) we obtain

G(x) ∗ ⊕kK(x) = G(x) ∗ f(x)

or
⊕kG(x) ∗ K(x) = G(x) ∗ f(x).

By Theorem 3.1, we have
δ ∗ K(x) = G(x) ∗ f(x)

or
K(x) = G(x) ∗ f(x)

as required.
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