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The article is devoted to presenting new approaches to the study of the classical
problem of finding the position of zero solutions of second order complex differential
equations.
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1. Introduction and preliminaries

The revival of Rolf Nevannlina’s idea from 1926 (see [1]), which appeared after the year
2000, brought us to the thought to use simplified Sturm’s theorems on real field in giving
a unique approach to an oscillating equation y′′ + A (x) y = 0, A (x) > 0 and to, so called
complex differential equation of oscillation

d2w

dz2
+ A (z)w = 0, (1)

where w (z) is function of one complex variable, as well as for the Vecua equation

∂w

∂z
= A (z, z)w +B (z, z)w, (2)

where w = w (z, z) is function of two independent complex variables, by using partial equa-
tions, since (1) and (2) can be derived to appropriate systems of partial equations (for details
see [2]). Zero solutions of the equations (1) and (2) would be found by reduction of these
partial equations to ordinary differential equations by rays y = kx, where Sturm’s theorems
would be used.

The main difficulty is that equation (1) has solutions which can have only isolated ze-
ros, while the equation (2) can have both isolated and non isolated zeros. However, the
idea of reduction to ordinary differential equations has its adventages, not only in (1) but
particularly in (2), where almost impassable obstacle is overcame, and this obstacle is the
impossibility of quadrature solution in the case of conjugation of function w. It is known
that operation of conjugation of function w is not linear, because it also has rotation and
not only translations.
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2. The real partial equation for equation (1)

In order to develop this idea in the easiest way, for the equation of the second order (1), we
will first take the simplest complex differential equation of the first order

dw

dz
+ A (z)w = 0, (3)

where A (z) = a (x, y)+ ib (x, y) is given analytical function, while w (z) = u (x, y)+ iv (x, y)
is unknown function, for which applies following

Theorem 1. The equation (3) decomposes to the system of real partial equations

∂u

∂x
= −a (x, y)u+ b (x, y) v,

∂v

∂x
= −b (x, y)u− a (x, y) v.

(4)

Theorem 2. The system (4) derives to a partial equation of the second order

∂2Π

∂x2
+









2a−

∂b

∂x
b









∂Π

∂x
+

(

b

(

a

b

)

′

+ a2 + b2

)

Π = 0, (5)

where Π is u (x, y) or v (x, y) .
Theorem 3. Only by rays y = kx, k = tanϕ, 0 ≤ ϕ ≤ ∞ in xOy — plane partial

equations (5) is derived to ordinary differential equation

d2v

dx2
−

(

b′ + ka′

b+ ka
− 2 (a− bk)

)

dv

dx
+

+

(

(b′ + ka′) (a− kb)

b+ ka
+ (a− kb)2 + (a′ + kb′)

)

v = 0, (6)

where Sturm’s zero theorems can be applied.
By using this we could determine locations of zeros by each ray y = kx.

Now we shall go to the complex differential equation (1) from which we obtain system (7)
which is similar to system (4), but now of second order

∂2u

∂x2
= a (x, y)u− b (x, y) v,

∂2v

∂x2
= b (x, y)u+ a (x, y) v.

(7)

This system can also be reduced to a single partial equation of the fourth order by elimination
of v (or u) and double differentiation and then only by rays y = kx can be reduced to ordinary
differential equation of fourth order

d4u

dx4
= A∗ (x)

d2u

dx2
+B∗ (x)

du

dx
+ C∗ (x) u (x, k) . (8)
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This equation can have.
1. Four monotonous solutions, in which, by Sturm, zero solutions are either the only

ones or they do not exist.
2. Two monotonous and two oscillating solutions. The monotonous can have maxi-

mum one zero, while the oscillating solutions have many zeros but they comply to Sturm’s
theorems.

3. All fourth solutions are oscillatory. Their separation by iterations is special work (for
details see [3]).

Therefore, the procedures of solving the equation of the first order (3) and the second
order (1) are similar, only the technical difficulties in solving the equation of the fourth order
(8) are much greater.

3. The real partial equation for the Vecua equation (2)

The equation (2) can be reduced to system of partial equations

1

2

(

∂u

∂x
−

∂v

∂y

)

= (a+ c) u+ (d− b) v,

1

2

(

∂u

∂y
+

∂v

∂x

)

= (b+ d)u+ (a− c) v.

(9)

This system can also be reduced to a single partial equation of the second order, and
then by rays y = kx on real differential equations of second order, where Sturm’s theorems
on zero location are applied. By this, the main difficulty of the operation of conjugation w

is reduced only to a sign in front of c = c (x, y) or d = d (x, y), which in real differential
equations makes no difficulties.

Let us take the simplest inhomogeneous equation Vecua (2). It can be easily proved that
the formal solution is

w (z, z) = exp

(

ˆ∫

A (z, z) dz

)[

C (z) +
ˆ∫

F (z, z) exp

(

−
ˆ∫

A (z, z) dz

)

dz

]

, (10)

where
ˆ∫

means that it is integrated only by conjugated complex variable, while C (z) is

arbitrary analytical function, in the role of generalized integrating “constant”.
From the formal solution (10) we are still far from zero solutions, both isolated and non

isolated. It is interesting that this question has not been initiated in literature so far! That
is why, due to seriousness of the problem, for now we shall give only a few basic examples.

Example 1. The Vecua equation
∂w

∂z
= 1, (A (z, z) = 0, B (z, z) = 1) has a formal

solution, based on (10),
w (z, z) = z + C (z) ,

where C (z) is an analytical function. For each choice C (z) the issue of zeros changes
significantly. If we take C (z) = −ez, then the particular solution w(z, z) has zeros for
u (x, y) = x − ex cos y = 0, v (x, y) = −y − ex sin y = 0. So, by eliminating y, we get one

transcendent equation for locations of abscissa of zeros
x

ex
= cos

√
e2x − x2. Graphically, by
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using the curves y1 = e2x − x2, y2 =
√
y1, y3 =

x

ex
, y4 = cos

√
y1 we can calculate typical

Sturm’s zeros.

Example 2. For the same Vecua equation we used in previous example,
∂w

∂z
= 1, for

C (z) = −z2, we will have an equation for zeros z−z2 = 0. From here we obtain four isolated

zeros: M1 (0, 0), M2 (1, 0), M3

(

−
1

2
,

√
3

2

)

, M4

(

−
1

2
,−

√
3

2

)

.
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