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Доказана устойчивость и, при некоторых дополнительных предположениях на
плотность легирования, асимптотическая устойчивость (по Ляпунову) состояния рав-
новесия гидродинамической модели переноса заряда в полупроводниках в линейном
приближении.

1. Preliminaries

Hydrodynamical models are widely used in mathematical modelling of physical phenomena
in modern semiconductor devices. Derivation of such models is based on the study of the
transport equation for the charge carriers density in an electric field. A conservation system with
infinite number of equations (i. e., a system of conservation laws) is obtained from the transport
equation with the help of a special technique of moments. Then, in a view of some physically
justified assumptions, the system is exposed to simplification. As the result, the system of
infinite number of moments equations reduces to one or another system of the hydrodynamical
type.

In this paper we take, as a basis, a hydrodynamical model of charge transport in semiconductors
suggested in the recently published paper [1]. In [2], this model is written as a quasilinear system
of dimensionless conservation laws. Using notation from [2], below we give a nondivergent
variant of this model
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, (1.1)

ε2ϕss = R − ρ. (1.2)

Here R, u, ϑ, Σ, θ, ϕ are the density, velocity, temperature, stress, heat flux and electric
potential correspondingly; ε2 = 1/β, β is a positive constant (see [2]); Q = ϕs; τp = τp(E), τw =

τw(E), τσ = τσ(E), τq = τq(E) are the relaxation times; E =
u2

2
+

3

2
ϑ; the doping density

ρ = ρ(s) is a function given on [0, 1]. In the sequel we will assume that the function (ρ(s) − 1)
is sufficiently smooth and finite, and

1 ≥ ρ(s) ≥ δ > 0, s ∈ [0, 1].

A typical profile of the function taken in [2] is of the form:

Following [2], we will consider the well-known in physics of semiconductors problem on
ballistic diode and formulate boundary conditions at s = 0, 1 (see. [3, 4]):

R(τ, 0) = R(τ, 1) = ϑ(τ, 0) = ϑ(τ, 1) = 1, Σ(τ, 1) = 0, (1.3)

ϕ(τ, 0) = A, ϕ(τ, 1) = A + B, (1.4)

where A,B are constants and the bias across the diode B > 0. Without the loss of generality,
we assume that A = 0. Finally, as usual, at τ = 0 we formulate initial data.

Following [2], we give an equivalent formulation of mixed problem (1.1) – (1.4). We will
consider system (1.1) coupled with the relation

ε2Qτ =

1
∫

0

R(τ, ξ)u(τ, ξ) dξ − Ru (1.2′)

instead of the Poisson equation (1.2). Equation (1.2) rewritten in the form

ε2Qs = R − ρ (1.2′′)
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will be treated as an additional stationary law which the initial data, in particular, must meet.
From boundary conditions (1.4) it follows that the relation

1
∫

0

Q(τ, ξ) dξ = B (1.5)

is fulfilled and the initial data also satisfy this relation. The electric potential ϕ = ϕ(τ, s) is
found from the evident equality

ϕ(τ, s) =

s
∫

0

Q(τ, ξ) dξ. (1.6)

Thus, instead of mixed problem (1.1) – (1.4) one can consider problem (1.1), (1.2′), (1.3)
with additional requirements (1.2′′), (1.5), which actually are requirements on the initial data.
It is easily shown that these two formulations are equivalent, at least on smooth solutions.

Problem (1.1) – (1.4) has a stationary solution (the equilibrium state) at B = 0:

u(τ, s) = û = 0, ϑ(τ, s) = ϑ̂ = 1,

Σ(τ, s) = Σ̂ = 0, θ(τ, s) = θ̂ = 0,

R(τ, s) = R̂(s) = eϕ̂(s), ϕ(τ, s) = ϕ̂(s), (1.7)

where ϕ̂(s) satisfies the Poisson equation

ε2ϕ̂′′ = R̂ − ρ (1.8)

with the boundary conditions

ϕ̂(0) = ϕ̂(1) = 0. (1.9)

It is obvious that, at small ε, the solutions to boundary value problem (1.8), (1.9) can be
presented as

ϕ̂(s) = ln ρ(s) + O(ε). (1.10)

By this remark, we will assume in the sequel that the function ϕ̂(s) is sufficiently smooth and
finite.

Remark 1.1. Let B = 0. From certain physical considerations (see [1]), the solution of
(1.1) – (1.4) tends to the equilibrium state at τ → ∞ for any initial data, i. e.,

u(τ, s) → 0, ϑ(τ, s) → 1, Σ(τ, s) → 0,

θ(τ, s) → 0, R(τ, s) → R̂(s), ϕ(τ, s) → ϕ̂(s).

Below we will prove this fact for a linearized mixed problem (though at a certain, very essential,
restriction on the doping density ρ(s)).

Remark 1.2. Note that we can consider as the equilibrium state the following functions:
û = 0, ϑ̂ = 1, Σ̂ = 0,

θ̂ = 0, R̂(s) = ρ(s), ϕ(τ, s) = ln ρ(s),

that are obviously solution of the system (1.1) and the Poisson equation
ε2ϕ̂′′ = R̂ − ρ̃,

where
ρ̃ = ρ − ε2(ln ρ)′′.

It is evident that functions ρ and ρ̃ have the same profile with only the small difference on

some intervals
1

6
− ∆ < s <

1

6
+ ∆,

5

6
− ∆ < s <

5

6
+ ∆.



ABOUT STABILITY OF THE EQUILIBRIUM STATE 19

2. Linearization of mixed problem (1.1) – (1.4)

Let linearize original quasilinear problem (1.1) – (1.4) with respect to the equilibrium state
(1.7). As the result, omitting intermediate, quite cumbersome calculations, we come to a linear
system (small perturbations of the sought values are denoted with the same symbols):
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. It follows from [2] that the constants

µ, ν, χ, γ, β are large parameters. Boundary conditions to system (2.1) become of the form

r(τ, 0) = r(τ, 1) = ϑ(τ, 0) = ϑ(τ, 1) = σ(τ, 1) = 0. (2.3)

Linearization of relations (1.2′′), (1.5), (1.6) results in the following conditions

ε2Qs = R̂r,
1

∫

0

Q(τ, ξ) dξ = 0,

ϕ(τ, s) =

s
∫

0

Q(τ, ξ) dξ, i. e., ϕs = Q. (2.4)

The aim of this paper is the study of stability (by Lyapunov) of the trivial solution to linear
problem (2.1) – (2.3).

In the next section we will derive an a priori estimate which implies stability of the trivial
solution. Besides, in the last section we will prove asymptotic stability of this solution under
an additional condition on the function ρ(s).

We rewrite system (2.1) in the vector form

AUτ + BUs + DU = F , (2.1′)
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System (2.1′) is symmetric t-hyperbolic (by Friedrichs) (see [5]). The matrix B has two
positive, two negative and one zero eigenvalues. This means (see [5]) that one boundary
condition in (2.3) is redundant. In fact, condition σ(τ, 1) = 0 is automatically fulfilled if the
initial function σ0(s) = σ(0, s) possesses the property

σ0(1) = 0.

Indeed, from boundary conditions

r(τ, 0) = r(τ, 1) = ϑ(τ, 0) = ϑ(τ, 1) = 0

and from the first and the third equations of system (2.1) it follows that

us(τ, 0) = us(τ, 1) = qs(τ, 0) = qs(τ, 1) = 0. (2.5)

While deriving (2.5), we took into account that ϕ̂(s) is a sufficiently smooth and finite function.
By (2.5), from the fourth equation of system (2.1) we obtain

στ (τ, 0) + χσ(τ, 0) = 0,

στ (τ, 1) + χσ(τ, 1) = 0

i. e.,

σ(τ, 0) = e−χτσ0(0),

σ(τ, 1) = e−χτσ0(1).

Thus, boundary condition σ(τ, 1) = 0 is fulfilled if σ0(1) = 0. Later we will suppose also that
σ0(0) = 0, i. e.,

σ(τ, 0) = 0. (2.6)

The energy integral identity for system (2.1′) in the differential form is (see [5]):

{R̂(AU,U)}τ + {R̂(BU,U)}s + R̂(2µu2 − 2µ̄uq +
4

5
γq2 + 3νϑ2 +

3

2
χσ2) = 2R̂uQ, (2.7)
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where (BU,U) = 2(ur + uϑ + uσ + ϑq +
2

5
σq), and, in a view of boundary conditions (2.3),

(BU,U)|s=0,1 = 0. (2.8)

Integrating (2.7) by s from 0 to 1 (with account of (2.8)), we come to the energy integral
identity in the integral form for system (2.1′):

d

dτ
||U(τ)||2A + 2

1
∫

0

R̂(µu2 − µ̄uq +
2γ

5
q2 +

3ν

2
ϑ2 +

3χ

4
σ2) dξ = 2

1
∫

0

R̂uQdξ. (2.9)

Here ||U(τ)||2A =
1
∫

0

R̂(AU,U) dξ.

Multiplying (2.2) by 2Q, integrating the obtained expression by s from 0 to 1 (accounting

the relation
1
∫

0

Q(τ, ξ) dξ = 0, see (2.4)) and summing it up with (2.9), we finally have:

d

dτ
I(0)(τ) + 2

1
∫

0

R̂(µu2 − µ̄uq +
2γ

5
q2 +

3ν

2
ϑ2 +

3χ

4
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where I(0)(τ) = ||U(τ)||2A + ε2
1
∫

0

Q2(τ, ξ) dξ.

Fulfillment of (2.10) means well-posedness of linear mixed problem (2.1) – (2.3) since (2.10)
implies the a priori estimate:

d

dτ
I(0)(τ) ≤ 0, i. e., I(0)(τ) ≤ I(0)(0), τ > 0 (2.11)

provided that

|µ̄| ≤

√

8

5
µγ. (2.12)

In following we will assume that inequality (2.12) is fulfilled.
A priori estimate (2.11) means that

U(τ, s) ∈ L2(0, 1),

Q(τ, s) ∈ L2(0, 1)

at every τ > 0. From (2.4) it follows that

||ϕ(τ)||L2(0,1) ≤ ||Q(τ)||L2(0,1),

i. e., ϕ(τ, s) ∈
◦

W 1
2 (0, 1) at every τ > 0, and

||ϕ(τ)|| ◦

W 1

2
(0,1)

≤ ||Q(τ)||L2(0,1).

A priori estimate (2.11) also implies stability of the trivial solution to linear mixed problem
(2.1) – (2.3). In the subsequent sections we will obtain more delicate a priori estimates which
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allow to prove existence of a smooth solution to linear mixed problem (2.1) – (2.3) for all τ > 0
and stability and asymptotic stability (by Lyapunov) of its trivial solution.

Remark 2.1. Indeed, from (2.4), it follows that

Q(τ, s) ∈ W 1
2 (0, 1),

ϕ(τ, s) ∈
◦

W 2
2 (0, 1)

for all τ > 0.
Remark 2.2. Treating the Poisson equation (see (2.4))

ϕss = βR̂r,

as an ordinary differential equation for the unknown function ϕ with the boundary conditions

ϕ(τ, 0) = ϕ(τ, 1) = 0,

we arrive at

ϕ(τ, s) = β

1
∫

0

g(s, ξ)R̂(ξ)r(τ, ξ) dξ (2.13)

and

Q(τ, s) = ϕs(τ, s) = β

s
∫

0

R̂(ξ)r(τ, ξ) dξ − β

1
∫

0

(1 − ξ)R̂(ξ)r(τ, ξ) dξ. (2.14)

Here g(s, ξ) is the Green function

g(s, ξ) =

{

ξ(s − 1) for 0 < ξ ≤ s,
s(ξ − 1) for s < ξ < 1.

It is seen that the functions ϕ, Q, given by (2.13), (2.14), satisfy conditions (2.4).
Remark 2.3. Differentiate (2.1′) by τ . Then, for Uτ , we have the system

A(Uτ )τ + B(Uτ )s + DUτ = F τ , (2.15)

where

F τ = (0, Qτ , 0, 0, µ̄uτ )
∗

∗ stands for transposition.
For system (2.15) it is easy to derive the energy integral identity in the integral form:

d

dτ
I(1)(τ) + 2

1
∫

0

R̂(µu2
τ − µ̄uτqτ +

2γ

5
q2
τ +

3ν

2
ϑ2

τ +
3χ

4
σ2

τ ) dξ = 0, (2.16)

where I(1)(τ) = ||Uτ (τ)||2A + ε2
1
∫

0

Q2
τ (τ, ξ) dξ.
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The a priori estimate follows from (2.16)

I(1)(τ) ≤ I(1)(0), τ > 0. (2.17)

Differentiating system (2.15) once again by τ , we finally arrive at the estimate of the form:

I(2)(τ) ≤ I(2)(0), τ > 0 etc. (2.18)

Here I(2)(τ) = ||Uττ (τ)||2A + ε2
1
∫

0

Q2
ττ (τ, ξ) dξ.

Remark 2.4. Let introduce a value

t2 = ||U0||
2
W 2

2
(0,1) =

1
∫

0

R̂[(U0, U0) + (U ′

0, U
′

0) + (U ′′

0 , U ′′

0 )] dξ,

i. e., the squared norm of the vector of initial data U0(s) = U(0, s) = (r0(s) , u0(s), ϑ0(s), σ0(s),
q0(s))* in the space W 2

2 (0, 1).
We can prove the following estimates

1
∫

0

Q2(0, ξ) dξ ≤ K1t
2,

1
∫

0

Q2
τ (0, ξ) dξ ≤ K2t

2,

1
∫

0

Q2
ττ (0, ξ) dξ ≤ K3t

2, (2.19)

where K1, K2, K3 are the positive constants.
Indeed, by the formula (2.14) we have

|Q(0, s)|2 = |β
s
∫

0

R̂(ξ)r(0, ξ) dξ − β
1
∫

0

(1 − ξ)R̂(ξ)r(0, ξ) dξ|2 ≤

≤ [2β
1
∫

0

R̂(ξ)|r(0, ξ)| dξ]2 = 4β2(
1
∫

0

R̂1/2|r0|R̂
1/2 dξ)2 ≤

≤ 4β2
1
∫

0

R̂ dξ
1
∫

0

R̂r2
0 dξ = 4β2K0

1
∫

0

R̂r2
0 dξ ≤ K1t

2,

where K0 =
1
∫

0

R̂ dξ > 0, K1 > 0. Thus, the first of estimates (2.19) is fulfilled. Later, since

|Qτ (0, s)| ≤ β(|
s
∫

0

R̂(ξ)rτ (0, ξ) dξ| + |
1
∫

0

(1 − ξ)R̂(ξ)rτ (0, ξ) dξ| ≤

≤ 2β
1
∫

0

R̂(ξ)|rτ (0, ξ)| dξ ≤ 2β(
1
∫

0

R̂ dξ)1/2(
1
∫

0

R̂r2
τ dξ)1/2,

than, if the inequality

1
∫

0

R̂(ξ)r2
τ (0, ξ) dξ ≤ K4t

2, K4 > 0 (2.20)

is held, than the estimate

1
∫

0

Q2
τ (0, ξ) dξ ≤ K2t

2
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took place.
By the analogy, under condition

1
∫

0

R̂(ξ)r2
ττ (0, ξ) dξ ≤ K5t

2, K5 > 0 (2.21)

we can show correctness of the third of estimates (2.19). The proof of inequalities (2.20), (2.21)
is given in section 3.

Finally note that

1
∫

0

R̂Q2
s(0, ξ) dξ ≤

1
∫

0

R̂β2R̂2r2(0, ξ) dξ ≤ β2 max
s∈[0,1]

|R̂2(s)|

1
∫

0

R̂r2
0 dξ ≤ K6t

2. (2.22)

Remark 2.5. Unfortunately, we did not succeed in obtaining the additional entropy conservation
law for system (1.1). Such a law is easily derived for linearized system (2.1) by exclusion of the
derivatives of us, qs from the first, third, fourth equations of system (2.1):

(r + ϑ −
5

4
σ)τ + ϕ̂′u + νϑ −

5

4
χσ = 0. (2.23)

Remark 2.6. We will say that the trivial solution of linear problem (2.1)–(2.3) is stable, if
for any ε̂ > 0 there exists δ̂(ε̂) > 0 such that from the inequality

||U0|| ≤ δ̂

will follow the inequality

||U(τ)|| ≤ ε̂

for all τ > 0.
Remark 2.7. We will say that the trivial solution to linear problem (2.1) – (2.3) is asymptotically

stable, if, at an arbitrary initial data U0(s) from a Sobolev space, the solution U(τ, s) tends to
zero at τ → ∞, also in the Sobolev space.

3. Stability of trivial solution to problem (2.1) – (2.3)

Since we assume that the function ϕ̂(s) is sufficiently smooth (see section 1), henceforth we
can suggest that |ϕ̂′(s)|, |ϕ̂′′(s)| < C0, where C0 is the positive constant.

From the first equation of system (2.1) it follows that

r2
τ = u2

s + (ϕ̂′)2u2 + 2usϕ̂
′u ≤ 2(u2

s + C2
0u

2),

so

1
∫

0

R̂(ξ)r2
τ (0, ξ) dξ ≤ K4t

2.
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Remark 3.1. The constants K1, K2, K3, K4 (as well as other positive constants Ki, i =
5, . . . , 7, Nj, j = 1, . . . , 3, Mk, k = 1, . . . , 18, which appear in the sequel in this section) are
determined finally via the constants µ, ν, χ, γ, β and the function ρ(s).

Let us differentiate the second equation of (2.1) by s:

uτs = Qs − (rss + ϑss + σss + ϕ̂′(ϑs + σs) + µus + ϕ̂′′(ϑ + σ)).

Then, with account to relation (2.22) it yields the inequality

1
∫

0

R̂(ξ)u2
τs(0, ξ) dξ ≤ K7t

2.

Now, differentiating the first equation of (2.1) by τ :

rττ + uτs + ϕ̂′uτ = 0,

we arrive at the estimate

1
∫

0

R̂(ξ)r2
ττ (0, ξ) dξ ≤ K5t

2.

Thus the inequalities (2.20), (2.21) from Remark 2.4 are valid, so the estimates (2.19) are
proved.

Note that

(AUτ , Uτ ) ≤ N1{(U,U) + (Us, Us) + Q2} (3.1)

since at the desired functions in (2.1) we have either the constants or the known bounded
functions.

From the differentiated by s system (2.1) we obtain

(AUτs, Uτs) ≤ N2{(U,U) + (Us, Us) + (Uss, Uss)}.

And differentiating (2.1) by τ , we finally have

(AUττ , Uττ ) ≤ N2{(U,U) + (Us, Us) + (Uss, Uss) + Q2 + Q2
τ}. (3.2)

Gathering estimates (2.11), (2.17), (2.18), (2.19), (3.1) and (3.2), we can write that

1
∫

0

R̂[r2(τ, ξ) + u2(τ, ξ) + ϑ2(τ, ξ) + σ2(τ, ξ) + q2(τ, ξ)+

+r2
τ (τ, ξ) + u2

τ (τ, ξ) + ϑ2
τ (τ, ξ) + σ2

τ (τ, ξ) + q2
τ (τ, ξ)+

+r2
ττ (τ, ξ) + u2

ττ (τ, ξ) + ϑ2
ττ (τ, ξ) + σ2

ττ (τ, ξ) + q2
ττ (τ, ξ)] dξ ≤ M1t

2, τ > 0. (3.3)

Completing the derivation of an a priory estimate, we deduce some auxiliary inequalities.
First, we will derive estimates for the first derivatives by s of the desired functions. From the
first equation of system (2.1) it follows that

u2
s ≤ r2

τ + C2
0u

2,
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so

1
∫

0

R̂(ξ)u2
s(τ, ξ) dξ ≤ M2t

2, τ > 0. (3.4)

Evaluate the derivative qs with the help of the third equation of system (2.1):

qs = −

(

3

2
ϑτ + us + ϕ̂′q +

3ν

2
ϑ

)

,

i. e.,

1
∫

0

R̂q2
s dξ ≤ M3t

2, τ > 0. (3.5)

While deriving similar results for ϑs, σs, rs it is necessary to have estimates for derivatives
uτs, rτs, ϑτs, στs. Differentiating the first equation of (2.1) by τ , we will have

rττ + uτs + ϕ̂′uτ = 0.

Whence we easily obtain

1
∫

0

R̂u2
τs dξ ≤ M4t

2, τ > 0. (3.6)

Now let us use the second and fifth equation of system (2.1) differentiated by τ :

rτs + ϑτs + στs = F1 = Qτ − uττ − ϕ̂′ϑτ − ϕ̂′στ − µuτ , (3.7)

ϑτs +
2

5
στs = F2 = µ̄uτ −

2

5
qττ −

2γ

5
qτ , (3.8)

with the help of (3.7) and (3.8) we transform the additional relation (2.23) into:
(

rτs + ϑτs −
5

4
στs

)

τ

+ ν̄

(

rτs + ϑτs −
5

4
στs

)

= F3 = ν̄F1 − νF2 − ϕ̂′uτs − ϕ̂′′uτ , (3.9)

where ν̄ =
5

9
χ +

8

45
ν. Multiplying (3.9) by 2R̂

(

rτs + ϑτs −
5

4
στs

)

and integrating by s from 0

to 1, we get

∂

∂τ







1
∫

0

R̂

(

rτs + ϑτs −
5

4
στs

)2

dξ







+ (2ν̄ − 1)

1
∫

0

R̂

(

rτs + ϑτs −
5

4
στs

)2

dξ ≤ M5t
2,

then for ν̄ >
1

2
we have

1
∫

0

R̂

(

rτs + ϑτs −
5

4
στs

)2

dξ ≤ M6t
2.
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Since from (3.7) it follows that

1
∫

0

R̂ (rτs + ϑτs + στs)
2 dξ ≤ M7t

2,

than we receive

1
∫

0

R̂σ2
τs dξ ≤ M8t

2,

and after that from (3.8) and (3.7) we sequentially deduce analogous estimates for ϑ2
τs and r2

τs.
Finally

1
∫

0

R̂[r2
τs + ϑ2

τs + σ2
τs] dξ ≤ M9t

2, τ > 0. (3.10)

Later, from the first equation of system (2.1), we obtain

uss = −rτs − (ϕ̂′u)s,

i. e.,

1
∫

0

R̂u2
ss dξ ≤ M10t

2, τ > 0. (3.11)

In order to evaluate the derivative qss, we differentiate by s the third and the fourth
equations of system (3.1). From these equations and from the last equation of system (3.1), we
find
(

2

3ν
+

16

75χ

)

qss = −
1

ν
ϑτs−

2

5χ
σss−

(

2

3ν
+

16

75χ

)

uss−

(

2

3ν
+

16

75χ

)

(ϕ̂′u)s+
2

5
qτ ++

2

5
γq−µ̄u.

So, if we assume that

0 < ν0 < ν, 0 < χ0 < χ,

than we have

1
∫

0

R̂q2
ss dξ ≤ M11t

2, τ > 0. (3.12)

To evaluate the derivatives ϑs, σs, we differentiate the third and forth equations of system
(2.1) by s and multiply them by 2R̂ϑs and 2R̂σs, correspondingly. Finally, we have the
inequalities:

3

2

∂

∂τ







1
∫

0

R̂ϑ2
s dξ







+ (3ν − 1)

1
∫

0

R̂ϑ2
s dξ ≤ M12t

2,
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3

4

∂

∂τ







1
∫

0

R̂σ2
s dξ







+

(

3χ

2
− 1

)

1
∫

0

R̂σ2
s dξ ≤ M13t

2,

i. e.,

1
∫

0

R̂[ϑ2
s + σ2

s ] dξ ≤ M14t
2, τ > 0. (3.13)

While deriving (3.13) we assumed that ν >
1

3
and χ >

2

3
that is true (see [2]).

From the second equation of system (2.1) it follows that

rs = F4 = Q − (uτ + ϑs + σs + ϕ̂′ϑ + ϕ̂′σ + µu),

so

1
∫

0

R̂r2
s dξ ≤ M15t

2, τ > 0. (3.14)

From the third equation of (2.1) differentiated by τ it follows that

q2
τs ≤

9

3
ϑ2

ττ + u2
τs + C2

0q
2
τ +

9ν2

4
ϑ2

τ ,

i. e.,

1
∫

0

R̂q2
τs dξ ≤ M16t

2, τ > 0. (3.15)

Finally to estimate the derivatives ϑss, rss, σss we will use again the method we have used
while deriving the derivatives ϑτs, rτs, στs. To this end we differentiate the second and fifth
equations of system (2.1) by s:

rss + ϑss + σss = G1 = βR̂r − uτs − (ϕ̂′ϑ)s − (ϕ̂′σ)s − µus, (3.16)

ϑss +
2

5
σss = G2 = µ̄us −

2

5
qτs −

2γ

5
qs, (3.17)

and (2.23) by s twice:

(

rss + ϑss −
5

4
σss

)

τ

+
11

15
ν

(

rss + ϑss −
5

4
σss

)

= G3 = −νG2 +
11

15
νG1 − (ϕ̂′u)ss. (3.18)

Then it follows from (3.16), (3.17), (3.18) that

1
∫

0

R̂[r2
ss + ϑ2

ss + σ2
ss] dξ ≤ M11t

2, τ > 0. (3.19)
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Gathering estimates (3.3) – (3.6), (3.10) – (3.15), (3.19), we can write down the desired a
priori estimate:

1
∫

0

R̂ [(U,U)+(Uτ , Uτ )+(Us, Us)+(Uττ , Uττ )+(Uτs, Uτs)+ (Uss, Uss)] dξ≤M12t
2, τ >0. (3.20)

From (3.20) it follows that

U(τ, s) ∈ W 2
2 (0, 1), Q(τ, s) ∈ W 3

2 (0, 1), ϕ(τ, s) ∈
◦

W 4
2 (0, 1) for all τ > 0.

It also implies stability (by Lyapunov) of the equilibrium state in the linear approximation.
Remark 3.2. More exactly,

r(τ, s), ϑ(τ, s), σ(τ, s) ∈
◦

W 2
2 (0, 1).

Besides,

||U(τ)||2W 2

2
(0,1) ≤ M12t

2, τ > 0,

which means (see Remark 2.5) stability (by Lyapunov) of the trivial solution to mixed problem
(2.1) – (2.3). Here

||U(τ)||2W 2

2
(0,1) =

1
∫

0

R̂[(U,U) + (Us, Us) + (Uss, Uss)] dξ.

4. Asymptotic stability of trivial solution

Evidently, the first equation of system (2.1) can be rewritten as

(R̂r)τ + (R̂u)s = 0.

It is expedient to introduce into consideration a potential Ψ = Ψ(τ, s) such that

R̂u = Ψτ ,

R̂r = −Ψs. (4.1)

First two boundary conditions in (2.3) imply

Ψs(τ, 0) = Ψs(τ, 1) = 0. (4.2)

The remained conditions in (2.3) and assumption (2.6) give

(R̂ϑ)(τ, 0) = (R̂ϑ)(τ, 1) = 0, (4.3)

(R̂σ)(τ, 0) = (R̂σ)(τ, 1) = 0. (4.4)

Note that equation (2.2) with regard to (4.1) transforms into


ε2Q + Ψ −

1
∫

0

Ψ dξ





τ

= 0,
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i. e.,

ε2Q + Ψ −

1
∫

0

Ψ dξ = A0(s),

where A0(s) is an arbitrary function. On the other hand, by (2.4), we have

ε2Qs = R̂r, i. e., A′

0(s) = 0 and A0 = const;

since
1
∫

0

Qdξ = 0, A0 = 0.

So,

Q = β





1
∫

0

Ψ dξ − Ψ



 = βh(τ, s). (4.5)

Rewrite the second condition of system (2.1) as

(R̂u)τ + (R̂r)s − ϕ̂′R̂r + (R̂ϑ)s + (R̂σ)s + µR̂u = R̂Q,

and then, with the use of relations (4.1), in the form

Ψττ − Ψss + (R̂ϑ)s + (R̂σ)s + µΨτ + ϕ̂′Ψs = R̂βh. (4.6)

By the analogy, the third, fourth, fifth equations from (2.1) can be rewritten as follows:

3

2
(R̂ϑ)τ + Ψτs − ϕ̂′Ψτ + (R̂q)s +

3ν

2
(R̂ϑ) = 0, (4.7)

3

4
(R̂σ)τ + Ψτs − ϕ̂′Ψτ +

2

5
(R̂q)s +

3χ

4
(R̂σ) = 0, (4.8)

2

5
(R̂q)τ + (R̂ϑ)s − ϕ̂′(R̂ϑ) +

2

5
(R̂σ)s −

2

5
ϕ̂′(R̂σ) +

2γ

5
(R̂q) − µ̄Ψτ = 0. (4.9)

Later we will use equations obtained from (4.6) – (4.9) by differentiating by s:

Hττ − Hss + (R̂ϑ)ss + (R̂σ)ss + µHτ + ϕ̂′Hs + β(2R̂ − ρ)H = R̂′βh, (4.10)

3

2
(R̂ϑ)τs + Hτs − (ϕ̂′Ψτ )s + (R̂q)ss +

3ν

2
(R̂ϑ)s = 0, (4.11)

3

4
(R̂σ)τs + Hτs − (ϕ̂′Ψτ )s +

2

5
(R̂q)ss +

3χ

4
(R̂σ)s = 0, (4.12)

2

5
(R̂q)τs + (R̂ϑ)ss − (ϕ̂′R̂ϑ)s +

2

5
(R̂σ)ss −

2

5
(ϕ̂′R̂σ)s +

2γ

5
(R̂q)s − µ̄Hτ = 0, (4.13)
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where H = Ψs.
Remark 4.1. The aggregate h (see (4.5)) can be rewritten

h(τ, s) =

1
∫

0

Ψ(τ, ξ) dξ − Ψ(τ, s) =

1
∫

0

[Ψ(τ, ξ) − Ψ(τ, s)] dξ =

=

1
∫

0





ξ
∫

s

Ψz(τ, z) dz



dξ =

1
∫

0

ξ
∫

s

H(τ, z) dz dξ. (4.14)

Now we proceed to derivation of the desired estimate. With this purpose, we multiply
equation (4.6) by 2Ψτ , equation (4.7) by 2(R̂ϑ), equation (4.8) by 2(R̂σ), equation (4.9) by
2(R̂q), sum them up and integrate it by s from 0 to 1 (accounting boundary conditions (4.2) –
(4.4)):

d

dτ







1
∫

0

[

Ψ2
τ + Ψ2

s +
3

2
(R̂ϑ)2 +

3

4
(R̂σ)2 +

2

5
(R̂q)2

]

dξ







+

+2

1
∫

0

[

µΨ2
τ +

3ν

2
(R̂ϑ)2 +

3χ

4
(R̂σ)2 +

2γ

5
(R̂q)2 + ϕ̂′ΨτΨs − ϕ̂′Ψτ (R̂ϑ) − ϕ̂′Ψτ (R̂σ)−

−µ̄Ψτ (R̂q) − ϕ̂′(R̂ϑ)(R̂q) −
2

5
ϕ̂′(R̂σ)(R̂q)

]

dξ = 2β

1
∫

0

R̂Ψτh dξ. (4.15)

By analogy, multiplying (4.10) by 2Hτ , (4.11) by 2(R̂ϑ)s, (4.12) by 2(R̂σ)s, (4.13) by 2(R̂q)s,
summing up, integrating by s (accounting (4.2) – (4.4) and also (2.5)), we have:

d

dτ







1
∫

0

[

H2
τ + H2

s +
3

2
(R̂ϑ)2

s +
3

4
(R̂σ)2

s +
2

5
(R̂q)2

s + β(2R̂ − ρ)H2

]

dξ







+

+2

1
∫

0

[

µH2
τ +

3ν

2
(R̂ϑ)2

s +
3χ

4
(R̂σ)2

s +
2γ

5
(R̂q)2

s + ϕ̂′HτHs − (ϕ̂′Ψτ )s(R̂ϑ)s − (ϕ̂′Ψτ )s(R̂σ)s−

−µ̄Hτ (R̂q)s − (ϕ̂′R̂ϑ)s(R̂q)s −
2

5
(ϕ̂′R̂σ)s(R̂q)s

]

dξ = 2β

1
∫

0

R̂′Hτh dξ. (4.16)

We will use the result of integration by s from 0 to 1 (with account to boundary conditions)
of equation (4.10) multiplied by 2H:

d

dτ







1
∫

0

[

2HHτ + µH2
]

dξ







+ 2

1
∫

0

[

−H2
τ + H2

s − Hs(R̂ϑ)s−
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−Hs(R̂σ)s +
β

2
(3R̂ − ρ)H2

]

dξ = 2β

1
∫

0

R̂′Hh dξ. (4.17)

Summing up (4.15)–(4.17), we obtain the expression:

d

dτ
J (0) + J (1) = 2β

1
∫

0

R̂Ψτh dξ + 2β

1
∫

0

R̂′Hτh dξ + 2β

1
∫

0

R̂′Hh dξ ≤

≤ 2β





1
∫

0

R̂2 dξ





1

2





1
∫

0

(R̂u)2 dξ





1

2





1
∫

0

(R̂r)2 dξ





1

2

+

+2β





1
∫

0

(R̂′)2 dξ





1

2





1
∫

0

(R̂r)2
τ dξ





1

2





1
∫

0

(R̂r)2 dξ





1

2

+ 2β





1
∫

0

(R̂′)2 dξ





1

2 1
∫

0

(R̂r)2 dξ. (4.18)

Note that the estimate of the right hand part in (4.18) is derived with the help of the inequalities
of Hölder and Cauchy, and formula (4.14). Besides, in (4.18)

J (0) =

1
∫

0

[

(R̂u)2 +
3

2
(R̂ϑ)2 +

3

4
(R̂σ)2 +

2

5
(R̂q)2 + (R̂rτ )

2 +

+ (R̂r)2
s +

3

2
(R̂ϑ)2

s +
3

4
(R̂σ)2

s +
2

5
(R̂q)2

s +

+ (β(2R̂ − ρ) + µ + 1)(R̂r)2 + 2(R̂r)(R̂rτ )
]

dξ,

J (1) = 2

1
∫

0

[

µ(R̂u)2 +
3ν

2
(R̂ϑ)2 +

3χ

4
(R̂σ)2 +

2γ

5
(R̂q)2 +

+ (µ − 1)(R̂r)2
τ + (R̂r)2

s +
3ν

2
(R̂ϑ)2

s +
3χ

4
(R̂σ)2

s +
2γ

5
(R̂q)2

s +

+
β

2
(3R̂ − ρ)(R̂r)2 − ϕ̂′(R̂u)(R̂r) − ϕ̂′(R̂u)(R̂ϑ) − ϕ̂′(R̂u)(R̂σ) −

− µ̄(R̂u)(R̂q) − ϕ̂′(R̂ϑ)(R̂q) −
2

5
ϕ̂′(R̂σ)(R̂q) + ϕ̂′(R̂r)τ (R̂r)s −

− (ϕ̂′R̂u)s(R̂ϑ)s − (ϕ̂′R̂u)s(R̂σ)s + µ̄(R̂r)τ (R̂q)s − (ϕ̂′R̂ϑ)s(R̂q)s −

−
2

5
(ϕ̂′R̂σ)s(R̂q)s + (R̂r)s(R̂ϑ)s + (R̂r)s(R̂σ)s

]

dξ.

Rewrite (4.18) with account to the estimate of the right hand part as the following inequality

d

dτ
J (0) + J (2) ≤ 0, (4.19)
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where

J (2) = J (1) − β





1
∫

0

R̂2 dξ





1

2

ε1

1
∫

0

(R̂u)2 dξ−

−β





1
∫

0

R̂2 dξ





1

2

1

ε1

1
∫

0

(R̂r)2 dξ − β





1
∫

0

(R̂′)2 dξ





1

2

ε2

1
∫

0

(R̂r)2
τ dξ−

−β





1
∫

0

(R̂′)2 dξ





1

2

1

ε2

1
∫

0

(R̂r)2 dξ − 2β





1
∫

0

(R̂′)2 dξ





1

2 1
∫

0

(R̂r)2 dξ.

While deriving J (2) we used the Cauchy inequality with some positive constants ε1, ε2.
In J (0) and J (2) the expressions under the integral sign are positive definite squared forms

of the variables R̂r, R̂u, R̂ϑ, R̂σ, R̂q, (R̂r)s, (R̂ϑ)s, (R̂σ)s, (R̂q)s, R̂rτ , since the parameters

µ, ν, χ, γ, β are sufficiently large, with µ >
1

5
γ and if we choose constants ε1, ε2 such that

εi <
3µ − γ

β
, i = 1, 2,

1

ε1

+
1

ε2

< 2l.

Here positive constant l is founded from the inequality

δ −





1
∫

0

(ρ′(ξ))2 dξ





1

2

> l, (4.20)

which exactly is the essential restriction on the function ρ(s) first mentioned in Remark 1.1.
Note, that µ̄ < 0 (see [1]) and with high accuracy, by (1.10),

3R̂ − ρ = 2ρ.

Under fulfillment of (4.20) there exists a constant M0 > 0 such that

J (2) ≥ M0J
(0). (4.21)

By (4.21) inequality (4.19) transforms into

d

dτ
J (0) + M0J

(0) ≤ 0,

i. e.,

J (0)(τ) ≤ e−M0τJ (0)(0). (4.22)

Remind relations (4.1) and rewrite (4.22) as

1
∫

0

[

r2(τ, s) + u2(τ, s) + ϑ2(τ, s) + σ2(τ, s) + q2(τ, s) + r2
τ (τ, s) +
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+ r2
s(τ, s) + u2

s(τ, s) + ϑ2
s(τ, s) + σ2

s(τ, s) + q2
s(τ, s)

]

dξ ≤ M1e
−M0τ t2. (4.23)

Here M1 > 0 is a constant, t2 = ||U0||
2
W 1

2
(0,1)

=
1
∫

0

[(U0, U0) + (U ′

0, U
′

0)] dξ is the squared norm of

the vector of initial data U0(s) = U(0, s) = (r0(s), u0(s), ϑ0(s), σ0(s), q0(s)) * in the Sobolev’s
space W 1

2 (0, 1).
Remark 4.2. Constants M0, M1, as well as positive constants M2, M3, are finally determined

via the constants µ, ν, χ, γ, β and the function ρ(s).
Derivatives uτ , ϑτ , στ and qτ are estimated with the help of system (2.1):

uτ = Q − (rs + ϑs + σs + ϕ′ϑ + ϕ̂′σ + µu),

ϑτ = −
2

3
(us + qs + ϕ̂′q +

3

2
νϑ),

στ = −
4

3
(us +

2

5
qs +

2

5
ϕ̂′q +

3

4
νϑ),

qτ = −
5

2
(ϑs +

2

5
σs +

2

5
γq − µ̄u).

Consequently,

1
∫

0

[

u2
τ (τ, s) + ϑ2

τ (τ, s) + σ2
τ (τ, s) + q2

τ (τ, s)
]

dξ ≤ M2e
−M0τ t2. (4.24)

Combining estimates (4.23) and (4.24), we come to the desired a priori estimate:

1
∫

0

[(U,U) + (Uτ , Uτ ) + (Us, Us)] dξ ≤ M3e
−M0τ t2, τ > 0. (4.25)

From (4.25) it follows that

U(τ, s) ∈ W 1
2 (0, 1),

Q(τ, s) ∈ W 2
2 (0, 1),

ϕ(τ, s) ∈
◦

W 3
2 (0, 1), for all τ > 0,

and the equilibrium state in the linear approximation is asymptotically stable (by Lyapunov).
Remark 4.3. Precisely,

r(τ, s), ϑ(τ, s), σ(τ, s) ∈
◦

W 1
2 (0, 1).

Besides,

||U(τ)||2W 1

2
(0,1) ≤ M3e

−M0τ t2, τ > 0,

just this means (see Remark 2.6) asymptotic stability (by Lyapunov) of the trivial solution to
mixed problem (2.1)–(2.3). Remind that

||U(τ)||2W 1

2
(0,1) =

1
∫

0

[(U,U) + (Us, Us)] dξ.
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5. Conclusions

The analysis, carried out in the paper, states a very important (from the applications point of
view) fact on asymptotic stability of the equilibrium state for the antidemocratic hydrodynamical
model (see [1]) of charge transport in semiconductors. Indeed, in absence of the bias across the
real semiconductor devices, transport of charge carriers (i. e., electric flow) must be absent.
Consequently, applying hydrodynamical models in description of physical phenomena of charge
transport in semiconductors, we must require of them the adequate description of these phenomena
(including correct description of the transition process in semiconductor devices in absence of
the bias across the diode).

Unfortunately, the fact of asymptotical stability of the equilibrium state is proved under
essential restriction (4.20) on the doping density ρ(s) and in the linear approximation as yet.
It should be noted at the same time that proof of stability of the equilibrium state does not
contain any restrictions on the doping density.

We gratefully thank Prof. A. M. Anile for many helpful discussions. We also appreciate
A. A. Iohrdanidy for efficient cooperation.
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