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The Quantified Set Inversion (QSI) algorithm is a set inversion algorithm based on
Modal Interval Analysis and designed for estimation of AE-solution sets to parametric
non-linear systems, i. e., for the solution of quantified real constraint (QRC) problems.
However, the original QSI algorithm is limited to the QRC problems where existentially
quantified variables are not shared between equality constraints. This paper presents
an extended version of the QSI algorithm that overcomes some of these limitations.
In addition, we introduce a user-friendly Matlab toolbox including a modal interval
arithmetic, an efficient implementation of an algorithm for performing modal interval
computations (𝑓*-algorithm) and the QSI algorithm. Due to the high popularity of
Matlab in the scientific and engineering communities, the presented toolbox is ex-
pected to promote the use of Modal Interval Analysis. Finally, several examples of
using the Matlab toolbox and applications to control engineering are presented.

Keywords: constraint satisfaction problem, modal interval analysis, quantified so-
lutions, AE-solutions, set inversion, control systems.

Introduction

Solving Quantified Real Constraints over the reals

A Quantified Real Constraints (QRC) is a mathematical formalism used for modelling many
real-life problems that involve systems of nonlinear equations linking real variables, some of
them affected by logical quantifiers. QRCs appear in numerous contexts, such as Control
Engineering, Electrical Engineering, Mechanical Engineering, and Biology [1]. Solving QRC
is an active research area in which two radically different approaches have been proposed:
the symbolic quantifier elimination [2, 3] and approximate methods [4 – 11]. However, no
matter which approach is actually used, the solution of large problems within a reasonable
computational time as well as processing the general case still remain the challenge to our
capabilities.
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Modal Interval Analysis

Modal Interval Analysis (shortly MIA, see [12]) is an extension of the classical Interval
Analysis (see, e. g., [13, 14]) in which any interval [𝑎, 𝑏] is assigned a modality to represent its
quantification by logical quantifiers “∀” and “∃”. The interval is proper if 𝑎 ≤ 𝑏 or improper
if 𝑎 ≥ 𝑏. Modal Interval Analysis uses the so-called Kaucher arithmetic [15], also referred to
as complete interval arithmetic, to perform interval computations. An important operator
of this interval arithmetic is the dualization, denoted by “Dual” and defined as

Dual([𝑎, 𝑏]) = [𝑏, 𝑎].

Two major results of Modal Interval Analysis are so-called the *-semantic theorem and
the **-semantic theorem, which enable us to prove either satisfaction or dissatisfaction of
logic AE-formulas over the reals by means of interval computations (see Appendix). In
particular, for any continuous real function 𝑓 , there holds

Out(𝑓 *(P ,V )) ⊆ [0, 0] ⇒ ∀(𝑝,P ′)∃(𝑣,V ′) 𝑓(𝑝, 𝑣) = 0,

where ∀(𝑝,P ′) means ∀𝑝 ∈ P ′ and ∃(𝑣,V ′) means ∃𝑣 ∈ V ′,
𝑝 and 𝑣 are vectors of variables ranging over the real domains P ′ and V ′,
P is a vector of proper intervals, V is a vector of improper intervals and
Out(𝑓 *(P ,V )) is an outer approximation of the so-called *-semantic extension
of 𝑓 , which can be computed by using the modal interval arithmetic.

Note that the prime symbol on a variable (e. g., 𝑃 ′) indicates a real domain, while the same
variable without the prime symbol indicates a modal interval.

It is worth noting that there exists an efficient algorithm, referred to as 𝑓 *-algorithm,
for computing inner and outer approximations of 𝑓 * [12]. A Matlab implementation of the
𝑓 *-algorithm is also available [16] (see Section 3.2). We recommend the reader to consult
Appendix for a short introduction to Modal Interval Analysis and the book [12] for a thorough
exposition.

1. Quantified Set Inversion Algorithm

The Quantified Set Inversion (QSI) algorithm [10] is a numerically guaranteed approximate
method based on set inversion [17] and Modal Interval Analysis and designed for estimation
of the AE-solution sets to the problems with quantified real constraints. These solution sets,
introduced in [5], are defined as

𝛯𝐴𝐸 =
{︀
𝑥 ∈ 𝑋 ′

0 | ∀(𝑝,P ′)∃(𝑣,V ′)
(︀
𝑓1(𝑥, 𝑝, 𝑣) = 0 ∧ . . . ∧ 𝑓𝑚(𝑥, 𝑝, 𝑣) = 0

)︀ }︀
, (1)

where 𝑓1, . . . , 𝑓𝑚 are functions from R𝑛 to R𝑚, 𝑥 denotes a vector of free variables varying
within the interval box 𝑋 ′

0, 𝑝 is a vector of universally quantified variables varying within
the interval box P ′, and 𝑣 is a vector of existentially quantified variables varying within
V ′. In the sequel, we will denote 𝑓 = (𝑓1, 𝑓2, . . . , 𝑓𝑚)⊤ for brevity. Applicability of QSI
algorithm requires that each existentially quantified variable from 𝑣 occurs in only one of
the components 𝑓1,. . . , 𝑓𝑚.

In general, the set 𝛯𝐴𝐸 may have complex structure, which makes it impossible to describe
it precisely and in a moderate number of operations. So, we need to estimate 𝛯𝐴𝐸, i. e.,
to present its approximate descriptions that meets requirements of the practice (see [5]). In
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order to produce an estimate of the solution set 𝛯𝐴𝐸, QSI algorithm sequentially divides the
initial domain X ′

0 into three regions (‘true’, ‘false’, ‘undefined’) by means of the following
instructions, hereinafter called “bounding rules”:

1. The rule Inside: An interval box X is included in 𝛯𝐴𝐸 if it renders the following
formula true:

Out
(︀
𝑓 *
1 (X ,P ,V )

)︀
⊆ [0, 0] ∧ . . . ∧ Out

(︀
𝑓 *
𝑚(X ,P ,V )

)︀
⊆ [0, 0], (2)

where 𝑋 and P are proper intervals and V is an improper one, since inclusion (2)
implies

∀(𝑥,X ′)∀(𝑝,P ′)∃(𝑣,V ′) 𝑓(𝑥, 𝑝, 𝑣) = 0.

Therefore, the box X is labeled as ’true’. Note that, in Modal Interval Analysis, the
inclusion in zero is defined.

2. The rule Outside: An interval box 𝑋 is excluded from 𝛯𝐴𝐸 if it renders the following
formula true:

Inn
(︀
𝑓 *
1 (X ,P ,V )

)︀
* [0, 0] ∨ . . . ∨ Inn

(︀
𝑓 *
𝑚(X ,P ,V )

)︀
* [0, 0], (3)

where 𝑋, 𝑉 are improper intervals, P is a proper one and Inn is an inner approxima-
tion of 𝑓 *. The point is that non-inclusion (3) implies

∃(𝑝,P ′)∀(𝑥,X ′)∀(𝑣,V ′) 𝑓(𝑥, 𝑝, 𝑣) ̸= 0.

Then, the box 𝑋 is labeled as ‘false’.
3. The rule Undefined : If none of the above is satisfied, then the interval box 𝑋 is labeled

as ’undefined’ and bisected. The entire process iterates with the resulting boxes until
a predefined precision 𝜖 is reached.

Algorithm 1. QSI algorithm

Require: 𝑓(𝑥, 𝑝, 𝑣) = 0; X ′, P ′, V ′; 𝜖.
Ensure: 𝐴𝐸Inn and 𝐴𝐸Out of the solution set.
1: 𝐿𝑖𝑠𝑡 = {X ′}; 𝐴𝐸Inn = {∅}; △𝛯𝐴𝐸 = {∅};
2: while 𝐿𝑖𝑠𝑡 is not empty do
3: Dequeue X ′ from 𝐿𝑖𝑠𝑡;
4: if 𝐼𝑛𝑠𝑖𝑑𝑒 is true for X ′ then
5: Enqueue X ′ to 𝐴𝐸Inn;
6: else if 𝑂𝑢𝑡𝑠𝑖𝑑𝑒 is true for X ′ then
7: Enqueue X ′ to 𝐴𝐸Out;
8: else if d(X ′) < 𝜖 then
9: Enqueue X ′ to △𝛯𝐴𝐸 ;

10: else
11: Bisect X ′ and enqueue the resulting boxes to 𝐿𝑖𝑠𝑡;
12: end if
13: end while

Algorithm 1 shows the QSI algorithm in pseudo-code form, and we use the following
notation there:

∙ 𝐿𝑖𝑠𝑡 is a list of boxes;
∙ 𝐴𝐸Inn is a list of such boxes that 𝐴𝐸Inn ⊆ 𝛯𝐴𝐸;



Extended quantified set inversion algorithm ... 7

∙ 𝐴𝐸Out is a list of such boxes that 𝛯𝐴𝐸 ⊆ 𝐴𝐸Out;
∙ Inside and Outside are inclusion and exclusion conditions expressed

by formulas (2) and (3) respectively;
∙ Enqueue/Dequeue means the result of adding/extracting a box to/from the list;
∙ d(X ′) is a function returning the widest relative width of X ′

with respect to the original box;
∙ 𝜖 is a real value representing the desired precision.

1.1. Examples

1.1.1. Linear case

First, we consider the following AE-solution set of an interval linear system proposed by
Irene Sharaya in [18] and defined as

𝛯∃∃ =
{︀

(𝑥1, 𝑥2, 𝑥3) ∈ (𝑋 ′
1,𝑋

′
2,𝑋

′
3) | ∃(𝑎11, [−1, 1])∃(𝑎12, [−2, 2])∃(𝑎13, [−2, 2])

∃(𝑎21, [−2, 2])∃(𝑎22, [−1, 1])∃(𝑎23, [−2, 2])
∃(𝑎31, [−2, 2])∃(𝑎32, [−2, 2])∃(𝑎33, [−1, 1])

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 − 2 = 0
∧ 𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 − 2 = 0
∧ 𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 − 2 = 0

}︀
.

(4)

This is, in fact, a piece of the united solution set to the interval linear system of equations⎛⎝ [−1, 1] [−2, 2] [−2, 2]

[−2, 2] [−1, 1] [−2, 2]

[−2, 2] [−2, 2] [−1, 1]

⎞⎠ 𝑥 =

⎛⎝ 2

2

2

⎞⎠
contained in the interval box (𝑋 ′

1,𝑋
′
2,𝑋

′
3). If the box is “large enough”, then 𝛯∃∃ coincides

with the entire box (𝑋 ′
1,𝑋

′
2,𝑋

′
3) with a star removed around the origin of the coordinates.

a b

Fig. 1. The solution sets of (4) obtained by IntLinInc3D and QSI algorithm: a — solution by
IntLinInc3D, b — solution by QSI (undefined boxes)
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Note that all the equations in (4) are independent from each other, and each existentially
quantified parameter occurs in only one equation. Under these conditions, we can avail
ourselves of Theorem 3.6 from [5] stating that the intersection of the solution set with every
orthant is a convex polyhedral set whose vertices are the solutions of the extreme point linear
systems 𝐴𝑥 = 𝑏, with 𝐴 and 𝑏 formed by the bounds of the intervals from 𝐴 and 𝑏. Using the
Matlab based package IntLinInc3D developed by Irene Sharaya [18, 19], one can visualize
the solution set, and it is shown in Fig. 1, a. The picture was obtained in a computation time
of 0.15 seconds on an Intel Core i5 3.4 GHz. An outer approximation of the same solution
set was obtained by means of a Matlab implementation of QSI algorithm (see Section 3)
with 𝜖 = 0.02 in a computation time of 20 minutes on an Intel Core i5 3.4 GHz. A graphical
representation of our approximation in R3 is shown in Fig. 1, b. Note that only ‘undefined’
boxes have been plotted there for visualization purposes.

A comparison between the two methods shows that the approach proposed by Irene
Sharaya (it is called “the boundary intervals method”) is much more efficient in solving
linear problems with each existentially quantified parameter occurring in only one equation.
However, for non-linear problems, Sharaya’s technique is not applicable, while QSI algorithm
is quite suitable.

1.1.2. Non-linear case

Next, we consider a robust control problem from [6]. It requires computing the set of all
feasible parameter vectors 𝑐 for a parametric linear PI controller Γ(𝑐) that robustly stabilizes
an uncertain linear time-invariant model of a process. This problem reduces to estimation
of the following solution set

𝛯𝐴𝐸 =
{︀
𝑐 ∈ 𝐶 ′ | (∀𝑝 ∈ P ′) 𝑓(𝑐, 𝑝) < 0

}︀
, (5)

where 𝑓(𝑐, 𝑝) is obtained by the Routh criterion,

𝑓(𝑐, 𝑝) , min

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝2 + 𝑦1

𝑝2𝑝3 + 1 + 𝑦2

𝑝2𝑝
2
3 + 𝑝3 −

𝑝2 (𝑝23 + 𝑐2𝑝1𝑝
2
3)

𝑝2𝑝3 + 1
+ 𝑦3

𝑝23 + 𝑐2𝑝1𝑝
2
3 −

(𝑝2𝑝3 + 1)2 (𝑐1𝑝1𝑝
2
3)

(𝑝2𝑝23 + 𝑝3) (𝑝2𝑝3 + 1) − 𝑝2 (𝑝23 + 𝑐2𝑝1𝑝23)
+ 𝑦4

𝑐1𝑝1𝑝
2
3 + 𝑦5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6)

For C ′ = [0, 1] × [0, 1], P ′ = [0.9, 1.1] × [0.9, 1.1] × [0.9, 1.1], and 𝜖 = 0.02, the result is
shown in Fig. 2. It is obtained by QSI algorithm in 430 seconds on an Intel Core i5 3.4 GHz,
where red zone indicates ‘true’ boxes, yellow means ‘undefined’ boxes and blue indicates
‘false’ boxes.

1.2. The general case

In the general vector case, where the same existential variables from 𝑐 ∈ C ′ appear in
multiple constraints, the problem can be converted to the one-dimensional case 𝑚 = 1 by
means of various tricks.
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Fig. 2. A piece of an approximation of the AE-solution set defined by (5), (6)

In the case of inequality constraints, the problem can be converted by using the min/max
function:

𝑓(𝑥, 𝑝, 𝑐, 𝑣) = min
{︀
𝑓1(𝑥, 𝑝, 𝑐, 𝑣), . . . , 𝑓𝑚(𝑥, 𝑝, 𝑐, 𝑣)

}︀
.

In the case of equality constraints, one may use the sum-of-squares function

𝑓(𝑥, 𝑝, 𝑐, 𝑣) = 𝑓 2
1 (𝑥, 𝑝, 𝑐, 𝑣) + . . . + 𝑓 2

𝑚(𝑥, 𝑝, 𝑐, 𝑣),

or to the sum-of-absolute-values function

𝑓(𝑥, 𝑝, 𝑐, 𝑣) = |𝑓1(𝑥, 𝑝, 𝑐, 𝑣)| + . . . + |𝑓𝑚(𝑥, 𝑝, 𝑐, 𝑣)|,

since

𝑓(𝑥, 𝑝, 𝑐, 𝑣) = 0 ⇔
(︀
𝑓1(𝑥, 𝑝, 𝑐, 𝑣) = 0 ∧ . . . ∧ 𝑓𝑚(𝑥, 𝑝, 𝑐, 𝑣) = 0

)︀
.

However, for the equality constraints, the above reformulation strategy poses significant
problems. First of all, it is computationally very expensive to prove the inclusion in the
zero, except for trivial cases, since 𝑓 is a non-negative function and the 𝑓 *-algorithm only
provides ⊆-inner and ⊆-outer approximations for 𝑓 *. Moreover, 𝑓 is not monotonic for
the values close to 0, and this is why reaching any of such inclusions usually requires long
computations. Nevertheless, the “reformulation strategy” can be useful to prove that an
expression is not included in zero, since

𝑓 *(X ,P ,C ,V ) * [0, 0] ⇔
(︀
𝑓 *
1 (X ,P ,C ,V ) * [0, 0] ∨ . . . ∨ 𝑓 *

𝑚(X ,P ,C ,V ) * [0, 0]
)︀
,

which is computationally tractable.

It is clear that in order to solve the general vector problems involving equality constraints
with shared existential variables, a new algorithm is required. The next section introduces
an extension of QSI algorithm that overcomes some of this limitations.
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2. Extended Quantified Set Inversion Algorithm

As previously mentioned, in the general case, when the existentially quantified variables occur
in several components, the Inside rule of the QSI algorithm is a necessary, but not sufficient
condition for proving that an interval box X is included in 𝐴𝐸-solution set described by
equation (1). In order to make it a necessary condition, an additional requirement needs to
be satisfied.

For the sake of simplicity, let us consider the particular case of two restrictions 𝑓 = (𝑓1, 𝑓2)
and one existentially quantified variable 𝑐 ∈ 𝐶 ′ that has occurrences in both 𝑓1 and 𝑓2.
According to Theorem 4.4.3 from [12], if the improper interval 𝐶 is transformed into its
dual in 𝑓1 or 𝑓2 in all of its occurrences except one, then 𝑋 is included in 𝛯𝐴𝐸 providing
that the following condition is satisfied

𝐼𝑛𝑠𝑖𝑑𝑒 : Out
(︀
𝑓 *
1 (𝑋,𝑃 ,𝐶,𝑉 )

)︀
⊆ [0, 0] ∧ Out

(︀
𝑓 *
2 (𝑋,𝑃 ,Dual(𝐶),𝑉 )

)︀
⊆ [0, 0] (7)

(we can take dualization of 𝐶 in 𝑓 *
1 instead of 𝑓 *

2 ), where 𝑋 and 𝑃 are proper intervals and
𝐶 and 𝑉 are improper ones. The latter corresponds to the semantic

∀(𝑥1,𝑋
′
1)∀(𝑥2,𝑋

′
2)∀(𝑝,𝑃 ′)∃(𝑐,𝐶 ′)∃(𝑣,𝑉 ′)(︀

𝑓 *
1 (𝑋,𝑃 ,𝐶,𝑉 ) = 0 ∧ 𝑓 *

2 (𝑋,𝑃 ,𝐶,𝑉 ) = 0
)︀
.

However, since Dual(𝐶) is a proper interval, the inclusion of 𝑓 *
2 ⊆ [0, 0] can be hardly

satisfied. One way to alleviate this problem is to implement yet another branch-and-bound
algorithm over the interval 𝐶 that looks for a sub-box of 𝐶 satisfying the condition (7).
This branch-and-bound (B&B) algorithm is similar to QSI algorithm, but 𝑐 is a free va-
riable vector, 𝑥 and 𝑝 are vectors of universally quantified variables, and 𝑣 is a vector of
existentially quantified variables. If condition (7) is satisfied for a sub-box of 𝐶 resulted
from the subdivision of 𝐶, then B&B algorithm stops and returns ‘true’. If all sub-boxes of
𝐶 are labeled as ‘false’ by the Outside rule (3), or they reach a predefined precision 𝜖2, then
the algorithm returns ‘undefined’. Since the B&B algorithm can be computationally quite
expensive, it is only launched if Inside rule (necessary condition) is satisfied. Therefore, the
Inside rule for the extended QSI (Extended Inside) is composed of the original Inside rule
and the B&B algorithm over 𝐶. Algorithm 2 below shows the Extended Inside rule in a
pseudo-code form.

In Algorithm 2:
∙ 𝐿𝑖𝑠𝑡 means a list of boxes;
∙ Inside is inclusion expressed by condition (2);
∙ Included is inclusion expressed by condition (7);
∙ Enqueue/Dequeue means the result of adding/extracting a box to a list;
∙ d(𝐶 ′) is a function returning the widest relative width of 𝐶 ′ with respect to the original

box;
∙ 𝜖2 is a real value representing the required precision.
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Algorithm 2. Inside rule for Extended QSI algorithm

Require: 𝑓(𝑥, 𝑝, 𝑣, 𝑐) = 0; 𝐶 ′, 𝑋 ′, 𝑃 ′, 𝑉 ′; 𝜖2.
Ensure: Consistency
1: 𝐿𝑖𝑠𝑡 = {𝐶 ′};
2: Consistency=undefined;
3: if 𝐼𝑛𝑠𝑖𝑑𝑒 is true for 𝑋 ′ then
4: while 𝐿𝑖𝑠𝑡 is not empty do
5: Dequeue 𝐶 ′ from 𝐿𝑖𝑠𝑡;
6: if 𝐼𝑛𝑐𝑙𝑢𝑑𝑒𝑑 is true for 𝐶 ′ then
7: Consistency = ‘true’;
8: break
9: else if 𝑂𝑢𝑡𝑠𝑖𝑑𝑒 is true for 𝐶 ′ or d(𝐶 ′) < 𝜖2 then
10: Eliminate 𝐶 ′ from 𝐿𝑖𝑠𝑡;
11: else
12: Bisect 𝐶 ′ and enqueue the resulting boxes to 𝐿𝑖𝑠𝑡;
13: end if
14: end while
15: end if

The Extended Outside rule for the extended QSI is the same as the original Outside rule

Inn
(︀
𝑓 *
1 (X ,P ,𝐶,V )

)︀
* [0, 0] ∨ Inn

(︀
𝑓 *
2 (𝑋,𝑃 ,𝐶,𝑉 )

)︀
* [0, 0], (8)

but supplemented with the following constraint

Inn
(︀
𝑓 *(𝑋,𝑃 ,𝐶,𝑉 )

)︀
* [0, 0], (9)

where 𝑓 is the sum-of-absolute values of 𝑓1 and 𝑓2 (see Section 1.2), X , P are proper intervals
and 𝐶, 𝑉 are improper ones. This additional constraint allows to eliminate boxes X that
otherwise would not be eliminated.

Since Extended Inside rule is more computationally expensive than the Extended Outside
rule, the latter is applied before the former within the extended QSI algorithm. Note that
the Extended Outside could also be employed within the Extended Inside rule in place of
the Outside rule. However, due to the additional computational cost of computing and
testing inclusion (9), we do not use this alternative. Finally, note that the extended QSI can
be easily generalized to 𝑚 functions with multiple existentially quantified variables shared
among several component expressions. However, its practical applicability might be limited
due to the exponential complexity.

2.1. Application to Control Engineering

Let us be given the second-order single-input and single-output (SISO) system presented in
[20]. The pole placement problem for such system is equivalent to the computations of the
following AE-solution set:

𝛯𝐴𝐸 =
{︀

(𝑥1, 𝑥2) ∈ (𝑋 ′
1, 𝑋

′
2) | ∀(𝑞1,𝑄

′
1)∀(𝑞2,𝑄

′
2)∀(𝑞3,𝑄

′
3)∃(𝜁,𝑍)∃(𝜔,Ω)

𝜔2 − (𝑞1 + 𝑞2 + 𝑞3)(𝑞1 + 𝑞3 − 𝑥2) + 𝑞21𝑞
2
2𝑞3 − 𝑞2𝑞3𝑥1 = 0

∧ 2𝜁𝜔 − 𝑥2 + 2𝑞1 + 𝑞2 + 2𝑞3 = 0
}︀
,

(10)
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a b

Fig. 3. Comparison of usual QSI and Extended QSI algorithms: a — estimation of solution set (10)
by usual QSI, b — estimation of set (11) by extended QSI

where 𝑞 = (𝑞1, 𝑞2, 𝑞3) are the coefficients of the characteristic polynomial (they are considered
uncertain), 𝜁 and 𝜔 are coefficients of the design polynomial, and 𝑥1 and 𝑥2 are design
parameters. Note that there exists the existentially quantified parameter 𝜔 occurring in
both terms of the conjunction. Therefore, the extended QSI algorithm needs to be applied.

However, in the above particular problem, the existential variable 𝜔 can be eliminated,
and we arrive at the equivalent AE-solution set

𝛯𝐴𝐸 =
{︀

(𝑥1, 𝑥2) ∈ (𝑋 ′
1, 𝑋

′
2) | ∀(𝑞1,𝑄

′
1)∀(𝑞2,𝑄

′
2)∀(𝑞3,𝑄

′
3)∃(𝜁,𝑍)∃(𝜔,Ω)

𝜔2 − (𝑞1 + 𝑞2 + 𝑞3)(𝑞1 + 𝑞3 − 𝑥2) + 𝑞21𝑞
2
2𝑞3 − 𝑞2𝑞3𝑥1 = 0

∧((𝑥2 − 2𝑞1 − 𝑞2 − 2𝑞3)/(2𝜁))2

−(𝑞1 + 𝑞2 + 𝑞3)(𝑞1 + 𝑞3 − 𝑥2) + 𝑞21𝑞
2
2𝑞3 − 𝑞2𝑞3𝑥1 = 0

}︀
,

(11)

which is amenable to the original QSI algorithm. The entire example is useful for validation
purposes because we can compare the result with the one obtained by the extended QSI
algorithm applied to (10).

For the intervals Ω = [0.5, 2], 𝑍 = [0, 5], 𝑄1 = [0.4, 0.54], 𝑄2 = [0.5, 0.54], 𝑄3 =
[0.5, 0.54] and 𝜖 = 𝜖2 = 0.02, QSI algorithm takes 8 min to obtain an estimate of the
AE-solution set defined by equality (11). It is shown in Fig. 3, a. At the same time, for
𝜖 = 𝜖2 = 0.01, the extended QSI algorithm takes 60 min to obtain the estimate of the AE-
solution set defined by (10) and shown in Fig. 3, b. In the pictures, the red zone indicates
‘true’ boxes, yellow means ‘undefined’ boxes and blue indicates ‘false’ boxes.

Taking a look at Fig. 3, a and b and evaluating the computation times, one can infer that
the solution provided by the Extended QSI algorithm is correct, but less accurate and more
computationally expensive than the one obtained with the original QSI algorithm for an equi-
valent problem without common existentially quantified variable in the conjunction terms
(equality (10)). However, the Extended QSI algorithm is able to provide an approximate
solution to a class of problems that the original QSI algorithm cannot solve.
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3. Efficient Matlab Implementation

High-level numerically oriented (HLNO) programming languages such as Matlab, Scilab or
Octave are popular and well-established tools in the scientific and engineering communities.
However, their computational efficiency sometimes limits their use in certain areas where
intensive numerical computations are required, such as some problems of interval analysis.
On the other hand, HLNO programming languages are well-renowned for their efficiency
in vectorial and matrix computations. With this idea in mind, we have developed a novel
implementation of 𝑓 *-algorithm [12], which is utilized within QSI algorithm [10], that aims at
minimizing the use of explicit loops in the code and favours the use of vectorial computations.
This idea has been previously employed for implementing a vectorial version of the so-called
Set Inversion Via Interval Analysis (SIVIA) algorithm [21].

3.1. Vectorial Modal Interval Arithmetic

In order to operate with modal intervals, a modal interval arithmetic (also referred to as
Kaucher arithmetic [15]) was implemented in Matlab in vectorial manner. Note that such
interval arithmetic operators do not use any explicit “for” loops in the Matlab code. For
this purpose, Matlab logical indexing and the bsxfun built-in function were employed. In
order to facilitate writing interval arithmetic expressions, a Matlab class representing an
interval vector was implemented. This class overloads all the arithmetic operators in order
to operate with interval vectors.

To correct possible containment failures caused by rounding in the floating-point arithme-
tic, the rounding mode of the computer is changed to − inf, when the lower bounds are
computed, and changed to + inf, when the upper bounds are computed. It is important
to note that, by doing vectorial computations, the number of times the rounding mode is
required to be change is much less than that with the original implementation, hence it im-
proves the computation time. An example of using modal interval arithmetic can be found
in Algorithm 3.

Algorithm 3. Example of Modal Interval arithmetic in Matlab.
% variables

x = interval([1,2;4,3]);

y = interval([6,5;7,8]);

% function

z = sin(x/dual(y))

% OUTPUT

------------------------------------------------------------------------------

>> z = [0.1659, 0.3895; 0.5409, 0.3663]

3.2. Vectorial implementation of 𝑓*-algorithm

The basic idea behind the vectorial implementation of 𝑓 *-algorithm [12] is to evaluate all
interval boxes within the branch-and-bound algorithm (i. e., cells) in a vectorial way instead
of processing them one by one. Although not completely eliminated, the number of ex-
plicit loops in the code was reduced to a minimum. An open-source Matlab implemen-
tation of the 𝑓 *-algorithm, referred to as Modal Interval Solver (MIC), can be downloaded
from [16]. It provides a user-friendly interface to operate with modal intervals. Note that the
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𝑓 *-algorithm can also be used for approximating the range of a continuous function when
only classic intervals are involved. An example of using MIC can be found in Algorithm 4.

Algorithm 4. Example of Modal Interval Calculator (MIC) utilization.
% proper variables

var{1} = {’x1’,[4,0]};

var{2} = {’x2’,[2,8]};

var{3} = {’x3’,[-4,9]};

% improper variables

var{4} = {’x4’,[3,-1]};

% function

f = ’x1^2+(x1+x2)^2+(x1+x2+x3)^2+(x1+x2+x3+x4)^2’;

% parameters: tolerance and epsilon

param.tol = 1e-3;

param.eps = 1e-3;

% call mic - % inn: inner approximation; out: outer approximation

[inn,out] = mic(vars,f,param);

% OUTPUT

------------------------------------------------------------------------------

Total Elapsed Time(s): 5.3

Total Iterations: 50

f*= [[81.1653,609],[81,609]]

Tolerance= 0.1652

3.3. Parallel implementation of QSI

Both SIVIA and QSI algorithms are easy to parallelize due to its branch-and-bound nature.
The Matlab Parallel Toolbox, and in particular the parloop command, was employed to
speed up the computations of the extended QSI algorithm. It is important to note that
the improvement in speed of the parallel implementation depend on the number of available
cores in the computer running the algorithm. An open-source Matlab implementation, for
both the original and extended versions, of the QSI algorithm is available from the authors
upon request. An example of using QSI that correspods to Example 1.1.2 can be found in
Algorithm 5.

Algorithm 5. Program source for Example 1.1.2.
% Free variables

VARS{1} = {’c1’,[0.1,1],’F’};

VARS{2} = {’c2’,[0.1,1],’F’};

% Quantified variables

VARS{3} = {’p1’,[0.9,1.1],’U’};

VARS{4} = {’p2’,[0.9,1.1],’U’};

VARS{5} = {’p3’,[0.9,1.1],’U’};

% Constraints

C{1} = {’c1*p1*p3^2’,[0,inf]};

C{2} = {’(p2*p3+1)^2 - p2*(p3+c2*p1*p3)’,[0,inf]};

C{3} = {’(1+c2*p1)*((p2*p3^2+p3)*(p2*p3+1)-p2*(p3^2+c2*p1*p3^2))-...

(p2*p3+1)^2*(c1*p1)’,[0,inf]};

% Call QSI: S: solution N: non-solution; U: undefined

eps=0.02;

[S,U,N] = qsi(C,VARS,[],eps,true);

% Plot results

draw_boxes(S’,U’,N’,1,2);
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Conclusion

Approximate estimation of AE-solution sets to parametric non-linear systems by means of
numerical methods, such as those suggested by interval analysis, is still an open problem.
This paper presents an extended version of the Modal-Interval-based Quantified Set Inver-
sion (QSI) algorithm that overcomes some of the limitations of the original QSI algorithm
occurred in the solution of the equality constraints with common existentially quantified
variables.

When compared to the original QSI algorithm, the extended QSI provides approximations
of the solution set with a lower resolution. This is explained by the fact that the conditions
needed to proof that an interval box is a part of the solution set are in general more difficult
to be satisfied. This is accompanied by a significant increase in the computation time,
which limits the utilization of extended QSI to low-dimension problems. A user-friendly
Matlab toolbox including a modal interval arithmetic; an algorithm to perform complex
model interval computations (i. e., 𝑓 *-algorithm); and the QSI algorithm is provided. It
is important to note that such a toolbox allows to compute with classic intervals. In this
particular case, the 𝑓 *-algorithm becomes an algorithm for approximating the range of a
continuous function and the QSI becomes the so-called SIVIA algorithm. We believe that
this toolbox can significantly help to promote the utilization of Modal Interval Analysis
within the scientific community.

Appendix — Modal Interval Analysis

The basic object of the Modal Interval Analysis (shortly MIA, see [12]) is the modal interval
𝐴 which is a pair formed by a classic interval 𝐴′ = [𝑎1, 𝑎2]

′, its domain, and a logic quantifier
∀ or ∃, its modality. A modal interval (𝐴,∃) is called proper interval, and it is represented
by 𝐴 = [𝑎1, 𝑎2], with 𝑎1 ≤ 𝑎2. A modal interval (𝐴,∀) is called improper interval, and
it is represented by 𝐴 = [𝑎2, 𝑎1], with 𝑎1 ≤ 𝑎2. The set of modal intervals is denoted by
𝐼*(R). As a natural generalization, a 𝑘-dimensional modal interval vector is defined by
𝐴 = (𝐴1, . . . ,𝐴𝑘), and 𝐴1, . . . , 𝐴𝑘 are its 1-dimensional components. The set of modal
interval vectors is denoted by 𝐼*(R𝑘).

The equality and inclusion for two modal intervals 𝐴 = [𝑎1, 𝑎2] and 𝐵 = [𝑏1, 𝑏2] are
defined in the following way:

[𝑎1, 𝑎2] = [𝑏1, 𝑏2] ⇔ 𝑎1 = 𝑏1 & 𝑎2 = 𝑏2,

[𝑎1, 𝑎2] ⊆ [𝑏1, 𝑏2] ⇔ 𝑎1 ≥ 𝑏1 & 𝑎2 ≤ 𝑏2.

This makes the structure (𝐼*(R),⊆) to be a lattice, which is isomorphic to ((R,R), (≥,≤)).
The lattice operations meet and join for a bounded family 𝐴(𝐼) = {𝐴(𝑖) ∈ 𝐼*(R) | 𝑖 ∈ 𝐼}
of modal intervals (𝐼 means an index set) are

∧
𝑖∈𝐼

𝐴(𝑖) = 𝐴 ∈ 𝐼*(R) is such that (∀𝑖 ∈ 𝐼) 𝑋 ⊆ 𝐴(𝑖) ⇔ 𝑋 ⊆ 𝐴,

∨
𝑖∈𝐼

𝐴(𝑖) = 𝐵 ∈ 𝐼*(R) is such that (∀𝑖 ∈ 𝐼) 𝑋 ⊇ 𝐴(𝑖) ⇔ 𝑋 ⊇ 𝐵.

The above generalizes (𝐴∧𝐵) and (𝐴∨𝐵) for the corresponding two-operand case. These
operators can be easily obtained by means of operations applied to the bounds of the inter-
vals:

∧
𝑖∈𝐼

𝐴(𝑖) =
[︀

max
𝑖∈𝐼

𝑎1(𝑖),min
𝑖∈𝐼

𝑎2(𝑖)
]︀
, ∨

𝑖∈𝐼
𝐴(𝑖) =

[︀
min
𝑖∈𝐼

𝑎1(𝑖),max
𝑖∈𝐼

𝑎2(𝑖)
]︀
.



16 P. Herrero, M.A. Sainz

The dualization of 𝐴 = [𝑎1, 𝑎2] is a modal interval operator defined as

Dual(𝐴) = [𝑎2, 𝑎1].

Let us be given a continuous function 𝑓 : R𝑘 → R of the variable 𝑥 = (𝑥1, . . . , 𝑥𝑘), defined
over the 𝑘-dimensional interval box 𝑋 = (𝑋1, . . . ,𝑋𝑘). Also, we suppose that the variables
of 𝑓 are divided into two non-intersecting subsets. There exist two interval extensions of 𝑓 ,
called *-semantic extension and **-semantic extension, that correspond to the subdivision
of the variables and their possible modality.

More precisely, if a subdivision 𝑋 = (𝑋𝑝,𝑋 𝑖) of the vector 𝑋 into proper and improper
interval components is specified, then we can define

𝑓 *(X ) = ∨
𝑥𝑝∈X ′

𝑝

∧
𝑥𝑖∈X ′

𝑖

[︀
𝑓(𝑥𝑝, 𝑥𝑖), 𝑓(𝑥𝑝, 𝑥𝑖)

]︀
=

=
[︁

min
𝑥𝑝∈X ′

𝑝

max
𝑥𝑖∈X ′

𝑖

𝑓(𝑥𝑝, 𝑥𝑖), max
𝑥𝑝∈X ′

𝑝

min
𝑥𝑖∈X ′

𝑖

𝑓(𝑥𝑝, 𝑥𝑖)
]︁
.

Called the *-semantic extension of 𝑓 over 𝑋 = (𝑋𝑝,𝑋 𝑖), and

𝑓 **(X ) = ∧
𝑥𝑖∈X ′

𝑖

∨
𝑥𝑝∈X ′

𝑝

[︀
𝑓(𝑥𝑝, 𝑥𝑖), 𝑓(𝑥𝑝, 𝑥𝑖)

]︀
=

=
[︁

max
𝑥𝑖∈X ′

𝑖

min
𝑥𝑝∈X ′

𝑝

𝑓(𝑥𝑝, 𝑥𝑖), min
𝑥𝑖∈X ′

𝑖

max
𝑥𝑝∈X ′

𝑝

𝑓(𝑥𝑝, 𝑥𝑖)
]︁
,

called the **-semantic extension of 𝑓 over 𝑋 = (𝑋𝑝,𝑋 𝑖). They are connected to each other
by the equality

Dual(𝑓 *(X )) = 𝑓 **(Dual(X )),

and they both form a cornerstone of Modal Interval Analysis because they have a remarkable
logical meaning provided by the following “semantic theorems”.

*-semantic theorem. Given a continuous real function 𝑓 : R𝑘 → R and a modal vector
A ∈ 𝐼*(R𝑘), whenever 𝐹 (A) ∈ 𝐼*(R) exists,

(𝑓 *(A) ⊆ 𝐹 (A)) ⇐⇒ (∀a𝑝 ∈ A′
𝑝) Q(𝑧, 𝐹 (A)) (∃a𝑖 ∈ A′

𝑖) 𝑧 = 𝑓(a𝑝,a𝑖).

**-semantic theorem. Given a continuous real functions 𝑓 : R𝑘 → R and a modal
vector A ∈ 𝐼*(R𝑘), whenever 𝐹 (A) ∈ 𝐼*(R) exists,

(𝑓 **(A) ⊇ 𝐹 (A)) ⇐⇒ (∀a𝑖 ∈ A′
𝑖) Q(𝑧,Dual(𝐹 (A))) (∃a𝑝 ∈ A′

𝑝) 𝑧 = 𝑓(a𝑝,a𝑖),

where Q(𝑧, 𝐹 (A)′) = (∃𝑧 ∈ 𝐹 (A)) if 𝐹 (A) is proper and Q(𝑧, 𝐹 (A)) = (∀𝑧 ∈ 𝐹 (A)′) if
𝐹 (A) is improper.

For a given 𝑘-dimensional interval A, computing 𝑓 *(A) or 𝑓 **(A) is a hard and nontrivial
problem, except for several simple cases. When the function 𝑓 is a rational function of only
one or two variables, the computations are quite easy, and the results are the same as those
obtained with the Kaucher interval arithmetic [15]. More general, if 𝑓 is a continuous real
function 𝑓 : R𝑘 → R with syntactic tree where the nodes are the operators, the leaves are the
variables, and the branches define the domain of each operator, 𝑓 can also be operationally



Extended quantified set inversion algorithm ... 17

extended to the modal syntactic *-extension of 𝑓 , defined by the computational program
indicated by the syntactic tree of 𝑓 when the variables are substituted by their corresponding
intervals and their operators are transformed into their *-semantic extensions. Similarly, the
modal syntactic **-extension is the function 𝑓𝑅** defined similarly to 𝑓𝑅*, but with the
operators transformed into their **-semantic extensions.

The syntactic extensions produce intervals 𝐹 (A) that can satisfy the inclusions 𝑓 *(A) ⊆
𝐹 (A) or 𝑓 **(A) ⊇ 𝐹 (A) of the semantic theorems. These inclusions can be interpreted as
the fact that 𝐹 (A) is either an approximate computation of 𝑓 * or of 𝑓 **. Equivalently, by
means of the semantic theorems, these inclusions provide a logical meaning to the interval
computation of 𝐹 (A). Further results of Modal Interval Analysis enable us to compute such
intervals in various cases depending on the monotonicity of 𝑓 or the modality of the intervals
involved.

When the above theorems and results are not applicable, then the so-called 𝑓 *-algorithm
[12] may prove useful for inner and outer approximations of 𝑓 *. There exists a free practical
implementation of 𝑓 *-algorithm in Matlab [16].
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