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Computing Nash equilibria in continuous games is a difficult problem, but inter-
val methods have already been applied to its solution quite successfully. The purpose
of this paper is to briefly survey previous efforts and achievements of the author re-
lated to the topic, and to consider some advanced tools for accelerating the interval
branch-and-bound-type methods. In particular, we discuss computing eigenvalues of
interval matrices, use of algorithmic (automatic) differentiation, memory management
techniques as well as advanced parallelization in both shared-memory and distributed-
memory environments.
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Introduction

Game theory tries to predict decisions and/or advise the decision makers on how to behave
in a situation when several players (sometimes called “agents”) have to choose their behavior
that will also influence the others. In the game theory, the behaviour of a separate player
can be described by its “strategy”, and we suppose that the 𝑖-th player chooses the strategy
𝑥𝑖 ∈ 𝑋𝑖. Usually, it is assumed that each player tends to minimize their cost function
(or maximize their utility) represented by 𝑞𝑖(𝑥

1, . . . , 𝑥𝑛).
So, each of the decision makers solves the following problem:

find min
𝑥𝑖

𝑞𝑖(𝑥
1, . . . , 𝑥𝑛) , (1)

subject to

𝑥𝑖 ∈ 𝑋𝑖 .

What solution are they going to choose?
One of the oldest, most famous, and still widely-used concepts is the Nash equilibrium [1].

It can be defined as a situation (an assignment of strategies to all players), when each player’s
strategy is optimal against those of the others. Formally, the tuple 𝑥* = (𝑥1*, . . . , 𝑥𝑛*) is a
Nash equilibrium, iff

(∀𝑖 ∈ {1, . . . , 𝑛}) (∀𝑥𝑖 ∈ 𝑋𝑖) 𝑞𝑖(𝑥
1*, . . . , 𝑥𝑖−1*, 𝑥𝑖, 𝑥𝑖+1*, . . . , 𝑥𝑛*) ≥ 𝑞𝑖(𝑥

1*, . . . , 𝑥𝑛*) . (2)
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Also, we shall use a shorter notation: (∀𝑖 ∈ {1, . . . , 𝑛}) (∀𝑥𝑖) 𝑞𝑖(𝑥
∖𝑖*, 𝑥𝑖) ≥ 𝑞𝑖(𝑥

∖𝑖*, 𝑥𝑖*).
There are several “refinements” to the notion, in particular, the strong Nash equilibrium

(SNE, for short); see [2]. These are points, for which not only none of the players can
improve their performance by changing strategy, but also no coalition of players can improve
the performance of all of its members by mutually deviating from the SNE. Formally:

(∀𝐼 ⊆ {1, . . . , 𝑛})

(︃
∀𝑥𝐼 ∈

⨂︁
𝑖∈𝐼

𝑋𝑖

)︃
(∃𝑖 ∈ 𝐼) 𝑞𝑖(𝑥

∖𝐼*, 𝑥𝐼) ≥ 𝑞𝑖(𝑥
∖𝐼*, 𝑥𝐼*) , (3)

where “⊗” means direct (Cartesian) product of the sets. Also, the notion of a 𝑘-SNE (or
𝑘-equilibrium) is sometimes encountered. Its definition is similar to the ordinary SNE, but
the coalition 𝐼 in (3) can consist of 𝑘 members at most. Obviously, a (𝑘 + 𝑙)-SNE is also
a 𝑘-SNE (if 𝑙 > 0) and, in particular, a SNE is also a 𝑘-SNE for any 𝑘 = 1, 2, . . . , 𝑛.

In this paper, we consider continuous single-stage games; i. e., the case, when the player’s
strategy is a tuple of numbers (vector) they choose from the given set, i. e. 𝑥𝑖 =

(︀
𝑥𝑖
1, . . . , 𝑥

𝑖
𝑘𝑖

)︀
∈

𝑋𝑖 ⊆ R𝑘𝑖 . Let us denote
𝐾𝑖 — the set of components of the 𝑖-th player decision variable 𝑥𝑖,
𝑘𝑖 — its size,
𝐾𝐼 — the union of all 𝐾𝑖 for 𝑖 ∈ 𝐼,
𝑥 = (𝑥1, . . . , 𝑥𝑛) = (𝑥1

1, . . . , 𝑥
1
𝑘1
, 𝑥2

1, . . . , 𝑥
2
𝑘2
, . . . , 𝑥𝑛

1 , . . . , 𝑥
𝑛
𝑘𝑛

).

Also, we refer to Nash points (equilibria) that are not strong as “plain” Nash equilibria, to
distinguish them from SNE.

Computing Nash equilibria — plain or strong ones — of such games is a hard problem in
general. We are going to present an approach based on interval analysis, extending our earlier
algorithm for plain Nash points; see [3–5]. Throughout the paper, the notation from [6] is
adopted.

1. Interval methods for seeking points
that satisfy a certain condition

Decision problems (2) and (3) are of the following form:

Find all 𝑥 ∈ 𝑋 such that 𝑃 (𝑥) is fulfilled, (4)

where 𝑃 (𝑥) is a formula with a free variable 𝑥 and 𝑋 ⊆ R𝑛.
In his previous papers and presentations(in particular, [7]), the author stated that interval

methods are well-suited for solving this kind of problems. Basics of the interval calculus and
interval algorithms can be found in several textbooks (e. g., [8–12]) and are out of the scope
of this paper.

A generic algorithm for solving arbitrary problems of type (4) is going to be presented
elsewhere. Such an algorithm can be named the generalized branch-and-bound method or the
branch-and-bound-type method (B&BT method).

Algorithm 1 below presents the version of B&BT method, specialized for seeking game
equilibria. The “push” operator inserts a member (the second argument) into a specified
list (the first argument), while “pop” takes a member from the top of the list pointed out as
the only argument.
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Algorithm 1 The branch-and-bound-type method for seeking SNE

Require: 𝑥0, q(·), 𝜀
1: 𝐿𝑣𝑒𝑟 = 𝐿𝑝𝑜𝑠 = 𝐿𝑐ℎ𝑒𝑐𝑘 = 𝐿𝑠𝑚𝑎𝑙𝑙 = ∅ ;
2: 𝑥 = 𝑥(0)

3: loop
4: 𝑥𝑜𝑙𝑑 = 𝑥 ;
5: process the box 𝑥, trying to verify if it does or does not contain a point

satisfying the necessary conditions of being a solution;
6: if (𝑥 was discarded, but not all 𝑞𝑖’s are monotonous on it) then
7: push (𝐿𝑐ℎ𝑒𝑐𝑘, 𝑥𝑜𝑙𝑑) ;
8: discard 𝑥
9: else if (the tests resulted in two subboxes of 𝑥: 𝑥(1) and 𝑥(2)) then
10: 𝑥 = 𝑥(1) ;
11: push (𝐿, 𝑥(2)) ;
12: cycle loop
13: else if (wid (𝑥) < 𝜀 ) then
14: push (𝐿𝑠𝑚𝑎𝑙𝑙, 𝑥)
15: end if
16: if (𝑥 was discarded or 𝑥 was stored) then
17: 𝑥 = pop (𝐿) ;
18: if (𝐿 was empty) then
19: break
20: end if
21: else
22: bisect (𝑥), obtaining 𝑥(1) and 𝑥(2)

23: 𝑥 = 𝑥(1) ;
24: push (𝐿, 𝑥(2))
25: end if
26: end loop
27: {Second phase — verification}
28: for all (𝑥 ∈ 𝐿𝑠𝑚𝑎𝑙𝑙) do
29: check if another solution from 𝐿𝑠𝑚𝑎𝑙𝑙 does not invalidate 𝑥 ;
30: verify if no box from 𝐿𝑐ℎ𝑒𝑐𝑘 contains a point that would invalidate 𝑥 ;
31: put 𝑥 to 𝐿𝑣𝑒𝑟, 𝐿𝑝𝑜𝑠 or discard it, according to the results
32: end for
33: return 𝐿𝑣𝑒𝑟, 𝐿𝑝𝑜𝑠

Papers [3] and [5] discuss necessary conditions of Nash and strong Nash equilibria (which
are analogous to Karush–Kuhn–Tucker and Fritz John conditions; see, e. g., [10]). Also, they
describe the following tools to check these conditions, in the first phase of Algorithm 1:

∙ a variant of the monotonicity test; see [3] and [5];
∙ a variant of the “concavity test” — Algorithm 2; see, e. g., [10];
∙ an interval Hansen-Sengupta operator (a variant of the interval Newton operator

that uses interval Gauss-Seidel iterations with the inverse midpoint preconditioner;
see, e. g., [8, 10]).
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In the second phase, we verify potential solutions, using boxes from 𝐿𝑐ℎ𝑒𝑐𝑘. The condition,
we need to test for plain Nash equilibria is as follows: there is no point 𝑥 in any box in
𝐿𝑐ℎ𝑒𝑐𝑘, for which(︁

(∃𝑖 = 1, . . . , 𝑛)
(︀
𝑞𝑖(𝑥) < 𝑞𝑖(𝑥

*)
)︀)︁

and
(︁

(∀𝑗 ̸= 𝑖) (𝑥𝑗 = 𝑥𝑗*)
)︁
. (5)

Hence, for SNE, there can exist no point 𝑥 in any box in 𝐿𝑐ℎ𝑒𝑐𝑘, for which(︁
(∀𝑖 ∈ {1, . . . , 𝑛})

(︀
𝑞𝑖(𝑥) < 𝑞𝑖(𝑥

*)
)︀

or (𝑥𝑖 = 𝑥𝑖*)
)︁

and
(︁

(∃𝑖 = 1, . . . , 𝑛) (𝑥𝑖 ̸= 𝑥𝑖*)
)︁
. (6)

This condition can easily be checked for all other points in the list of potential solutions
𝐿𝑠𝑚𝑎𝑙𝑙. Boxes in 𝐿𝑐ℎ𝑒𝑐𝑘 are larger, and in general we need to bisect them, performing a
“nested” B&BT procedure to verify if they contain a point validating a specific solution or
not. For details, the reader is referred to [5], again.

In the remainder, the author would like to discuss some other tools and techniques to
accelerate Algorithm 1.

2. Tools and techniques

This section considers the new tools and techniques the author applies to the B&BT method
seeking game solutions.

2.1. Estimating eigenvalues of interval matrices

One of the important tests used to discard boxes not containing a game solution is the
so-called concavity test. The name “non-convexity test”, while still misleading, might be
more appropriate to denote a test checking whether an objective function cannot be convex
anywhere on a specific box.

The test has already been used for global optimization (see, e. g., [10]), but — according
to the author’s experiences — it was not very useful there. When we seek the global optimum
of a function, the most basic tool we use is sifting away unpromising subboxes, i. e. checking
if the values of the objective function are not too high to contain the global optimum. Such
a test (often called the “midpoint test”; see [8, 10]) is simpler and computationally cheaper
than the concavity test; it does not even require computing any derivatives. And regions
where a function is concave must have higher values of this function than the other ones.

When seeking game solutions, the situation is different. We have several objectives there
(each player has their own one), and no simple “midpoint tests”. Consequently, the concavity
test becomes important. A version of this test suitable for seeking game solutions has been
presented in [5]. It can be expressed by the pseudocode in Algorithm 2.

What we check here are the values on the main diagonal of the Hesse matrix. If any of
them is negative, the matrix cannot be positive definite and the function cannot be convex
in the region; this is a simple and well-known necessary condition (cf., e. g., [10]).

In theory, a stronger test could be performed. We could try to enclose all eigenvalues of
the interval enclosure of Hesse matrix and check if all of them are non-negative. Such a test,
although computationally more intensive, would allow discarding much more boxes.

The question is: how to enclose eigenvalues of an interval matrix? Quite a few papers
have been written on the subject.
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Algorithm 2 The “concavity” test

Require: 𝑥,𝑥(0),𝑥𝑜𝑙𝑑, q(·)
1: 𝑛𝑐𝑜𝑛𝑐 = 0
2: if (not 𝑥 ⊂ int𝑥(0)) then
3: return
4: end if
5: for (𝑖 = 1, . . . , 𝑛) do
6: {check the Hesse matrix of q𝑖(𝑥) with respect to 𝑥𝑖}
7: if (𝜕

2q𝑖(𝑥)

𝜕(𝑥𝑖
𝑘)

2 < 0 for some 𝑘 = 1, . . . , 𝑘𝑖) then

8: increment 𝑛𝑐𝑜𝑛𝑐

9: end if
10: end for
11: if (𝑛𝑐𝑜𝑛𝑐 > 0) then
12: if (𝑛𝑐𝑜𝑛𝑐 < 𝑛) then
13: push (𝐿𝑐ℎ𝑒𝑐𝑘, 𝑥𝑜𝑙𝑑)
14: end if
15: discard 𝑥
16: end if

Probably the oldest and the most celebrated result is the theorem of Rohn [13]: if we
represent an interval matrix [𝐴,𝐴] in the midpoint-radius manner: [mid𝐴− rad𝐴,mid𝐴+
rad𝐴], the eigenvalues of all 𝐴 ∈ 𝐴 can be bounded in the following way:

𝜆(𝐴) ∈
[︀
𝜆(mid𝐴) − 𝜌(rad𝐴), 𝜆(mid𝐴) + 𝜌(rad𝐴)

]︀
, (7)

where 𝜌(·) is the spectral radius of a matrix.
So, bounding eigenvalues of an interval matrix can be reduced to computing eigenvalues

of two floating-point matrices: mid𝐴 and rad𝐴, which can be done efficiently, using the
LAPACK procedure DSYEV. The problem is that these bounds are not guaranteed. The
same regards to other proposed algorithms, e. g., [14, 15].

Actually, to the best knowledge of the author, reliable algorithms for bounding eigenva-
lues are rare; see [16,17]. In control theory, zeros of the characteristic polynomial are used to
check the stability of a dynamic system, instead of eigenvalues of the system matrix (cf. [9]).

Consequently, as for now, we can use eigenvalues if we are interested in usual two-sided
approximations, but for actual validated computations, we have to stick to the weaker test
described by Algorithm 2.

2.2. Automatic (algorithmic) differentiation

Almost all interval B&BT methods use derivatives of some functions, and the same relates
to methods for seeking game solutions. This is being done not only in monotonicity or
concavity tests, but also to seek points satisfying first-order necessary conditions of being
game solutions.

As stated above, such conditions are analogous to the Karush–Kuhn–Tucker condition
and the Fritz John condition. In the unconstrained case (or for solutions from the interior
of the feasible set), they reduce to the conditions that some partial derivatives are equal
to zero. For plain Nash equilibria, it can be expressed precisely as follows:
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𝜕𝑞𝑖(𝑥)

𝜕𝑥𝑖
= 0, 𝑖 = 1, . . . , 𝑛, (8)

where we use the following notation for the gradient:

𝜕𝑞

𝜕𝑥𝑗
=

(︃
𝜕𝑞

𝜕𝑥𝑗
1

, . . . ,
𝜕𝑞

𝜕𝑥𝑗
𝑘𝑗

)︃
.

See [3] for details.
In [5], we formulated similar conditions for strong Nash equilibria; they are slightly more

complicated as they form an overdetermined system of equations, but similar, in general.
In any case, efficient computation of gradients and Hesse matrices is pretty important.

How can it be done? Numerical procedures based on finite differences are of little use as the
error is large and hard to bound, in their case. Symbolic differentiation is rarely applied,
because of its difficulties (see, e. g., [10]). Hence, algorithmic differentiation (AD; also, often
called “automatic differentiation”) is often chosen, as it has several advantages over the
alternatives (cf., e. g., [9, 10]).

Yet, it is not simple to find an appropriate library for algorithmic differentiation. The
code, from C-XSC library [18] has several drawbacks:

∙ there are distinct classes (GradType, HessType, DerivType), implemented in distinct
files (grad_ari.cpp, hess_ari.cpp, ddf_ari.cpp) for computing the first or second
derivatives and for univariate or multivariate functions;

∙ there are global variables (GradOrder, HessOrder, DerivOrder) to distinguish the
order of computed derivative — these variables have to be checked at runtime, several
times during the computation; they also affect multithreaded implementations;

∙ extended interval division (for divisors containing zero) is not supported in the auto-
matic differentiation library;

∙ computing derivatives of higher order would require to implement a separate (but
analogous) class;

∙ although, the developers of C-XSC have provided several useful classes for sparse ma-
trices and vectors, their AD code makes no use of it.

Recently, the author has developed a novel algorithmic differentiation library, based on C++
templates (see, e. g., [19]). It is called ADHC, which stands for Algorithmic Differentiation
and Hull Consistency [21].

Virtues of template meta-programming allow us to obtain several useful features of the
ADHC library. The same source code can be used to generate distinct procedures for com-
puting function values, gradients, Hesse matrices and — potentially — higher derivatives.
We can use the same source code to differentiate uni- and multivariate functions and to use
sparse or dense representations of vectors and matrices of partial derivatives. And C-XSC
library provides us pretty nice implementations of sparse vectors and matrices (cf. [20]).

Proper types are generated from the so-called typelist (see, e. g., [19]) and derivatives’
values are stored in a tuple. This word, in the C++ context, means a sequence of values
of (possibly) various types, but indexed by a number of field and not its name, as it is for
structures or classes. The current implementation (alpha.0.1) of the ADHC library uses
Loki library [22] for typelists and tuples, but migration to C++11 (variadic templates and
std::tuple’s) is planned in future versions. The library is available from the author’s
ResearchGate profile [21].

As we shall see in Section 3, the improvement gained by ADHC library is very significant.
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2.3. Memory management

In B&BT algorithms, several boxes have to be processed. The most typical implementation
stores them on the heap, which means that, in C++, we have to use new/delete operators
to maintain them. This is suboptimal for two reasons:

∙ the default C++ allocator is not tuned for allocating relatively small objects; it is a sim-
ple wrapper over the C malloc/free operations, yet with some additional overhead;
cf. [19];

∙ memory management in a multithreaded environment turns out to be particularly
inefficient: the heap is the resource of a process, not a thread, and allocating memory
requires synchronization (the overhead might be minor for the today OS’s, but it is
inevitable).

How can we improve the performance of memory management? It is possible to use a
specialized memory allocator, e. g., the Small Object Allocator from the Loki library [22].
This choice is still far from optimal, as the allocator of Loki library, although MT-safe, is
not optimized for use with threads. Nevertheless, it results in a significant improvement, as
we shall see in Section 3.

Yet another possibility is to use the move semantics, introduced in the C++11 standard
(see any modern book on C++ or, e. g., [23]). This allows to avoid using dynamic variables,
but can hardly be applied if we decide to store boxes on linked lists.

2.4. Parallelization

Parallelization is crucial for efficient implementation of interval B&BT algorithms. We can
consider a shared-memory parallelization (usually, in a multithreaded environment) or a
distributed-memory one (usually, using MPI [24]).

2.4.1. Multithreaded implementation

Such an implementation has been already discussed in the author’s previous papers: [3, 4]
and, in particular, [5]. For a multithreaded implementation, it is straightforward to share
quantities between threads, so realization of both phases of Algorithm 1 is relatively simple.

Objects that may be shared are the lists: 𝐿𝑠𝑚𝑎𝑙𝑙, 𝐿𝑣𝑒𝑟, 𝐿𝑝𝑜𝑠 and 𝐿𝑐ℎ𝑒𝑐𝑘. In the first
phase, when the lists get assembled, either access to them has to be synchronized or each
thread might have its own sub-list and merge it with the others at the end of the phase.
Synchronization may be done either using locks or atomic operations.

In the second phase, when candidate solutions from 𝐿𝑠𝑚𝑎𝑙𝑙 get verified, the list 𝐿𝑐ℎ𝑒𝑐𝑘

does not change, so it can be shared with no synchronization; hence, the solution lists act
as in the previous phase.

All the shared lists of boxes — 𝐿𝑠𝑚𝑎𝑙𝑙, 𝐿𝑣𝑒𝑟, 𝐿𝑝𝑜𝑠 and 𝐿𝑐ℎ𝑒𝑐𝑘 are stored as linked lists,
working as queues and synchronized using two mutex locks. Details of this approach are
explained in [3].

We also tested a different representation: storing boxes in std::vector containers. As
described in the previous subsection, in this version, no new/delete operations are used,
but the C++11 move-semantics, instead.

A single lock (specifically std::mutex) is used for each std::vector to protect it. This
approach is sufficient for four threads, but would not scale for higher numbers, obviously.
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Some libraries, in particular, Intel TBB [25], have proper containers (e. g., tbb::vector),
but it is out of the scope of our paper.

2.4.2. Parallelization using MPI

Distributed-memory parallelization is much more difficult to implement, as we can have no
quantities shared between nodes. In phase 1, each node builds its own sub-lists of 𝐿𝑠𝑚𝑎𝑙𝑙 and
𝐿𝑐ℎ𝑒𝑐𝑘.

In our implementation, this phase is parallelized in a bit rough manner: we split the
search domain in the beginning and each node gets its own sub-box of 𝑥0; there is no box
migration or load balancing. As it would be reprehensible in a production environment, for
our experiments, such a simplification seems appropriate for two reasons:

∙ the test problem used in the experiments — the game of misanthropic individuals,
described in Section 3 — is very symmetric and halving the initial box results in very
equal distribution of work, in this case;

∙ load balancing has already been studied by several researchers (e. g., [26]); in this paper,
the author wanted to focus on parallelization of the second phase of Algorithm 1 —
the verification phase.

As for this phase, we need to verify all boxes from the list 𝐿𝑠𝑚𝑎𝑙𝑙 using other boxes from
𝐿𝑠𝑚𝑎𝑙𝑙 and boxes from 𝐿𝑐ℎ𝑒𝑐𝑘.

The solution candidate sub-lists might stay on their “native” nodes for verification in the
second phase, but all boxes from 𝐿𝑐ℎ𝑒𝑐𝑘 are needed to verify each of them. How to deal with
this? There are at least two possibilities.

All boxes to all nodes. The first approach is to create complete lists 𝐿𝑐ℎ𝑒𝑐𝑘 and 𝐿𝑠𝑚𝑎𝑙𝑙

(concatenating all of their sub-lists) and spread them to all of the nodes. MPI has pretty
convenient functions MPI_Allgather() and MPI_Allgatherv() for this purpose.

Now, each node is going to verify boxes from its sub-list of 𝐿𝑠𝑚𝑎𝑙𝑙, using all boxes of
complete lists 𝐿𝑐ℎ𝑒𝑐𝑘 and 𝐿𝑠𝑚𝑎𝑙𝑙 (as in lines 19 and 20 of Algorithm 1).

This approach is nice, when there are relatively few boxes in the lists 𝐿𝑐ℎ𝑒𝑐𝑘 and 𝐿𝑠𝑚𝑎𝑙𝑙,
but for a larger number of them, it wastes the memory of the whole system. Different nodes,
could store different boxes in their memory, allowing this way to verify solutions, using a
great deal of boxes; possibly exceeding the memory amount of a single node. We have similar
approaches, e. g., for multiplying large matrices, like for instance the Cannon algorithm [27]
or several out-of-core algorithms.

Exchanging the sub-lists. This approach requires a ring topology of our network, but
MPI aids us by maintaining virtual topologies. In the ring topology, each node has its
predecessor and successor. After using all boxes in its sub-list, it sends the sub-list to its
successor and waits on the sub-list from its predecessor. When the list returns to its “native”
node, it means that the whole cycle has been done and the verification is finished. Actually,
this happens after the number of steps equal to the number of nodes.

Also, please note that MPI has a convenient MPI_Sendrecv() function, which might be
pretty handy here. If our interval arithmetic library does not support the direct use of this
function (and this seems to be the case for CXSC-MPI [28]; cf. [20, 29]), it can be replaced
by a sequence of calls to non-blocking MPI operations. Details are given below.
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The question is: which list should wander over the nodes, as described? We have two
possibilities here:

∙ to migrate the list(s) of boxes possibly dominating over solutions or
∙ to migrate the list(s) of potential solutions.

Which is more beneficial? This might be problem-dependent, but a look at Tables 1 and 2
(and also on Table 1 in [5]) suggests (lines “boxes after 1st phase” and “possibly domina-
ting”), moving the solutions would be much more efficient, as there are far fewer of them (at
last, for problems we have considered). So, what is transferred between subsequent nodes,
are sub-lists of 𝐿𝑠𝑚𝑎𝑙𝑙.

There is an additional benefit: if we verify a box not to contain any solutions, we do not
have to check it on further nodes; such a node is just not transferred further.

We count the steps and consider verified the boxes that have not been rejected after
being verified on all 𝑁 nodes, i. e., sent 𝑁 − 1 times.

Also, there is a possibility that some of the transferred sub-lists become empty. In this
case, during further steps, the interested nodes receive a message, with the empty list.

There is another feature that makes this verification a bit awkward in a distributed
system. After verifying a sub-list of 𝐿𝑠𝑚𝑎𝑙𝑙, using a sub-list of 𝐿𝑐ℎ𝑒𝑐𝑘, un-rejected boxes from
𝐿𝑠𝑚𝑎𝑙𝑙 get categorized into two lists: 𝐿𝑣𝑒𝑟 and 𝐿𝑝𝑜𝑠. Please note that this instance of 𝐿𝑣𝑒𝑟 does
not contain boxes that are actually “verified”, but that still might become verified solutions;
it depends on the result of verification procedure, using other sub-lists of 𝐿𝑐ℎ𝑒𝑐𝑘. Hence, the
instance of 𝐿𝑝𝑜𝑠 contains boxes that have no likelihood to become “verified”; if they do not
get rejected, they will stay “possible” solutions.

This means, we need to transfer two lists of solutions between adjacent nodes (and
distinguish them with different tags). And merge the lists properly. This is much more
cumbersome than the case of the multithreaded implementation, when a single procedure
has been resulting in final classification of solutions.

Also, it is worth to describe the implementation of the transfer operation of both lists,
between adjacent nodes. It would seem the most natural to perform two MPI_Isend()

operation for 𝐿𝑣𝑒𝑟 and 𝐿𝑝𝑜𝑠, two MPI_Irecv()’s and then a MPI_Waitall(), but — un-
fortunately — CXSC-MPI does not implement MPI_Irecv(), either. Consequently, after
sending both lists in a non-blocking manner, we wait on data from the predecessor using
plain MPI_Recv(). Finally, we call MPI_Waitall() to make sure that both send operations
have been completed.

After all steps of the verification procedure are complete, the root node collects all solu-
tions, using an MPI_Gatherv() operation and unpacks them in a loop (each sub-vector has
its own length, stored in the packed memory area), inserting into a common vector.

Finally, the global statistics are computed, by adding together statistics from all nodes,
using MPI_Reduce(). All gathered statistics are stored as long integer numbers, so they can
be reduced using a single collective operation, after putting them into a contiguous memory
area.

Remarks on CXSC-MPI. To transfer C-XSC [18] interval-related types over MPI, the
library CXSC-MPI [28] has been applied. It is worth noting that using this library turned out
much more cumbersome than expected. In particular, the following operations on interval
data have not been implemented yet in CXSC-MPI:

∙ non-blocking operations other than sending, in particular MPI_Irecv(),
∙ MPI_Sendrecv() or MPI_Sendrecv_replace(),
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∙ collective operations more sophisticated than MPI_Bcast(), in particular MPI_Scatter(),
MPI_Gather() or MPI_Gatherv().

These limitations can be worked around in a few ways. For instance, an interval could be
replaced with a pair of floating-point numbers, but this requires wasting time on transforming
data structures.

The author has managed to implement on his own some suitable functions, which are:
∙ overloaded MPI_Pack() and MPI_Unpack() functions for the representation of a box

(containing two cxsc::ivectors: 𝑥 and 𝑦),
∙ the function to perform MPI_Gatherv() operation on vectors of boxes: the vectors are
MPI_Pack()ed, sizes of all sub-lists MPI_Gather()ed and finally an MPI_Gatherv() is
executed on contiguous memory tiles, containing packed data.

It is undebatable that the CXSC-MPI library needs updates promptly, as long as manual
implementation of these operations required significant efforts.

3. Numerical experiments

Numerical experiments have been performed on a computer with four cores (allowing hyper-
threading), namely, an Intel Core i7-3632QM with 2.2GHz clock. The machine runs under
control of a 64-bit Manjaro 0.8.8 GNU/Linux operating system with the GCC 4.8.2, glibc
2.18 and the Linux kernel 3.10.22-1-MANJARO.

The solver has been written in C++ and compiled using the GCC compiler. The C-XSC
library (version 2.5.4) [18] has been used for interval computations. The shared-memory
parallelization has been done using the threads of the C++11 standard, while distributed-
memory — using MPI [24] and CXSC-MPI [28]. OpenBLAS 0.2.15 [30] has been linked for
BLAS operations.

Experiments with MPI have been performed on the same machine; unfortunately, the
author had no access to a computer cluster, that would be appropriate for tests of the
distributed application. On a really distributed system, the MPI-based version of the solver
would probably have a higher overhead, related to communication. Yet, the used shared-
memory simulation allows drawing some conclusions, as we shall see. OpenMPI [31] has
been used, version 1.6.5.

Considered example. We present results for “The game of misanthropic individuals”
introduced in [5].

Consider 𝑛 players choosing their positions on a “compact board”, a two-dimensional
domain for which we choose the rectangle 𝐷 = [−3, 3] × [−2, 2]. Their objective is to be as
far from the others as possible. Specifically, we assume that each of the players (let us give
him the number 𝑖 = 1, . . . , 𝑛) maximizes, by choosing position (𝑥𝑖, 𝑦𝑖) ∈ 𝐷, the following
function:

𝑞𝑖(𝑥𝑖, 𝑦𝑖) =
𝑛∑︁

𝑗=1,𝑗 ̸=𝑖

(︀
(𝑥𝑖 − 𝑥𝑗)

2 + (𝑦𝑖 − 𝑦𝑗)
2
)︀
. (9)

Solutions of the game. Depending on 𝑛, the game can have different numbers of Nash
equilibria, all or none of them being strong.

For two players, we have 4 Nash equilibrium points, each of them are strong. Their
structures are obvious: one of the individuals is located in one of the four corners and the
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other one — diagonally opposite to him. It is clear that all of them are SNE — cooperation
of both players cannot increase their distance in any way. This case is a “degenerate” case of
a game, as both players maximize the same function — the (square of) the distance between
them.

For three players we have 36 Nash equilibria: 24 with all three individuals located in
different corners (4 × 3 × 2) and 12 with one of the three individuals in a corner and both
others diagonally opposite to him (one of the 3 individuals × 4 corners). In all cases, one
of the individuals has a better position than the two others. And actually, none of these
solutions is strong — the two players with worse values can always collude to change their
positions and improve their payoffs at the expense of the third player.

For four players, we have 36 Nash equilibria: 24 solutions with each individual in his own
corner (4 × 3 × 2) and 12 solutions with two pairs of players in opposite corners. Counter-
intuitively, formula (9) makes their values identical for both types of solutions. All of these
36 solutions are strong Nash equilibria.

For larger number of players, it is very difficult to analyze all possible solutions and their
structures.

Results are presented in Tables 1, 2, 3 and 4. Accuracy 𝜀 = 10−8 is set in all cases.
These tables contain the information on:
∙ the number of cost function evaluations, its gradients and Hesse matrices,
∙ the number of bisections,
∙ numbers of boxes deleted by various tools,
∙ “boxes after 1st ph.” — the number of potential solutions, stored in the list 𝐿𝑠𝑚𝑎𝑙𝑙,
∙ “possibly dominating” — the number of boxes, stored in the list 𝐿𝑐ℎ𝑒𝑐𝑘,
∙ numbers of verified and possible solutions,
∙ “time [5] (sec.)” — computation time for the solver version, described in the given

paper,
∙ “time ADHC (sec.)” — computation time for the solver version using ADHC library

for algorithmic differentiation,
∙ “time AHDC + SmallObj (sec.)” — computation time for the version using ADHC

and the memory allocator from Loki [22],
∙ “time ADHC + vector” — computation time for the version using ADHC and boxes

stored not in linked lists, but in std::vector containers and no new/delete operati-
ons, but the C++11 move-semantics, only (cf. Subsection 2.3),

∙ “time (sec.)” — computation time for the MPI-based version.

Analysis of the results. Using the author’s ADHC library for algorithmic differentiation
proved to be very worthwhile. In all but one cases, the computational time is significantly
shorter (almost twice in one case!). Obviously, the impact is more visible for problems of
higher dimensions.

The exception mentioned computed SNE for the misanthropic individuals game with
𝑛 = 6 players, and the behavior we observed was a bit mysterious. Probably, it was related
to the fact that, for this problem, the computation time is dominated by the second phase,
where a nested B&BT algorithm is used to check whether no coalition can improve the
outcomes of its members. This nested algorithm computes objective function values and
gradients, but, apparently, is dominated by comparison operations and recursion.

As for using the Loki’s “Small Object” memory allocator, its usage turned out very
justified too, which can be seen in Table 1. Why in the second table, where we seek strong
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T a b l e 1. Computational results for seeking plain Nash equilibria, using the solver with four
threads

Players number 2 3 4 5 6 7

cost fun. evals 5196 47 335 47 602 685 225 1 099 660 14 443 406
gradient evals 0 0 0 0 0 0
Hesse matrix evals 3774 18 141 71 164 300 555 1 136 634 4 677 113
bisections 943 3023 8895 30 055 94719 334 079
deleted monot. test. 0 0 0 168 256 1536
deleted “conc.” 928 2960 8640 28 864 90 368 316 160
deleted Newton 0 0 0 0 0 0
boxes after 1st ph. 16 64 256 1024 4096 16 384
possibly dominating 944 3280 10 304 41 972 133 120 516 864
deleted 2nd phase 12 28 220 624 3696 11 484
removed monot.test. 0 0 0 0 0 0
removed “conc.” 0 0 0 0 0 0
possible solutions 0 32 0 336 0 4000
verified solutions 4 4 36 64 400 900
time [5] (sec.) 0.474 0.581 1.220 7.296 37 483

time ADHC (sec.) 0.033 0.127 0.700 5.005 24 387

time AHDC + SmallObj (sec.) 0.030 0.123 0.642 5.078 23 337

time ADHC + vector (sec.) 0.025 0.136 0.629 4.781 21 295

T a b l e 2. Computational results for seeking SNE, using the solver with four threads

Players number 2 3 4 5 6 7

cost fun. evals 7616 1164 4 853 056 70 235 5 576 803 158 1 519 735
gradient evals 0 0 728 800 0 1 210 016 856 0
Hesse matrix evals 3774 18 141 71 164 300 555 1 136 634 4 677 113
bisections 943 3023 8895 30 055 94 719 334 079
deleted monot. test. 0 0 220 168 256 1536
deleted strong mon. 0 0 0 0 0 0
deleted “conc.” 928 2960 8640 28 864 90 368 316 160
deleted Newton 0 0 0 0 0 0
boxes after 1st ph. 16 64 256 1024 4096 16 384
possibly dominating 944 3280 10 304 41 972 133 120 516 864
deleted 2nd phase 12 64 220 1024 3696 16 384
removed monot.test. 0 0 0 0 0 0
removed “conc.” 0 0 0 0 0 0
possible solutions 0 0 36 0 400 0
verified solutions 4 0 0 0 0 0
time [5] (sec.) 0.452 0.555 4.442 5.577 5221 189

time ADHC (sec.) 0.030 0.111 2.867 3.353 6014 99

time AHDC + SmallObj (sec.) 0.025 0.092 2.844 3.389 5876 100

time ADHC + vector (sec.) 0.027 0.118 2.939 3.400 6140 96

Nash equilibria, it did not improve the time? The answer is simple: for this kind of problems,
the majority of time is devoted to the second phase, which is implemented in a recursive
manner, hence the memory is not allocated or deallocated dynamically.
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T a b l e 3. Computational results for seeking plain Nash equilibria, using MPI with four processes

Players number 2 3 4 5 6 7

cost fun. evals 8874 51 102 53 153 934 923 1 482 977 42 968 682
gradient evals 0 0 0 0 0 0
Hesse matrix evals 3768 18 132 71 152 300 540 1 136 616 4 677 092
bisections 940 3020 8892 30 052 94716 334076
deleted monot. test. 0 0 0 168 256 1536
deleted “conc.” 928 2960 8640 28 864 90 368 316 160
deleted Newton 0 0 0 0 0 0
boxes after 1st ph. 16 64 256 1024 4096 16 384
possibly dominating 944 3280 10 304 41 972 133 120 516 864
deleted 2nd phase 12 28 220 628 3696 11 487
removed monot.test. 0 0 0 0 0 0
removed “conc.” 0 0 0 0 0 0
possible solutions 0 32 0 336 1 4272
verified solutions 4 4 36 60 399 625
time (sec.) 1.093 1.182 1.754 6.263 24 273

T a b l e 4. Computational results for seeking SNE, using MPI with four processes

Players number 2 3 4 5 6 7

cost fun. evals 1 478 161 182 458 4 853 032 6 838 563 6 777 913 316 1 511 517
gradient evals 734 349 10 030 728 800 606 248 1 437 068 624 0
Hesse matrix evals 3768 18 141 71 152 300 540 1 136 616 4 677 092
bisections 940 3020 8892 30 051 94 716 334 076
deleted monot. test. 0 0 220 168 256 1536
deleted strong mon. 0 0 0 0 0 0
deleted “conc.” 928 2960 8640 28 864 90 368 316 160
deleted Newton 0 0 0 0 0 0
boxes after 1st ph. 16 64 256 1024 4096 16 384
possibly dominating 944 3280 10 304 41 972 133 120 516 864
deleted 2nd phase 12 64 220 1024 3696 16 384
removed monot.test. 0 0 0 0 0 0
removed “conc.” 0 0 0 0 0 0
possible solutions 0 0 36 0 400 0
verified solutions 4 0 0 0 0 0
time (sec.) 2.152 1.191 3.591 10.188 8378 96

As for the version using the vector container, with the move-semantics, instead of dynamic
allocations on the heap, results for higher dimensions seem to be better than for dynamic
allocation — even for the version using the Small Object Allocator. For small problem
dimensions, the difference is insignificant.

With regard to the MPI-based version, we can observe several interesting facts.

Initially, the first phase of Algorithm 1 works identically, as for the shared-memory ver-
sions. The same number of boxes in 𝐿𝑠𝑚𝑎𝑙𝑙 and 𝐿𝑐ℎ𝑒𝑐𝑘 lists has generated (for the distributed
implementation, they are spread between various machines, which is not reflected in Tables 3
and 4). The numbers of bisections differ in a very regular manner: the MPI-based version
uses as many bisections as the multithreaded one minus 3. This fact can be easily explai-
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ned, by the structure of the author’s implementation: the MPI-based version subdivides
the initial domain between four machines, which is equivalent to performing exactly three
bisections (one for the initial box and one for each of its direct subboxes). Small differences
in the number of Hesse matrix evaluations are probably caused by the same reason.

As for numbers of objectives’ and their gradients’ evaluations, the differences are more
significant, because they are used in the second phase. Performance of this verification
procedure differs highly between the shared- and distributed-memory versions. In the case
of shared-memory, we use all potential solutions from 𝐿𝑠𝑚𝑎𝑙𝑙 and, if the box has not been
invalidated, we use boxes from 𝐿𝑐ℎ𝑒𝑐𝑘. In the case of distributed-memory, we use subsequent
sub-lists of 𝐿𝑠𝑚𝑎𝑙𝑙, followed by corresponding sub-lists of 𝐿𝑐ℎ𝑒𝑐𝑘.

Hence, computation times between the two implementations tend to differ. In particular,
for computing SNE, when the verification phase is very complicated and time-consuming
(please compare Tables 2 and 4).

For small dimensions of the problem, the MPI-based version seems to need slightly more
time to execute. This is probably the overhead of MPI: starting “heavy” processes, instead
of more “lightweight” threads, etc. On a real cluster, this overhead would be likely to yet
increase.

For higher dimensions, this overhead becomes less significant. Sometimes, the MPI-
based version is even more efficient, e. g., for computing plain Nash equilibrium, for 𝑛 = 7
(cf. Tables 1 and 3). This might be related to the fact, that MPI needs no synchronization
in the first phase, while our vector-based multithreaded version has a single lock for each
list.

Again, computing SNE for 𝑛 = 6 behaves differently: the process is long in all cases and
the difference in computation time between the versions is huge. This behavior must be
related to the number of solutions for verification, but still it seems hard to explain.

Finally, we have to note small differences in numbers of verified solutions: for computing
plain Nash equilibria in case of 𝑛 = 5, 6, 7. The author has no explanation for this interesting
phenomenon; certainly, it requires further careful studies.

4. Future research

The paper opens several topics, important and interesting for further investigation. Many
of them are closely connected with the problem of seeking game solutions (e. g., designing
specific heuristics for this class of problems or incorporating box or hull consistency checking
to the algorithm), but others are more generic, and these are the ones the author would like
to focus on.

In particular, the future research can include
∙ finding (designing? adapting?) a better memory management technique, namely a

more scalable allocator, which is crucial for multithreaded implementations, e. g., on
Intel Xeon Phi or other modern many-core architectures;

∙ augmenting the CXSC-MPI library for better support of features, available in MPI for
built-in types, but not for interval-related types, e. g., the MPI_Allgather() function;

∙ investigating the possibilities of the modern MPI-3 standard (and the new one-sided
communication primitives or non-blocking collective functions — see, e. g., [32], [33]).
It looks quite promising.
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Conclusions

The paper presented the author’s investigations on an interval solver, seeking (strong) Nash
equilibrium points of continuous games. It discussed several — lately implemented and
considered for implementation — tools and techniques, useful in this solver. The author did
not want to focus on features specific to the problem under consideration (e. g., heuristics
tuned for seeking game solutions), but issues that are as common as possible to several
interval B&BT algorithms.

The problem of seeking game solutions seems particularly hard for distributed-memory
parallelization, because of the importance of list 𝐿𝑐ℎ𝑒𝑐𝑘 that cannot be shared, in this case.
Nevertheless, the author has presented a working solution, that might be useful for other
problem classes, also.

A preliminary comparison of efficiency of the versions has been done. Finally, we have
outlined possible directions of further research in the area.
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