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Introduction

The following boundary-value problem for an equation with a second order with a small
parameter 𝜀 is tipical for the theoretical study of qualitative features arising in solutions to
problems with layers along a coordinate 𝑥 transversal to the layers:

−(𝜀+ 𝑑(𝑥))𝜈𝑢′′ + 𝑎(𝑥)𝑢′ + 𝑐(𝑥)𝑢 = 𝑓(𝑥), 𝑙0 < 𝑥 < 𝑙1, 𝑢(𝑙0, 𝜀) = 𝐴0, 𝑢(𝑙1, 𝜀) = 𝐴1, (1)

where 1 ≫ 𝜀 > 0, 𝑑(𝑥) ≥ 0, 𝜈 > 0. Such a model problem allows one to get some idea
of the issues associated with real physical processes, in particular, those modelled by the
Navier – Stokes equations.

The case with a constant diffusion coefficient (𝑑(𝑥) = 0) is widely studied in the litera-
ture [1–5]. A problem of this type with 𝑑(𝑥) = 𝑥, 𝜈 = 1 was formulated in the monograph
by Polubarinova –Kochina [6] to model filtration of a liquid in the neighbourhood of a cir-
cular orifice of small radius 𝑟 = 𝜀, while that with 𝜈 = 2, 𝑑(𝑥) = 𝑥 appears in the physics
of motion of charges viewed as classical particles [7]. This problem for 𝑑(𝑥) = 𝑥, 𝜈 = 1,
𝑙0 = 0 and arbitrary 𝑎(𝑥), while for 𝜈 ≥ 2 but without a turning point, i. e., when 𝑎(0) > 0,
was analysed theoretically in [8, sect. 3.4]. An evolutionary problem related to (1), with
𝑑(𝑥) = 𝑥, 𝜈 = 2, was originally investigated numerically in [9] by using special grids.

To date, the following types of layers have been discovered to solve the problem (1):
exponential, power of types 1 and 2, logarithmic, and hybrid-type layers (see [8, sect. 1.4, 1.5]
and [10, sect. 2.1]). Of course, solutions to problem (1), not to mention to the Navier –
Stokes equations, may have new types of layers that have not yet been discovered. The most
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popular are exponential layers. However, because they are the most narrow among the layers
discovered, layer-resolving grids contrived for solving problems having exponential layers are
not suitable for solving problems having non-exponential layers.

We demonstrate in the current paper that solutions to the problem (1) with 𝜈 = 1,
𝑑(𝑥) = 𝑥2, 𝑙0 = −1, 𝑙1 = 1, and 𝑎(0) = 0 exhibit either an interior power-of-type-2 layer
or a hybrid interior layer which is a combination of power-of-first-type and power-of-second-
type layers (see [10, sect. 2.1]), depending on 𝑐(0) and 𝑎′(0). We construct layer-eliminating
coordinate transformations 𝑥(𝜉, 𝜀) and corresponding layer-resolving grids 𝑥𝑖 = 𝑥(𝑖/𝑁, 𝜀),
and analyze the convergence of numerical solutions obtained by the upwind scheme on the
layer-resolving grids.

1. Estimates of derivatives

We assume in (1) 𝜈 = 1, 𝑑(𝑥) = 𝑥2, 𝑙0 = −1, 𝑙1 = 1, i. e.,

𝐿[𝑢] ≡ −(𝜀+ 𝑥2)𝑢′′ + 𝑎(𝑥)𝑢′ + 𝑐(𝑥)𝑢 = 𝑓(𝑥), −1 ≤ 𝑥 ≤ 1,

Γ[𝑢] ≡ (𝑢(−1, 𝜀), 𝑢(1, 𝜀)) = (𝐴0, 𝐴1),
(2)

where 1 ≫ 𝜀 > 0, 𝑎(0) = 0, 𝑎(𝑥), 𝑐(𝑥), 𝑓(𝑥) ∈ 𝐶𝑛[0, 1], 𝑐(𝑥) > 0, −1 ≤ 𝑥 ≤ 1.

1.1. Preliminary estimates of derivatives

It is well known that the pair (𝐿,Γ) in (2) is inverse-monotone, i. e., if for two functions
𝑢(𝑥, 𝜀) and 𝑣(𝑥, 𝜀), −1 ≤ 𝑥 ≤ 1,

(𝐿,Γ)[𝑢] ≤ (𝐿,Γ)[𝑣], −1 ≤ 𝑥 ≤ 1, then 𝑢(𝑥, 𝜀) ≤ 𝑣(𝑥, 𝜀), −1 ≤ 𝑥 ≤ 1.

This results in 𝜀-uniform bounds on a solution 𝑢(𝑥, 𝜀) to (2):

|𝑢(𝑥, 𝜀)| ≤𝑀, −1 ≤ 𝑥 ≤ 1. (3)

In this equation and hereafter, by𝑚,𝑀 , 𝑚𝑖,𝑀𝑗 we designate positive constants independent
of 𝜀.

If 𝑢(𝑥, 𝜀) is a solution to (2), then for 𝑥0 ≥ 0, 𝑥 ≥ 0,

𝑢′(𝑥, 𝜀)− 𝑢′(𝑥0, 𝜀) =

𝑥∫︁
𝑥0

𝑎(𝜉)𝑢′(𝜉, 𝜀)

𝜀+ 𝜉2
d𝜉 +

𝑥∫︁
𝑥0

𝑐(𝜉)𝑢(𝜉, 𝜀)− 𝑓(𝜉)

𝜀+ 𝜉2
d𝜉. (4)

For the first integral in (4) we have

𝑥∫︁
𝑥0

𝑎(𝜉)𝑢′(𝜉, 𝜀)

𝜀+ 𝜉2
d𝜉 =

𝑎(𝜉)𝑢(𝜉, 𝜀)

𝜀+ 𝜉2

⃒⃒⃒⃒𝑥
𝑥0

−
𝑥∫︁

𝑥0

(︂
𝑎(𝜉)

𝜀+ 𝜉2

)︂′

𝑢(𝜉, 𝜀)d𝜉. (5)

Further, we will use the following obvious estimate:

(𝜀1/2 + |𝑥|) ≤
√
2(𝜀+ 𝑥2)1/2 ≤

√
2(𝜀1/2 + |𝑥|), −1 ≤ 𝑥 ≤ 1. (6)
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As 𝑎(0) = 0, so

𝑎(𝜉)𝑢(𝜉, 𝜀)

𝜀+ 𝜉2

⃒⃒⃒⃒𝑥
𝑥0

≤ 𝑀

𝜀1/2 + 𝑥
+

𝑀

𝜀1/2 + 𝑥0
, 𝑥0 ≥ 0, 𝑥 ≥ 0,⃒⃒⃒⃒(︂

𝑎(𝜉)

𝜀+ 𝜉2

)︂′ ⃒⃒⃒⃒
=

⃒⃒⃒⃒
𝑎′(𝜉)(𝜀+ 𝜉2)− 2𝜉𝑎(𝜉)

(𝜀+ 𝜉2)2

⃒⃒⃒⃒
≤ 𝑀1

𝜀+ 𝜉2
≤ 𝑀1

(𝜀1/2 + 𝜉)2
, 𝜉 ≥ 0,

(7)

and therefore, from (3), (5)–(7) we get⃒⃒⃒⃒
⃒⃒

𝑥∫︁
𝑥0

𝑎(𝜉)𝑢′(𝜉, 𝜀)

𝜀+ 𝜉2
d𝜉

⃒⃒⃒⃒
⃒⃒ ≤ 𝑀2

𝜀1/2 + 𝑥
+

𝑀3

𝜀1/2 + 𝑥0
, 𝑥0 ≥ 0, 𝑥 ≥ 0. (8)

Similarly, from (3) and (6) it is obvious that⃒⃒⃒⃒
⃒⃒

𝑥∫︁
𝑥0

𝑐(𝜉)𝑢(𝜉, 𝜀)− 𝑓(𝜉)

𝜀+ 𝜉2
d𝜉

⃒⃒⃒⃒
⃒⃒ ≤ 𝑀4

𝜀1/2 + 𝑥
+

𝑀5

𝜀1/2 + 𝑥0
, 𝑥0 ≥ 0, 𝑥 ≥ 0. (9)

Taking 𝑥0 ≥ 1/2 and satisfying, in accordance with (3), 𝑢′(𝑥0, 𝜀) ≤𝑀 , we get from (4), (8),

and (9) |𝑢′(𝑥, 𝜀)| ≤ 𝑀

𝜀1/2 + 𝑥
, 0 ≤ 𝑥 ≤ 1, and from (2), (3) and (6), taking into account

𝑎(0) = 0, we readily obtain that

|𝑢(𝑖)(𝑥, 𝜀)| ≤ 𝑀

(𝜀1/2 + 𝑥)𝑖
, 𝑛+ 1 ≥ 𝑖 ≥ 0, 0 ≤ 𝑥 ≤ 1, (10)

for some 𝑀 > 0. Similarly, for −1 ≤ 𝑥 ≤ 0 we get

|𝑢(𝑖)(𝑥, 𝜀)| ≤ 𝑀

(𝜀1/2 − 𝑥)𝑖
, 𝑛+ 1 ≥ 𝑖 ≥ 0, −1 ≤ 𝑥 ≤ 0,

and, using (6), the global estimate

|𝑢(𝑖)(𝑥, 𝜀)| ≤ 𝑀

(𝜀1/2 + |𝑥|)𝑖
≤ 𝑀

(𝜀+ 𝑥2)𝑖/2
, 𝑛+ 1 ≥ 𝑖 ≥ 0, −1 ≤ 𝑥 ≤ 1. (11)

As quantity

1∫︁
0

1

𝜀1/2 + 𝑥
d𝑥 = ln(𝜀1/2 +1)− ln 𝜀1/2 is not uniformly bounded, neither esti-

mate (10) nor (11) is very good, since, in accordance with formula (2.26) from [8] for the first

derivative of a solution to (2), the following inequality is true:

1∫︁
0

|𝑢′(𝑥, 𝜀)|d𝑥 ≤𝑀 , i. e., the

variation of the solution 𝑢(𝑥, 𝜀) on the interval [0, 1] is uniformly bounded. Therefore, for the
purpose of defining layer-damping transformations 𝑥(𝜉, 𝜀) : [−1, 1] → [−1, 1] applied for gen-
erating layer-resolving grids by the formula 𝑥𝑖 = 𝑥(𝑖/𝑁, 𝜀), 𝑖 = −𝑁,−𝑁 +1, . . . , 0, 1, . . . , 𝑁 ,
we must improve estimate (10), and estimate (11) in consequence, so that

|𝑢′(𝑥, 𝜀)| ≤ 𝜑(𝑥, 𝜀) and

1∫︁
−1

𝜑(𝑥, 𝜀)d𝑥 ≤𝑀. (12)

We introduce further a designation 𝑎 for 𝑎′(0).
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1.2. Case 𝑐(0) + 𝑎 > 0

Estimate (11) is easily improved in the case 𝑐(0)+ 𝑎 > 0 since, in this case, 𝑐(𝑥)+ 𝑎′(𝑥) > 0,
|𝑥| ≤ 𝑚0, for some 𝑚0 > 0, therefore, the pair (𝐿1,Γ), where

𝐿1[𝑣](𝑥, 𝜀) = −(𝜀+𝑥2)𝑣′′+𝑎1(𝑥)𝑣
′+𝑐1(𝑥)𝑣, 𝑎1(𝑥) = 𝑎(𝑥)−2𝑥, 𝑐1(𝑥) = 𝑐(𝑥)+𝑎′(𝑥), (13)

is inverse monotone on the interval |𝑥| ≤ 𝑚0. For 𝑣(𝑥, 𝜀) = 𝑢′(𝑥, 𝜀), where 𝑢(𝑥, 𝜀) is a solution
of (2), we have

|𝐿1[𝑢
′](𝑥, 𝜀)| = |𝑓 ′(𝑥)− 𝑐′(𝑥)𝑢(𝑥, 𝜀)| ≤𝑀, |𝑥| ≤ 𝑚0.

Since, in accordance with (11), |𝑢′(−𝑚0), 𝜀)| ≤𝑀 and |𝑢′(𝑚0), 𝜀)| ≤𝑀 , taking a sufficiently
large positive constant 𝑀 as a barrier function for the pair (𝐿1,Γ) yields |𝑢′(𝑥, 𝜀)| ≤ 𝑀 ,
|𝑥| ≤ 𝑚0, thus, from (11) we conclude

|𝑢′(𝑥, 𝜀)| ≤𝑀, −1 ≤ 𝑥 ≤ 1.

Further, similarly to proof of (11), we come, using equation

𝐿1[𝑢
′](𝑥, 𝜀) = 𝑓 ′(𝑥)− 𝑐′(𝑥)𝑢(𝑥, 𝜀), −1 ≤ 𝑥 ≤ 1,

to the estimate:

|𝑢(𝑖)(𝑥, 𝜀)| ≤ 𝑀

(𝜀1/2 + |𝑥|)𝑖−1
≤ 𝑀

(𝜀+ 𝑥2)(𝑖−1)/2
, 𝑛+ 1 ≥ 𝑖 ≥ 1, −1 ≤ 𝑥 ≤ 1, (14)

when 𝑎+ 𝑐(0) > 0. This estimate for 𝑖 = 1 is subject to (12).

The same technique, applied sequentially step by step, can be used to prove the following
theorem.

Theorem 1.1. Let 𝑢(𝑥, 𝜀) be a solution to (2) with the following condition:

𝑐(0) + 𝑖𝑎− 2(𝑖− 1) > 0, for some 𝑘: 1 ≤ 𝑘 ≤ 𝑛 and all 𝑖: 1 ≤ 𝑖 ≤ 𝑘 ≤ 𝑛, (15)

then,

|𝑢(𝑖)(𝑥, 𝜀)| ≤𝑀 [1+(𝜀1/2+ |𝑥|)𝑘−𝑖] ≤𝑀 [1+(𝜀+𝑥2)(𝑘−𝑖)/2], 1 ≤ 𝑖 ≤ 𝑛, −1 ≤ 𝑥 ≤ 1. (16)

Thus, in the case of (15), solution derivatives of (2) up to 𝑘 are uniformly bounded.

For proving estimate (16), at the 𝑖th step we use a generalization of operator (13):

𝐿𝑖[𝑣](𝑥, 𝜀) = −(𝜀+ 𝑥2)𝑣′′ + 𝑎𝑖(𝑥)𝑣
′ + 𝑐𝑖(𝑥)𝑣, 𝑖 ≥ 1,

where 𝑎𝑖(𝑥) = 𝑎(𝑥) − 2𝑖𝑥, 𝑐𝑖(𝑥) = 𝑐(𝑥) + 𝑖𝑎′(𝑥) − 2(𝑖 − 1). For this operator we have
|𝐿𝑖[𝑢

(𝑖)](𝑥, 𝜀)| ≤ 𝑀 if (15) holds, and consequently |𝑢(𝑗)(𝑥, 𝜀)| ≤ 𝑀 , 1 ≤ 𝑗 ≤ 𝑖, −1 ≤ 𝑥 ≤ 1.
Similarly to proof of (14), we come to estimate (16).



Theoretical and numerical analysis of problems with an interior turning point . . . 105

1.3. Estimates of 𝑐(𝑥)𝑢(𝑥, 𝜀) − 𝑓(𝑥) for 𝑐(0) + 𝑎 ≤ 0

It appears that for obtaining an estimate of 𝑢(𝑖)(𝑥, 𝜀) (more accurate than (11)) in the case
𝑐(0) + 𝑎 ≤ 0, we need to find necessary bounds for the function 𝑐(𝑥)𝑢(𝑥, 𝜀) − 𝑓(𝑥). It is
evident that |𝑐(𝑥)𝑢(𝑥, 𝜀)−𝑓(𝑥)| ≤𝑀 because of (3). In order to improve this estimate, when
𝑢(𝑥, 𝜀) is a solution to (2) with the condition 𝑎(0) = 0, we use preliminary estimate (11) for
𝑖 = 1, and the pair (𝐿,Γ) from (2). If 𝑢(𝑥, 𝜀) is a solution to (2), then

𝐿[𝑐𝑢−𝑓 ](𝑥, 𝜀) = −(𝜀+𝑥2)[2𝑐′(𝑥)𝑢′(𝑥, 𝜀)+𝑐′′𝑢(𝑥, 𝜀)−𝑓 ′′(𝑥)]+𝑎(𝑥)[𝑐′(𝑥)𝑢(𝑥, 𝜀)−𝑓 ′(𝑥)], (17)

and taking into account (3) and (11) for 𝑖 = 1, and the condition 𝑎(0) = 0, we find from (17)
and (7)

|𝐿[𝑐𝑢− 𝑓 ](𝑥, 𝜀)| ≤𝑀(𝜀1/2 + |𝑥|) ≤𝑀(𝜀+ 𝑥2)1/2, −1 ≤ 𝑥 ≤ 1, (18)

for some 𝑀 > 0. Now, for estimating 𝑐(𝑥)𝑢(𝑥, 𝜀)− 𝑓(𝑥) we introduce the barrier function

𝑏(𝑥, 𝜀) = (𝜀+ 𝑥2)𝛽, 1/2 ≥ 𝛽 > 0, −1 ≤ 𝑥 ≤ 1.

We have

𝑏′(𝑥, 𝜀) = 2𝛽𝑥(𝜀+ 𝑥2)𝛽−1, 𝑏′′(𝑥, 𝜀) = 2𝛽(𝜀+ 𝑥2)𝛽−1 + 4𝛽(𝛽 − 1)𝑥2(𝜀+ 𝑥2)𝛽−2.

Therefore,

𝐿[𝑏](𝑥, 𝜀) =

(︂
𝑐(𝑥)− 2𝛽 + 2𝛽(𝑎+ 2(1− 𝛽))

𝑥2

𝜀+ 𝑥2

)︂
(𝜀+ 𝑥2)𝛽+

+
2𝛽(𝑥𝑎(𝑥)− 𝑎𝑥2)

𝜀+ 𝑥2
(𝜀+ 𝑥2)𝛽, −1 ≤ 𝑥 ≤ 1.

(19)

As |𝑥𝑎(𝑥) − 𝑎𝑥2| ≤ 𝑀𝑥3, we conclude from (19) that if 𝑐(0) > 2𝛽 for 𝑎 ≥ 0 and
𝑐(0) + 2𝛽(𝑎− 1) > 0 for 𝑎 < 0, then

|𝐿[𝑏](𝑥, 𝜀)| ≥𝑀0(𝜀+ 𝑥2)𝛽, |𝑥| ≤ 𝑚0,

for some𝑀0 > 0 and 𝑚0 > 0. Thus, taking into account (18) and the condition 0 < 𝛽 ≤ 1/2,
we have for the pair (𝐿,Γ) from (2)

(𝐿,Γ)[𝑀𝑏](𝑥, 𝜀) ≥ (𝐿,Γ)[𝑐𝑢− 𝑓 ](𝑥, 𝜀) ≥ (𝐿,Γ)[−𝑀𝑏](𝑥, 𝜀), −𝑚0 ≤ 𝑥 ≤ 𝑚0,

for some large 𝑀 > 0, which results in

|𝑐(𝑥)𝑢(𝑥, 𝜀)− 𝑓(𝑥)| ≤𝑀(𝜀+ 𝑥2)𝛽, −𝑚0 ≤ 𝑥 ≤ 𝑚0.

Taking into account (3) we can conclude that

|𝑐(𝑥)𝑢(𝑥, 𝜀)− 𝑓(𝑥)| ≤𝑀(𝜀+ 𝑥2)𝛽, −1 ≤ 𝑥 ≤ 1, (20)

where 𝛽 is a positive number satisfying 0 < 𝛽 ≤ 1/2 and 𝑐(0)−2𝛽 > 0 if 𝑎 ≥ 0; 0 < 𝛽 ≤ 1/2
and 𝑐(0) + 2𝛽(𝑎− 1) > 0 if 𝑎 < 0.
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1.4. Estimates of first and higher derivatives for 𝑐(0) + 𝑎 ≤ 0

By resolving (2) with respect to 𝑢′(𝑥, 𝜀) we obtain

𝑢′(𝑥, 𝜀) = 𝑢′(𝑥0, 𝜀) exp[𝜓(𝑥0, 𝑥, 𝜀)]+

𝑥∫︁
𝑥0

𝑐(𝜉)𝑢(𝜉, 𝜀)−𝑓(𝜉)
𝜀+ 𝜉2

exp[𝜓(𝜉, 𝑥, 𝜀)]d𝜉, −1 ≤ 𝑥 ≤ 1, (21)

where

𝜓(𝜉, 𝑥, 𝜀) =

𝑥∫︁
𝜉

𝑎(𝜂)

𝜀+ 𝜂2
d𝜂.

Case 𝑐(0) + 𝑎. In this case 𝑎 < 0. We have for 𝜓(𝜉, 𝑥, 𝜀) in (21)

𝜓(𝜉, 𝑥, 𝜀) =

𝑥∫︁
𝜉

(︂
𝑎𝜂

𝜀+ 𝜂2
+
𝑎(𝜂)− 𝑎𝜂

𝜀+ 𝜂2

)︂
d𝜂 =

𝑎

2
ln

(︂
𝜀+ 𝑥2

𝜀+ 𝜉2

)︂
+ 𝑔1(𝜉, 𝑥, 𝜀), (22)

where

𝑔1(𝜉, 𝑥, 𝜀) =

𝑥∫︁
𝜉

𝑎(𝜂)− 𝑎𝜂

𝜀+ 𝜂2
d𝜂.

As |𝑎(𝜂)− 𝑎𝜂| ≤𝑀𝜂2, so |𝑔1(𝜉, 𝑥, 𝜀)| ≤𝑀 , −1 ≤ 𝜉, 𝑥 ≤ 1, therefore, using (22) we obtain

exp[𝜓(𝜉, 𝑥, 𝜀)] ≤𝑀

(︂
𝜀+ 𝑥2

𝜀+ 𝜉2

)︂𝑎/2

, −1 ≤ 𝜉, 𝑥 ≤ 1. (23)

In accordance with (20)

|𝑐(𝑥)𝑢(𝑥, 𝜀)− 𝑓(𝑥)| ≤𝑀(𝜀+ 𝑥2)𝛽, −1 ≤ 𝑥 ≤ 1,

for 𝛽 satisfying both 0 < 𝛽 ≤ 1/2 and 𝑐(0) + 2𝛽(𝑎 − 1) > 0, as 𝑎 < 0, therefore, we get,
using also (23) and (6) for 0 ≤ 𝑥0, 𝜉, 𝑥 ≤ 1

𝑥∫︁
𝑥0

𝑐(𝜉)𝑢(𝜉, 𝜀)− 𝑓(𝜉)

𝜀+ 𝜉2
exp[𝑔1(𝜉, 𝑥, 𝜀)]d𝜉 ≤𝑀

𝑥∫︁
𝑥0

(𝜀+ 𝜉2)𝛽

𝜀+ 𝜉2

(︂
𝜀+ 𝑥2

𝜀+ 𝜉2

)︂𝑎/2

d𝜉 =

=𝑀(𝜀+ 𝑥2)𝑎/2
𝑥∫︁

𝑥0

(𝜀+ 𝜉2)𝛽−𝑎/2−1d𝜉 ≤𝑀1(𝜀+ 𝑥2)𝑎/2
𝑥∫︁

𝑥0

(𝜀1/2 + 𝜉)2𝛽−𝑎−2d𝜉 ≤

≤𝑀2(𝜀+ 𝑥2)𝑎/2((𝜀1/2 + 𝑥)2𝛽−𝑎−1 + (𝜀1/2 + 𝑥0)
2𝛽−𝑎−1) ≤

≤𝑀3

(︂
(𝜀+ 𝑥2)𝛽−1/2 +

(𝜀+ 𝑥20)
𝛽−𝑎/2−1/2

(𝜀+ 𝑥2)−𝑎/2

)︂
,

(24)

with an additional 2𝛽 − 𝑎 ̸= 1 restriction on 𝛽. Thus, from (21), (23), and (24) we get for
𝑐(0) + 𝑎 ≤ 0, 𝛽 satisfying both 0 < 𝛽 ≤ 1/2, 2𝛽 − 𝑎 ̸= 1, and 𝑐(0) + 2𝛽(𝑎− 1) > 0:

|𝑢′(𝑥, 𝜀)|≤𝑀

(︃
𝑢′(𝑥0, 𝜀)

(︂
𝜀+𝑥2

𝜀+𝑥20

)︂𝑎/2

+ (𝜀+𝑥2)𝛽−1/2 +
(𝜀+𝑥20)

𝛽−𝑎/2−1/2

(𝜀+𝑥2)−𝑎/2

)︃
, 0≤𝑥, 𝑥0≤1. (25)
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Case 1 > −𝑎 > 0, 𝑐(0) + 𝑎 ≤ 0. In this case, assuming 𝑥0 > 1/2 in (25), which
results in |𝑢′(𝑥0, 𝜀)| ≤𝑀 , we get, using (6),

|𝑢′(𝑥, 𝜀)| ≤𝑀((𝜀+𝑥2)𝑎/2+(𝜀+𝑥2)𝛽−1/2) ≤𝑀((𝜀1/2+𝑥)𝑎+(𝜀1/2+𝑥)2𝛽−1), 0 ≤ 𝑥 ≤ 1, (26)

where 𝛽 satisfies both 0 < 𝛽 ≤ 1/2 and 2𝛽 − 𝑎 ̸= 1, and 𝑐(0) + 2𝛽(𝑎− 1) > 0.
Case −𝑎 > 1, 𝑐(0) + 𝑎 ≤ 0. In this case, assuming 𝑥0 = 0, we get from (25), taking

into account estimate |𝑢′(0, 𝜀)| ≤𝑀𝜀−1/2 from (10),

|𝑢′(𝑥, 𝜀)| ≤𝑀

(︂
𝜀−(𝑎+1)/2

(𝜀+ 𝑥2)−𝑎/2
+ (𝜀+ 𝑥2)𝛽−1/2 +

𝜀𝛽−(𝑎+1)/2

(𝜀+ 𝑥2)−𝑎/2

)︂
≤

≤𝑀

(︂
𝜀−(𝑎+1)/2

(𝜀+ 𝑥2)−𝑎/2
+ (𝜀+ 𝑥2)𝛽−1/2

)︂
≤

≤𝑀

(︂
𝜀−(𝑎+1)/2

(𝜀1/2 + 𝑥)−𝑎
+ (𝜀1/2 + 𝑥)2𝛽−1

)︂
, 0 ≤ 𝑥 ≤ 1.

(27)

Estimates similar to (26) and (27) are, in the same manner, easily proved for −1 ≤ 𝑥 ≤ 0.
Therefore, we obtain the following global estimate of the first derivative for −1 ≤ 𝑥 ≤ 1,
taking into account (6)

|𝑢′(𝑥, 𝜀)| ≤𝑀

⎧⎨⎩
(𝜀1/2 + |𝑥|)𝛽1−1 + (𝜀1/2 + |𝑥|)2𝛽−1, 0 < −𝑎 < 1,

𝜀𝛼0/2

(𝜀1/2 + |𝑥|)𝛼0+1
+ (𝜀1/2 + |𝑥|)2𝛽−1, 1 < −𝑎, (28)

where 𝛽1 = 𝑎 + 1, 𝛼0 = −(𝑎 + 1), 𝛽 satisfies both 0 < 𝛽 ≤ 1/2, 2𝛽 − 𝑎 ̸= 1, and
𝑐(0) + 2𝛽(𝑎− 1) > 0.

Further, using (2) and estimates (20) and (28), we readily come to

Theorem 1.2. Let 𝑢(𝑥, 𝜀) be a solution of (2) with the condition 𝑐(0) + 𝑎 ≤ 0, then for
−1 ≤ 𝑥 ≤ 1

|𝑢(𝑖)(𝑥, 𝜀)| ≤𝑀

⎧⎪⎨⎪⎩
(𝜀1/2 + |𝑥|)𝛾−𝑖, 0 < −𝑎 < 1,

𝜀𝛼0/2

(𝜀1/2 + |𝑥|)𝛼0+𝑖
+ (𝜀1/2 + |𝑥|)2𝛽−𝑖, −𝑎 > 1,

(29)

where 𝛾 = min{𝑎 + 1, 2𝛽}, 𝛼0 = −(𝑎 + 1), and 𝛽 is an arbitrary positive number satisfying
both 0 < 𝛽 ≤ 1/2, 2𝛽 − 𝑎 ̸= 1, and 𝑐(0) + 2𝛽(𝑎− 1) > 0.

Thus, solutions to problem (2) may have either power-of-type-2 interior layers or hybrid
ones which are combinations of power-of-type-1 and power-of-type-2 layers.

The proofs of Theorems 1.1 and 1.2 may serve as guidance for establishing estimates of
solution derivatives when the diffusion coefficient is of the form 𝜀 + 𝑥2𝑖, 𝑖 > 1, and in the
case of a boundary turning point, i. e., when 0 ≤ 𝑥 ≤ 1 in (2).

1.5. Transformations eliminating hybrid layers

The numerical algorithm advocated in this paper for solving (2) is based on piece-wise
smooth layer-damping coordinate transformations 𝑥(𝜉, 𝜀) : [−1, 1] → [−1, 1] in accordance
with a basic principle: they are to eliminate singularities of high order of solutions 𝑢(𝑥, 𝜀) at
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each interval [𝑎𝑗, 𝑏𝑗] of smoothness; i. e., the high-order derivatives of any particular solution
with respect to the new coordinate 𝜉 are to have the following bounds:⃒⃒⃒⃒

d𝑖

d𝜉𝑖
𝑢[𝑥(𝜉, 𝜀), 𝜀]

⃒⃒⃒⃒
≤𝑀, 𝑖 ≤ 𝑛, 𝑎𝑗 ≤ 𝜉 ≤ 𝑏𝑗,

where the constant 𝑀 does not depend on the parameter 𝜀, and the number 𝑛 depends on
the order of the approximation of the problem: the higher the order, the larger the number 𝑛
will be. With the help of such transformations, any problem can be solved using high-order
approximations in the physical interval 𝑥 on layer-resolving grids defined by mapping the
nodes of a uniform grid with suitable coordinate transformations 𝑥(𝜉, 𝜀), as in [10, 11].

To eliminate a hybrid singularity

𝜀𝑘𝛼
⧸︀
(𝜀𝑘 + 𝑥)𝛼+𝑖 + (𝜀𝑘 + 𝑥)𝑏−𝑖, 0 ≤ 𝑥 ≤ 1, (30)

up to order 𝑛, which combines power-of-first- and power-of-second-type singularities, such
as the one in (29) for 𝑘 = 1/2 and −𝑎 > 1, we use a combination of two coordinate
transformations, one of which eliminates power-of-type-1 layers and the other eliminates
power-of-type-2 layers. A transformation designated as 𝑥𝑝1(𝜉, 𝜀, 𝑝, 𝑘), of the class 𝐶 𝑙[0, 1],

𝑙 ≤ 𝑛, was described in [10, 11] for eliminating power-of-type-1 singularities
𝜀𝑘𝛼

(𝜀𝑘 + 𝑥)𝛼+𝑖
,

0 ≤ 𝑥 ≤ 1, up to order 𝑛, and has the following form:

𝑥𝑝1(𝜉, 𝜀, 𝑝, 𝑘) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑐1𝜀
𝑘((1− 𝑑𝜉)−1/𝑝 − 1), 0 ≤ 𝜉 ≤ 𝜉𝑛0 ,

𝑐1

[︃
𝜀𝑘(1−𝑣/𝑝) − 𝜀𝑘 +

(︂
𝜀𝑘

(1− 𝑑𝜉)1/𝑝

)︂′

(𝜉𝑛0 )(𝜉 − 𝜉𝑛0 )+

+
1

2

(︂
𝜀𝑘

(1− 𝑑𝜉)1/𝑝

)︂′′

(𝜉𝑛0 )(𝜉 − 𝜉𝑛0 )
2 + . . .+

+
1

𝑙!

(︂
𝜀𝑘

(1− 𝑑𝜉)1/𝑝

)︂(𝑙)

(𝜉𝑛0 )(𝜉 − 𝜉𝑛0 )
𝑙 + 𝑐0(𝜉 − 𝜉𝑛0 )

𝑙+1

]︃
, 𝜉𝑛0 ≤ 𝜉 ≤ 1,

(31)

where 𝑑 = (1 − 𝜀𝑘𝑣)/𝜉𝑛0 ; 𝑣 = 𝑝/(1 + 𝑛𝑝); 𝑝 is an arbitrary positive constant satisfying
0 < 𝑝 ≤ 𝛼/𝑛2; 0 < 𝜉𝑛0 < 1 (for example 𝜉𝑛0 = 1/2); 𝑐0 is an arbitrary positive constant;
and 𝑐1 > 0 is such that the necessary boundary condition 𝑥𝑝1(1, 𝜀, 𝑝, 𝑘) = 1 is satisfied
(𝑐1 < 1/(𝑐0(1 − 𝜉𝑛0 )

𝑙+1)). For example, the transformation (31) with 𝑘 = 1 eliminates the
singularity 𝜀𝛼/(𝜀 + 𝑥)𝛼+𝑖, 1 ≤ 𝑖 ≤ 𝑛. A simpler form of transformation (31) for 𝑝 = 1 was
published earlier in [12], and for an arbitrary 𝑝 > 0 in [13]. Paper [14] shows that the grid
obtained through transformation (31) by 𝑥𝑖 = 𝑥𝑝1(𝑖/𝑁, 𝜀, 𝑝, 1/2), is the most effective for
numerical modelling of viscous flows over a plate, compared with results obtained on the
grids more commonly used. Note that this transformation with an arbitrary 𝑝 > 0 and
0 < 𝑣 ≤ 𝑝/(1 + 𝑛𝑝) eliminates the exponential singularity (1/𝜀𝑖𝑘) exp(−𝑚𝑥/𝜀𝑘) up to an
arbitrary order 𝑛 (see [10]).

A transformation designated as 𝑥𝑝2(𝜉, 𝜀, 𝑡, 𝑘), for eliminating power-of-second-type singu-
larities (𝜀𝑘 +𝑥)𝑏−𝑖, 0 ≤ 𝑥 ≤ 1 up to order 𝑛, in particular, those in (29) for 𝑘 = 1/2, −𝑎 < 1,
was described in [10, 11], and has the following form:

𝑥𝑝2(𝜉, 𝜀, 𝑡, 𝑘) =
(𝜀𝑘𝑡 + 𝜉)1/𝑡 − 𝜀𝑘

(𝜀𝑘𝑡 + 1)1/𝑡 − 𝜀𝑘
, 0 ≤ 𝜉 ≤ 1, (32)
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where 0 < 𝑡 ≤ min{𝑏/𝑛, 1/𝑛}. Note that when 𝑏 ≥ 𝑛, the function (𝜀+ 𝑥)𝑏−𝑛 is 𝜀-uniformly
bounded, so that one can consider this singularity for 0 < 𝑏 < 𝑛 only. The numerical grid
based on this transformation was employed in [15] for solving a singularly perturbed problem
with an interior power-of-type-2 layer, to prove high-order uniform convergence in an integral
norm using FEM.

Theorem 1.3. Hybrid singularities (30) for 0 ≤ 𝑥 ≤ 1 are eliminated up to 𝑛 by the
coordinate transformation designated as 𝑥ℎ(𝜉, 𝜀, 𝛼, 𝑏, 𝑝, 𝑘):

𝑥ℎ(𝜉, 𝜀, 𝛼, 𝑏, 𝑝, 𝑘) =
(𝜀𝑘𝑡 + 𝑥𝑝1(𝜉, 𝜀, 𝑝, 𝑘𝑡))

1/𝑡 − 𝜀𝑘

(𝜀𝑘𝑡 + 1)1/𝑡 − 𝜀𝑘
,

0 < 𝑡 ≤ min{𝑏/𝑛, 1/𝑛}, 0 < 𝑝 ≤ 𝛼/(𝑡𝑛2), 0 ≤ 𝜉 ≤ 1,

(33)

which is a composition of coordinate transformations (31) and (32), one eliminating power-
of-type-1 layers and the other eliminating power-of-type-2 layers.

A proof of this theorem was given in [10, 11].
Note that 𝑘 = 1/2 in (33) for estimates (16) and (29). Transformation (33) with 𝑘 = 1/2

is suitable for eliminating not only hybrid singularity (29) for −𝑎 > 1, but also power-of-
second-type singularities (16) and, in (29) for 0 < −𝑎 < 1, assuming for these cases 𝛼 in (33)
as an arbitrary positive constant, so we can set 𝛼 = 1.

A layer-resolving grid to problem (2) with an interior turning point 𝑥0 = 0 is defined
by mapping a uniform grid with a coordinate transformation 𝑥(𝜉, 𝜀, 𝛼, 𝑏, 𝑝, 1/2) : [−1, 1] →
[−1, 1] based on (33):

𝑥(𝜉, 𝜀, 𝛼, 𝑏, 𝑝, 1/2) =

{︃
−𝑥ℎ(−𝜉, 𝜀, 𝛼, 𝑏, 𝑝, 1/2), 𝜉 ∈ [−1, 0],

𝑥ℎ(𝜉, 𝜀, 𝛼, 𝑏, 𝑝, 1/2), 𝜉 ∈ [0, 1].
(34)

For a problem with an arbitrary interior turning point 𝑥0 in the interval [𝑙0, 𝑙1], one can use
an additional monotone function 𝜙𝑥0(𝑥), which maps the interval [−1, 1] onto [𝑙0, 𝑙1] with
the restrictions 𝜙𝑥0(−1) = 𝑙0, 𝜙𝑥0(0) = 𝑥0, 𝜙𝑥0(1) = 𝑙1. The corresponding transformation
for generating layer-resolving grids is defined as a composition of 𝑥(𝜉, 𝜀, 𝛼, 𝑏, 𝑝, 1/2) and
𝜙𝑥0(𝑥) [11, sect. 8.1.6].

2. Numerical algorithm and grids

2.1. Numerical algorithm

We use as an approximation of the singularly perturbed boundary-value problem (2) the
standard upwind finite difference scheme on a nonuniform grid 𝑥𝑖, 𝑖 = −𝑁,−𝑁+1, . . . ,−1, 0,
1, . . . , 𝑁 , 𝑥−𝑁 = −1 < 𝑥−𝑁+1 < . . . < 𝑥𝑁 = 1:

−2(𝜀+𝑥𝑖)
2

ℎ𝑖+ℎ𝑖−1

(︂
𝑢ℎ𝑖+1−𝑢𝑁𝑖

ℎ𝑖
−
𝑢ℎ𝑖 −𝑢𝑁𝑖−1
ℎ𝑖−1

)︂
+𝑎−(𝑥𝑖)

𝑢ℎ𝑖+1−𝑢𝑁𝑖
ℎ𝑖

+𝑎+(𝑥𝑖)
𝑢ℎ𝑖−𝑢𝑁𝑖−1
ℎ𝑖−1

+𝑐(𝑥𝑖)𝑢𝑖=𝑓(𝑥𝑖),

𝑖 = −𝑁 + 1, . . . ,−1, 0, 1, 2, . . . , 𝑁 − 1, 𝑢𝑁−𝑁 = 𝑢−1, 𝑢𝑁𝑁 = 𝑢1,

(35)

where ℎ𝑖 = 𝑥𝑖+1 − 𝑥𝑖 and 𝑎±(𝑥) = (𝑎(𝑥) ± |𝑎(𝑥)|)/2. The nodes 𝑥𝑖, 𝑖 = −𝑁, . . . 0, . . . , 𝑁 ,
of a layer-resolving grid are obtained explicitly using layer-damping transformation (34),
namely,

𝑥𝑖 = 𝑥(𝑖ℎ, 𝜀, 𝛼, 𝑏, 𝑝, 1/2), 𝑖 = −𝑁, . . . ,−1, 0, 1, . . . , 𝑁, ℎ = 1/𝑁.
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Calculations of problem (2) are conducted for different values of 𝜀: 10−6, 10−8. For
each of these values, sequences of grids with doubled numbers of grid steps: 𝑁𝑡 = 2𝑡𝑁ℎ,
𝑡 = 0, 1, . . . are used, where 𝑁ℎ is the number for the rough grid. Usually 𝑁ℎ = 160,
𝑡max = 6. The numerical solution at the 𝑖th node of the grid related to 𝑁𝑡 is designated by
𝑢𝑁𝑡
𝑖 , 𝑖 = 0, 1, . . . , 𝑁𝑡.
For estimating the accuracy of the numerical algorithm, the following characteristic is

introduced:
𝑟𝑡,𝜀 = max

−𝑁𝑡≤𝑖≤𝑁𝑡

|𝑢𝑁𝑡
𝑖 − 𝑢

𝑁𝑡+1

2𝑖 |, 𝑡 = 0, 1, . . . .

In addition to this, one more characteristic,

𝑑𝑢𝑡,𝜀 = max
−𝑁𝑡≤𝑖≤𝑁𝑡

|𝑢𝑁𝑡
𝑖+1 − 𝑢𝑁𝑡

𝑖 |, 𝑖 = −𝑁𝑡 + 1, . . . , 0, 1, . . . , 𝑁𝑡 − 1,

is introduced, which is related to the jump of the numerical solution at the neighbouring
nodes.

The characteristic 𝑟𝑡,𝜀 is applied to estimate the order of accuracy of the numerical solu-
tion:

𝛽2 = log2(𝑟𝑡,𝜀/𝑟𝑡+1,𝜀), 𝑡 = 0, 1, . . . ,

and, consequently, 𝑑𝑢𝑡,𝜀 to estimate the order of the numerical-solution jump in the neigh-
bouring nodes

𝛽3 = log2(𝑑𝑢𝑡,𝜀/𝑑𝑢𝑡+1,𝜀), 𝑡 = 0, 1, . . .

Note that if a solution to (2) has neither boundary nor interior layers, then for the
numerical solution of this problem the value 𝛽2 is close to 𝑝0, while 𝛽3 is close to 1 through
the use of a stable scheme of order 𝑝0 on the uniform grid 𝑥𝑖 = 𝑖ℎ.

Theorem 2.1. If 𝑥𝑖 = 𝑥(𝑖ℎ, 𝜀, 𝛼, 𝑏, 𝑝, 1/2), 𝑖 = −𝑁, . . . , 0, . . . , 𝑁 , ℎ = 1/𝑁 , where
𝑥(𝜉, 𝜀, 𝛼, 𝑏, 𝑝, 1/2) is defined by (34) for 𝑙 = 𝑛 = 2, then

|𝑢𝑖 − 𝑢(𝑥𝑖, 𝜀)| ≤𝑀/𝑁, 𝑖 = −𝑁, . . . , 𝑁,

where 𝑀 is independent of 𝑁 .

The same result is proved in [8, subsect. 7.4.2], for problem (1) with 𝑑(𝑥) = 0, 𝑎(0) = 0,
𝑎′(0) < 0, having hybrid layers.

2.2. Numerical experiments

This section presents results of numerical solutions to problem (2) obtained by scheme (35)
on a grid 𝑥𝑖 = 𝑥(𝑖/𝑁, 𝜀), 𝑖 = −𝑁,−𝑁 + 1, . . . , 0, 1, . . . , 𝑁 , where 𝑥(𝜉, 𝜀) : [−1, 1] → [−1, 1]
is a coordinate transformation (34) for 𝑙 = 𝑛 = 2 in (31).

Example 1. For the first numerical experiment we consider the following problem:

−(𝜀+ 𝑥2)− 0.5𝑥𝑢′ + 𝑢 = sin(3𝜋𝑥), −1 ≤ 𝑥 ≤ 1, 𝑢(−1, 𝜀) = −1, 𝑢(1, 𝜀) = 1.

For this problem 𝑎 = −0.5, 𝑐(0) = 1, and so 𝛽 = 0.3, 𝜈 = 0.5 matches the requirements of
Theorem 1.2 for −𝑎 < 1. Thus, estimate (29) is as follows:

|𝑢(𝑖)(𝑥, 𝜀)| ≤𝑀(𝜀1/2 + |𝑥|)0.5−𝑖, −1 ≤ 𝑥 ≤ 1.

In accordance with Theorem 2.1, the numerical grid obtained by coordinate transforma-
tion (34) with 𝑡 = 0.3, 𝑏 = 0.5, 𝑝 = 1, 𝛼 = 1 provides uniform convergence by scheme (35).
Table 1 and Fig. 1 show the values of characteristics 𝛽2, 𝛽3, and the numerical solution,
for 𝜀 = 10−6.
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T a b l e 1. Example 1

𝑡 𝑁 𝑟 𝛽2 𝑑𝑢 𝛽3
4 160 0.004250 1.260236 0.100860 0.926108

5 320 0.001748 1.281497 0.052253 0.948764

6 640 0.001010 0.791338 0.026653 0.971219

7 1280 0.000541 0.901324 0.013467 0.984854

8 2560 0.000280 0.951851 0.006770 0.992241

9 5120 0.000142 0.976335 0.003394 0.996074

10 10240 0.000072 0.988247 0.001699 0.998026

𝑁 = 160, 𝜀 = 1.000000e−06

Fig. 1. Example 1

T a b l e 2. Example 2

𝑡 𝑁 𝑟 𝛽2 𝑑𝑢 𝛽3
4 160 0.009469 0.891554 0.106472 0.965726

5 320 0.006065 0.642566 0.054238 0.973085

6 640 0.003414 0.829167 0.027482 0.980823

7 1280 0.001817 0.910086 0.013841 0.989549

8 2560 0.000937 0.955771 0.006947 0.994562

9 5120 0.000476 0.977440 0.003480 0.997228

10 10240 0.000240 0.988776 0.001742 0.998601

𝑁 = 160, 𝜀 = 1.000000e−08

Fig. 2. Example 2
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Example 2. For the second numerical experiment we consider the following problem:

−(𝜀+ 𝑥2)− 2𝑥𝑢′ + 2𝑢 = sin(3𝜋𝑥), −1 ≤ 𝑥 ≤ 1, 𝑢(−1, 𝜀) = −1, 𝑢(1, 𝜀) = 1.

For this problem 𝑎 = −2, 𝑐(0) = 2, and so 𝛽 = 0.3, 𝛼 = 1 match the requirements of
Theorem 1.2 for −𝑎 > 1. Thus, estimate (29) is as follows:

|𝑢(𝑖)(𝑥, 𝜀)| ≤𝑀

(︂
𝜀1/2

(𝜀1/2 + |𝑥|)1+𝑖
+ (𝜀1/2 + |𝑥|)0.6−𝑖

)︂
, −1 ≤ 𝑥 ≤ 1.

In accordance with Theorem 2.1, the numerical grid obtained by coordinate transforma-
tion (34) with 𝑘 = 0.5, 𝑡 = 0.3, 𝑝 = 10/12, 𝑏 = 0.6, 𝛼 = 1, provides uniform convergence by
scheme (35). Table 2 and Fig. 2 show the values of characteristics 𝛽2, 𝛽3, and the numerical
solution for, 𝜀 = 10−8.

Conclusion

The paper establishes bounds on solution derivatives to a two-point boundary-value problem
with an interior turning point and a quadratic diffusion coefficient. It describes construction
of layer-eliminating coordinate transformations and the corresponding layer-resolving grids,
and shows first-order uniform convergence of numerical solutions through an upwind scheme
on the layer-resolving grids. Theoretical results are confirmed by numerical experiments.
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Аннотация

Рассматривается двухточечная краевая задача с внутренней точкой поворота и квадра-
тичным коэффициентом диффузии. Устанавливаются оценки производных решений,
конструируются координатные преобразования, устраняющие слои и соответствующие им сгу-
щающиеся в слоях разностные сетки. Анализируется сходимость численного решения для схе-
мы с направленными разностями на полученной разностной сетке.
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