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Introduction

The following boundary-value problem for an equation with a second order with a small
parameter ¢ is tipical for the theoretical study of qualitative features arising in solutions to
problems with layers along a coordinate = transversal to the layers:

—(e+d@)u" +a(x)u + c(z)u = f(z), lo<z<l, ullye)=A, ulll,e)=A4A; (1)

where 1 > ¢ > 0, d(x) > 0, v > 0. Such a model problem allows one to get some idea
of the issues associated with real physical processes, in particular, those modelled by the
Navier —Stokes equations.

The case with a constant diffusion coefficient (d(x) = 0) is widely studied in the litera-
ture [1H5]. A problem of this type with d(z) = z, v = 1 was formulated in the monograph
by Polubarinova—Kochina [6] to model filtration of a liquid in the neighbourhood of a cir-
cular orifice of small radius r = €, while that with v = 2, d(z) = z appears in the physics
of motion of charges viewed as classical particles [7]. This problem for d(z) = =, v = 1,
lo = 0 and arbitrary a(z), while for v > 2 but without a turning point, i.e., when a(0) > 0,
was analysed theoretically in [8, sect. 3.4]. An evolutionary problem related to (1)), with
d(x) = x, v = 2, was originally investigated numerically in 9] by using special grids.

To date, the following types of layers have been discovered to solve the problem :
exponential, power of types 1 and 2, logarithmic, and hybrid-type layers (see [8], sect. 1.4, 1.5]
and [10, sect. 2.1]). Of course, solutions to problem (), not to mention to the Navier—
Stokes equations, may have new types of layers that have not yet been discovered. The most
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popular are exponential layers. However, because they are the most narrow among the layers
discovered, layer-resolving grids contrived for solving problems having exponential layers are
not suitable for solving problems having non-exponential layers.

We demonstrate in the current paper that solutions to the problem with v = 1,
d(z) = 2%, Iy = —1, 11 = 1, and a(0) = 0 exhibit either an interior power-of-type-2 layer
or a hybrid interior layer which is a combination of power-of-first-type and power-of-second-
type layers (see [10} sect. 2.1]), depending on ¢(0) and a'(0). We construct layer-eliminating
coordinate transformations x(&,e) and corresponding layer-resolving grids z; = x(i/N,¢),
and analyze the convergence of numerical solutions obtained by the upwind scheme on the
layer-resolving grids.

1. Estimates of derivatives
We assume in (1) v =1, d(x) =22, lp = -1, [, = 1, i.e.,

Llu] = — (e + 2*)u" + a(2)u' + c(x)u = f(z), —-1<z<1,
Clu] = (u(—1,¢),u(l,e)) = (Ao, A1),

where 1> ¢ >0, a(0) =0, a(z), c(x), f(zx) € C"0,1], ¢c(z) >0, -1 <z <1

1.1. Preliminary estimates of derivatives

It is well known that the pair (L,I") in is inverse-monotone, i.e., if for two functions
u(z,e) and v(z,e), -1 <z <1,

(L,D)[u] < (L,D)[v], —1<z<1, then wu(z,e)<v(z,e), —-1<zx<lL
This results in e-uniform bounds on a solution u(z,¢) to (2)):
lu(z,e)| <M, —-1<z<l1. (3)

In this equation and hereafter, by m, M, m;, M; we designate positive constants independent
of .
If u(z, ) is a solution to (2)), then for zy > 0, z > 0,

u'(x,e) . UI(IL'(),&?) _ / %dﬁ + / C<€)U(§f)£2_ f<€)d§ (4)

o Zo

For the first integral in (4] we have

zo Zo

Further, we will use the following obvious estimate:

V2 z)) < V2 4+ 2H)Y2 < V2V 4 |z|), —1<z<1. (6)
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As a(0) =0, so
auise)l” M M s
e+ |, T eVt g2t 7
o€ V||t —2ea®) _ M M
£+ &2 (e +&2)? T4 (V2482 7
and therefore, from , f we get
[ (& ( ) M, My
/de §51/2+x+51/2+x0’ T 20, =0 (8)
o
Similarly, from and @ it is obvious that
[ cl&u(&.2) = 1(©) My M;
/ s d¢ §81/2+37+51/2+x0’ x9>0, x>0. (9)

zo

Taking o > 1/2 and satisfying, in accordance with (3)), v/(z,e) < M, we get from (4)), (),
and |/ (z,e)| < ,0 <z <1, and from , and @), taking into account

el/2 + g
a(0) = 0, we readily obtain that
, M
@ < — 1>i>0, 0<z<1 10
lu (:v,e)]_(gl/z_i_m)z, n+1>i>0, 0<z<1, (10)
for some M > 0. Similarly, for —1 <z < 0 we get
, M
W (z,6)| < —o——, n+1>i>0, —1<z<0,
(e1/2 — )i
and, using @, the global estimate
: M
ju® (z,¢)| < n+1>i>0, -1<z<L (11)

- < :
(V2 + |z])t = (e +a2)¥/?
1

1
As quantity / de = 1n(51/2 +1)—In £'/2 i not uniformly bounded, neither esti-
€ x
0
mate nor is very good, since, in accordance with formula (2.26) from [8] for the first
1
derivative of a solution to ({2, the following inequality is true: / |/ (z,e)|dz < M, i.e., the
0

variation of the solution u(z, €) on the interval [0, 1] is uniformly bounded. Therefore, for the
purpose of defining layer-damping transformations z(&, ) : [—1,1] — [—1, 1] applied for gen-
erating layer-resolving grids by the formula x; = z(i/N,¢),i = —N,—-N+1,...,0,1,..., N,
we must improve estimate ((10)), and estimate (11]) in consequence, so that
1
|u'(x,¢)| < ¢(z,e) and /gb(x,a)dx <M. (12)

-1

We introduce further a designation a for a/(0).
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1.2. Case ¢(0) +a >0

Estimate is easily improved in the case ¢(0) +a > 0 since, in this case, c(z) +d'(z) > 0,
|z| < my, for some mqy > 0, therefore, the pair (L1, T"), where

Liv)(x, &) = —(e+2*)0" +ay(2)v +c1(z)v, ai(x) = alr)—2x, ci(x) = clx)+d (x), (13)

is inverse monotone on the interval |x| < mg. For v(z,e) = u/(x,€), where u(z, €) is a solution

of , we have
|Li[u](x,€)| = |f(x) — d(x)ulz,e)l < M, |x] < mo.
Since, in accordance with (11)), [v/(—my), )] < M and |v/(my), )| < M, taking a sufficiently
large positive constant M as a barrier function for the pair (Li,I") yields |u/(x,¢)| < M,
|z| < my, thus, from ([11)) we conclude
W/ (z,e)| < M, —-1<xz<]1.
Further, similarly to proof of , we come, using equation

Li[u(z,e) = f(z) — (2)u(z,e), —1<az<1,

to the estimate:

< M < M
(2 + |z|)=1 = (e + a2)@-D/2

ntl1>i>1, —1<z<1,  (14)

when a + ¢(0) > 0. This estimate for i = 1 is subject to (12).
The same technique, applied sequentially step by step, can be used to prove the following
theorem.
Theorem 1.1. Let u(x, ) be a solution to (3) with the following condition:
c(0) +ia—2(i—1) >0, forsomek: 1 <k<mnandalli:1<i<k<mn, (15)
then,

D (z,e)| < M1+ (V24 |z)* ) < M[1+(e+2)*F D2, 1<i<n, —-1<z<1. (16)

Thus, in the case of , solution derivatives of up to k are uniformly bounded.
For proving estimate , at the ith step we use a generalization of operator ([13)):

Li[v](z,€) = —(e + 2*)0" + a;(2)V + ci(x)v, i >1,
where a;(z) = a(x) — 2iz, ¢;(z) = c(x) + id'(x) — 2(i — 1). For this operator we have

|L;[u®](z,e)| < M if holds, and consequently [u(z,e)] < M,1<j<i, -1<z <1
Similarly to proof of , we come to estimate .



Theoretical and numerical analysis of problems with an interior turning point . .. 105

1.3. Estimates of ¢(x)u(x,e) — f(x) for ¢(0) +a <0

It appears that for obtaining an estimate of u((z,¢) (more accurate than (11))) in the case
¢(0) +a < 0, we need to find necessary bounds for the function c(x)u(x,e) — f(x). It is
evident that |c(z)u(z, e) — f(z)] < M because of (3)). In order to improve this estimate, when
u(z,€) is a solution to (2)) with the condition a(0) = 0, we use preliminary estimate for
i =1, and the pair (L,T) from (2)). If u(z,¢) is a solution to (2, then

Llcu— fl(z,e) = —(e+a?)[2¢ (a)u'(w,€) +"u(w, €) — f"(2)]+a(2) [ (x)u(z, €) — f'(2)], (17)
and taking into account (3]) and for i = 1, and the condition a(0) = 0, we find from (17

and
|L{cu — f](x,¢)| < ]\4(51/2 +|z|) < M(e +m2)1/2, —-1<z<1, (18)

for some M > 0. Now, for estimating c(x)u(z,e) — f(x) we introduce the barrier function
b(z,e) = (e+2%)° 1/2>p>0, —1<z<1.
We have
V(x,e) =2Bx(c+ "), V(x,e) =28(c+ %) +48(8 — 1)a*(e + 2°)7 2

Therefore,

2

Lb|(z,e) = (c(x) —268+2B(a+2(1—5))

+2ﬁ(za(m) — az?)
£+ z2

5 | (e+ %) 4
E+x > (19)

(e+2%)°, —1<z<1.

As |za(z) — ax

2| < Muz?, we conclude from that if ¢(0) > 28 for a > 0 and
c(0) +28(a —1) > 0

for a < 0, then
|[L[b)(z, )] > Mo(e + )7, [a| < m,

for some My > 0 and mg > 0. Thus, taking into account and the condition 0 < 5 < 1/2,
we have for the pair (L,T') from

(L, D)[Mb](z,e) = (L, T)ew — fl(z,€) = (L, T)[=Mb](z,¢), —mo <2 <my,
for some large M > 0, which results in
e(@)ue,e) — f(2)] < M(e+a%)°, —mo < <mo.
Taking into account we can conclude that
le(z)u(z,e) — f(x)] < M(e +22)°, —-1<z<1, (20)

where [ is a positive number satisfying 0 < § < 1/2 and ¢(0)—28 >0ifa>0;0< 5 <1/2
and ¢(0) +28(a—1) > 0 if a < 0.
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1.4. Estimates of first and higher derivatives for ¢(0) +a < 0

By resolving (2) with respect to u/(z, ) we obtain

c(§u( e)—f(§)
e+ &2

u'(z,e) = u(xg,€) exp[w(xo,x,a)H/ exp[(&,x,e)]dE, —1 <z <1, (21)

zo

where
X

vere) - | ) g,

e+
'3

Case ¢(0) + a. In this case a < 0. We have for ¢(§, x,¢) in (21))

y _ 2
v = [ (s + Lo =g (5 ) rates. @)

3

where

gl(fvxvg):/a(n)—_andn

e+
3

As la(n) —an| < Mn?, so [gi(§, x,e)] < M, =1 <, x < 1, therefore, using we obtain

2\ @/2
%) L S1<E x<1 (23)

explute. 9 < M
In accordance with
le(z)u(z,e) — f(2)] < M(e+2%)7, —1<z <1,

for G satisfying both 0 < 8 < 1/2 and ¢(0) + 26(a — 1) > 0, as a < 0, therefore, we get,
using also and @ for 0 <ump, & <1

]c(f)u(£,€)—f(€) explo (6. 6)]015<M/ e+ &) (€+x2)a/2d§:

€+ 62 e+ 52 €+ 52
— M(E—I—ZEQ)G/Q /(€+§2)ﬁ—a/2—1d€ < M1(€+l'2)a/2 /(61/2+§)25—a—2d§ < (24)

< ]\42(8 + $2)a/2<<€1/2 + .’II>257(171 + (81/2 4 xo)Qﬂfafl) <

2\B—a/2—1/2
2\B—1/2 (¢ + x3)
< oty (e e+ ELEE,

with an additional 23 — a # 1 restriction on . Thus, from , , and we get for
c(0) +a <0, g satisfying both 0 < 5 < 1/2, 28 —a # 1, and ¢(0) +28(a — 1) > 0:

e4a2)pa/21/2
(8+l’2)_a/2

2\ a/2
|UW¢MSM<w@m@(j“Z) +(era?yre g |

. 0<z, mp<1. (25
). b
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Case 1 > —a > 0, ¢(0) + a < 0. In this case, assuming zo > 1/2 in ([25)), which
results in |u/(z0,£)|] < M, we get, using (0],

W/ (z,€)| < M((e+22)*+(e+22)P7 V) < M((?42)+ (2 +2)¥7Y), 0<z <1, (26)

where [ satisfies both 0 < § < 1/2 and 25 —a # 1, and ¢(0) +28(a — 1) > 0.
Case —a > 1, ¢(0) + a < 0. In this case, assuming o = 0, we get from (25), taking
into account estimate |u'(0,¢)| < Me~1/2 from (10)),

a+1 —(a+1)/
|u/(z,€)] SM(%+(5+$ )P+ ( ) a/2> <
e (a+1)/2
<M ((€+ZE2) ey (e +2%) 1/2) < (27)
(a+1)/2

Estimates similar to and are, in the same manner, easily proved for —1 < z < 0.
Therefore, we obtain the following global estimate of the first derivative for —1 < x < 1,
taking into account (@

V2 + |zt + (V2 + |2)P7L, 0< —a <1,

|Ul($’5)| S M gOCO/2 12 251 (28)
(e1/2 + |x|)aott +EFH )P 1< =,

where 51 = a+ 1, a9 = —(a + 1), [ satisfies both 0 < g < 1/2, 26 —a # 1, and
c(0) +2B(a—1) > 0.
Further, using and estimates and , we readily come to

Theorem 1.2. Let u(z,¢) be a solution of (4) with the condition ¢(0) + a < 0, then for
-1<z<1

(Y2 + |z|), 0< —ac<l,

uW®(z,8)] < M Lo/ | 25)
(M2 4 || )0t + (V24 [x])?, —a > 1,

where v = min{a + 1,28}, ag = —(a + 1), and B is an arbitrary positive number satisfying
both 0 < 8 <1/2,28 —a#1, and ¢(0) +2F(a—1) > 0.

Thus, solutions to problem may have either power-of-type-2 interior layers or hybrid
ones which are combinations of power-of-type-1 and power-of-type-2 layers.

The proofs of Theorems and may serve as guidance for establishing estimates of
solution derivatives when the diffusion coefficient is of the form e + 2%, i > 1, and in the
case of a boundary turning point, i.e., when 0 <z <1 in ({2)).

1.5. Transformations eliminating hybrid layers

The numerical algorithm advocated in this paper for solving is based on piece-wise
smooth layer-damping coordinate transformations x(§,¢) : [—1,1] — [—1,1] in accordance
with a basic principle: they are to eliminate singularities of high order of solutions u(z,¢) at
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each interval [a;, b;] of smoothness; i. e., the high-order derivatives of any particular solution
with respect to the new coordinate £ are to have the following bounds:

di
’dﬁi

ulr(é,e),e]| < M, i<n, a; <E<Dy,

where the constant M does not depend on the parameter £, and the number n depends on
the order of the approximation of the problem: the higher the order, the larger the number n
will be. With the help of such transformations, any problem can be solved using high-order
approximations in the physical interval x on layer-resolving grids defined by mapping the
nodes of a uniform grid with suitable coordinate transformations (&, €), as in |10} |11].

To eliminate a hybrid singularity

e+ )T+ (P ), 0<a <, (30)

up to order n, which combines power-of-first- and power-of-second-type singularities, such
as the one in for K = 1/2 and —a > 1, we use a combination of two coordinate
transformations, one of which eliminates power-of-type-1 layers and the other eliminates
power-of-type-2 layers. A transformation designated as x,(¢, ¢, p, k), of the class C'[0, 1],

ka
[ <n, was described in [10, |11] for eliminating power-of-type-1 singularities ——
(gk + x)a-ﬁ-z
0 <z <1, up to order n, and has the following form:
(e (1 —de)™ P — 1), 0<¢<g,
ek '
k(l—-v/p) __ -~k = n _¢n
‘ [ o+ () @€

'Tpl(ga &, D, k) =

1 gk ! n n\2

+3 <W> (&) — &)+ +
1
I

k O
’ <<1—€T>/) <€8><€—68>’+CO<5—53>Z+1], §<e<1,

where d = (1 — &")/&r; v = p/(1 + np); p is an arbitrary positive constant satisfying
0<p<a/mn?0<E <1 (for example & = 1/2); ¢ is an arbitrary positive constant;
and ¢; > 0 is such that the necessary boundary condition z,(1,e,p, k) = 1 is satisfied
(1 < 1/(co(1 — &HY)). For example, the transformation with k& = 1 eliminates the
singularity €*/(e + 2)***, 1 < i < n. A simpler form of transformation for p = 1 was
published earlier in [12], and for an arbitrary p > 0 in [13]. Paper [14] shows that the grid
obtained through transformation by z; = 2, (i/N,e,p,1/2), is the most effective for
numerical modelling of viscous flows over a plate, compared with results obtained on the
grids more commonly used. Note that this transformation with an arbitrary p > 0 and
0 < v < p/(1+ np) eliminates the exponential singularity (1/¢%)exp(—mx/e*) up to an
arbitrary order n (see [10]).

A transformation designated as x,2(&, €, t, k), for eliminating power-of-second-type singu-
larities (¥ + )% 0 < 2 < 1 up to order n, in particular, those in for k=1/2, —a < 1,
was described in |10} |11], and has the following form:

(eF 1+ 1)1/t — ek’

(€, et k) = 0<¢E<, (32)
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where 0 < t < min{b/n,1/n}. Note that when b > n, the function (¢ + z)*~" is e-uniformly
bounded, so that one can consider this singularity for 0 < b < n only. The numerical grid
based on this transformation was employed in [15] for solving a singularly perturbed problem
with an interior power-of-type-2 layer, to prove high-order uniform convergence in an integral
norm using FEM.

Theorem 1.3. Hybrid singularities (@) for 0 < x < 1 are eliminated up to n by the
coordinate transformation designated as x,(€,€,a,b,p, k):

(4w (£, 2, p, ) V! —
b,p, k)=
l‘h(fae’i, «a, 0, P, ) <€kt + 1)1/t _ ¢k ) (33)

0 <t <min{b/n,1/n}, 0<p<a/(tn®), 0<ELI,

which s a composition of coordinate transformations and (@, one eliminating power-
of-type-1 layers and the other eliminating power-of-type-2 layers.

A proof of this theorem was given in [10, 11].

Note that £ = 1/2 in for estimates and (29). Transformation with k = 1/2
is suitable for eliminating not only hybrid singularity for —a > 1, but also power-of-
second-type singularities and, in for 0 < —a < 1, assuming for these cases « in ([33))
as an arbitrary positive constant, so we can set a = 1.

A layer-resolving grid to problem with an interior turning point zy = 0 is defined
by mapping a uniform grid with a coordinate transformation z(§, e, ,b,p,1/2) : [-1,1] —
[—1, 1] based on ([33)):

_xh(_€>€7a7bap71/2)7 56 [_170]7
mh(£7€7a7b7p7 1/2)7 56 [07 1]

For a problem with an arbitrary interior turning point xy in the interval [ly, [;], one can use
an additional monotone function ¢, (z), which maps the interval [—1,1] onto [ly, ;] with
the restrictions ¢, (—1) = lo, ¢, (0) = X0, s, (1) = l3. The corresponding transformation
for generating layer-resolving grids is defined as a composition of x(§,e,«,b,p,1/2) and
©uo(x) [11) sect. 8.1.6].

(&, e,a,b,p,1/2) = { (34)

2. Numerical algorithm and grids

2.1. Numerical algorithm

We use as an approximation of the singularly perturbed boundary-value problem the

standard upwind finite difference scheme on a nonuniform grid z;, i = =N, —N+1,...,—1,0,
L....Nyz_.y=—1<z_yn<...<zy=1
2(e+a,)? (“Z&‘UZN u?‘“%) uly—u ul—ul,
— — +a_(x;)——+aslx; +clz;)u, = f(x;),
hi+hiy h; hia () h; +(®) hia 2 fe) (35)
i=-N+1,...,-1,0,1,2,....N =1, u™y=u_y, u=u,

where h; = z;41 — 2; and ay(z) = (a(z) £ |a(z)])/2. The nodes x;, i = —N,...0,..., N,
of a layer-resolving grid are obtained explicitly using layer-damping transformation ,

namely,
x; = z(ih,e,a,b,p,1/2), i=—-N,...,—1,0,1,...,N, h=1/N.



110 V. D. Liseikin

Calculations of problem are conducted for different values of e: 107%, 107%. For
each of these values, sequences of grids with doubled numbers of grid steps: N; = 2/,
t = 0,1,... are used, where N, is the number for the rough grid. Usually N, = 160,
tmax = 6. The numerical solution at the ith node of the grid related to /V; is designated by

Ne , _
u; 1 =0,1,..., V.

For estimating the accuracy of the numerical algorithm, the following characteristic is
introduced:

— N Nit1 —
ree = max |u;' —uy |, t=0,1,....
— N <i<IN¢

In addition to this, one more characteristic,
7::—Nt+1,...,0,1,...,Nt—1,

duge = max |ul; —ul,
' —Ni<i<Ni

is introduced, which is related to the jump of the numerical solution at the neighbouring
nodes.
The characteristic 7, is applied to estimate the order of accuracy of the numerical solu-
tion:
ﬁg = IOgQ(Tt,e/Tt—l-l,s); t = O, 1, “ ey
and, consequently, du;. to estimate the order of the numerical-solution jump in the neigh-
bouring nodes

/63 = 10g2(dut’a/dut+175), t= O, 1, e
Note that if a solution to has neither boundary nor interior layers, then for the

numerical solution of this problem the value (5 is close to pgy, while 3 is close to 1 through
the use of a stable scheme of order py on the uniform grid z; = ih.

Theorem 2.1. If z; = z(ih,e,a,b,p,1/2), i = —N,...,0,...,N, h = 1/N, where
x(&,e,a,b,p,1/2) is defined by forl=mn =2, then

lu; —u(x;,e)| < M/N, i=—N,...,N,
where M s independent of N.

The same result is proved in [8} subsect. 7.4.2], for problem (1)) with d(z) =0, a(0) = 0,
a’(0) < 0, having hybrid layers.

2.2. Numerical experiments

This section presents results of numerical solutions to problem obtained by scheme
on a grid x; = x(i/N,e), i = —N,—N +1,...,0,1,..., N, where z(§,¢) : [-1,1] = [-1,1]
is a coordinate transformation for | =n =2 in (31)).

Example 1. For the first numerical experiment we consider the following problem:

—(e+2%) = 0.520u +u=sin(3rz), —-1<z<1, u(-1l,¢e)=-1, u(l,e)=1.

For this problem a = —0.5, ¢(0) = 1, and so § = 0.3, v = 0.5 matches the requirements of
Theorem for —a < 1. Thus, estimate is as follows:

D (z,e)] < M(eV? 4 |2)*57, —1<z<1.

In accordance with Theorem [2.1] the numerical grid obtained by coordinate transforma-
tion (34) with ¢ = 0.3, b = 0.5, p = 1, a = 1 provides uniform convergence by scheme (35).
Table (1] and Fig. (1| show the values of characteristics (5, B3, and the numerical solution,
for ¢ = 107,
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Table 1. Example 1

t N r B du B3
4 160 0.004250 | 1.260236 | 0.100860 | 0.926108
) 320 0.001748 | 1.281497 | 0.052253 | 0.948764
6 640 0.001010 | 0.791338 | 0.026653 | 0.971219
7 | 1280 | 0.000541 | 0.901324 | 0.013467 | 0.984854
8 | 2560 | 0.000280 | 0.951851 | 0.006770 | 0.992241
9 5120 | 0.000142 | 0.976335 | 0.003394 | 0.996074
10 | 10240 | 0.000072 | 0.988247 | 0.001699 | 0.998026
N =160, € = 1.000000e—06
M(x.E)
. e
[ P S S .-*
-1.00 -0.75 -0.50 -0.25 0 025 0.50 075 X 100
Fig. 1. Example 1
Table 2. Example 2
t N r ﬁg du 53
4 160 0.009469 | 0.891554 | 0.106472 | 0.965726
) 320 0.006065 | 0.642566 | 0.054238 | 0.973085
6 640 0.003414 | 0.829167 | 0.027482 | 0.980823
7 | 1280 | 0.001817 | 0.910086 | 0.013841 | 0.989549
8 | 2560 | 0.000937 | 0.955771 | 0.006947 | 0.994562
9 | 5120 | 0.000476 | 0.977440 | 0.003480 | 0.997228
10 | 10240 | 0.000240 | 0.988776 | 0.001742 | 0.998601
N =160, € = 1.000000e—08
H(X.E)
/__.-’
e
-1.00 -0.75 -0.50 -0.25 ] 025 0.50 075 T 100

Fig. 2. Example 2
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Example 2. For the second numerical experiment we consider the following problem:

—(e+2%) — 200/ + 2u =sin(37x), —1<x<1, wu(-1,¢)=-1, wu(le)=1.

For this problem a = —2, ¢(0) = 2, and so = 0.3, & = 1 match the requirements of
Theorem [1.2] for —a > 1. Thus, estimate is as follows:
£1/2

|u(i)(:v,£)| < M(

1/2 0.6—i _
(51/2+|x|)1+i+<€ + |z|) ), 1<x<1.

In accordance with Theorem [2.1] the numerical grid obtained by coordinate transforma-
tion (34) with £ = 0.5, ¢t = 0.3, p = 10/12, b = 0.6, o = 1, provides uniform convergence by
scheme (37)). Table 2] and Fig. [2] show the values of characteristics 35, 3, and the numerical
solution for, e = 1078.

Conclusion

The paper establishes bounds on solution derivatives to a two-point boundary-value problem
with an interior turning point and a quadratic diffusion coefficient. It describes construction
of layer-eliminating coordinate transformations and the corresponding layer-resolving grids,
and shows first-order uniform convergence of numerical solutions through an upwind scheme
on the layer-resolving grids. Theoretical results are confirmed by numerical experiments.
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AnHoTanusa

PaccmarpuBaercs maByxTodednast KpaeBas 3ajiada ¢ BHYTPEHHEH TOYKOH IOBOPOTa M KBaJpa-
TUIHBIM ~ KodpdunmenTom guddy3un. YCTaHABIUBAIOTCS OINEHKH ITPOU3BOJHBIX PEIICHUIH,
KOHCTPYUPYIOTCS KOODJIMHATHBIE IIPe00Pa30BaHus, YCTPAHSIONINE CJIOU U COOTBETCTBYIOIIUE UM CT'y-
IAOIIUECS B CJIOSIX PA3HOCTHBIE CETKHU. AHAJIM3UPYETCS CXOMUMOCTh UNCIEHHOTO PEIeHUsT JIJTsT CXe-
MBI C HAIIPABJIEHHBIMYM PA3HOCTSAMU HA IIOJyIEHHONW PA3HOCTHON CETKeE.
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TOYKOI TOBOPOTA U ITepeMeHHBIM KO3 dutimenToM auddysun. Beraucinrenpabie Texnosioruu. 2023;
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