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Рассмотрено применение компактной схемы типа Маккормака на неравномер-
ной сетке для решения гидродинамической задачи убегания атмосферы планеты
при наличии поглощения внешнего жесткого ультрафиолетового излучения, имею-
щей важное значение для моделей эволюции планет. В качестве объектов модели-
рования выбраны две реальные экзопланеты — TOI-421b и TOI-421c, существенно
различающиеся по массе и радиусу орбиты. Стационарные распределения плотнос-
ти, температуры и давления получены в результате численного интегрирования
нестационарных гидродинамических уравнений и установления с течением вре-
мени требуемого стационарного решения. Показано существенное преимущество
компактной схемы типа Маккормака перед классической схемой Маккормака.
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Введение

Убегание частиц атмосферы под действием внешнего ультрафиолетового излучения яв-
ляется ключевым фактором, определяющим структуру и эволюцию атмосфер планет
Солнечной системы, а также экзопланет, расположенных далеко от нее. Первые экзо-
планеты обнаружены около 30 лет назад. До настоящего времени было открыто более
5000 экзопланет в различных звездных системах. Свойства атмосфер наблюдаемых пла-
нет тесно связаны с интегральным потоком излучения, получаемым планетой за время
ее существования, а также с особенностями поведения излучения от их родительской
звезды в процессе эволюции.

На ранних стадиях эволюции значительные потоки экстремального ультафиолетово-
го излучения (EUV) от родительской звезды вызывают интенсивную потерю атмосфер
планет. В этом случае может реализоваться гидродинамический режим радиального ис-
течения атмосферного газа со сверхзвуковой скоростью. Скорость потери атмосферной
массы зависит от многих параметров, в числе которых — радиус и масса планеты, тем-
пература поверхности, интенсивность приходящего излучения и состав атмосферного
газа. Математическое моделирование этих процессов в сочетании с наблюдениями мо-
жет дать важную дополнительную информацию о физических условиях на конкретных
планетах.
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Гидродинамическая модель может служить инструментом, позволяющим интерпре-
тировать данные наблюдений и давать предсказания, проверяемые экспериментально.
Так, сверзвуковое истечение водорода наблюдается на космических телескопах метода-
ми спектроскопии благодаря поглощению нейтральными атомами Лайман-альфа-линии
излучения звезды. Гидродинамическая модель истечения нужна также для модели-
рования долговременной эволюции атмосфер планет с момента их формирования из
протопланетного облака. Она является основой, которую можно усложнять с учетом
многокомпонентности газа и химических реакций.

Решение задачи истечения атмосферного газа сопряжено с вычислительными слож-
ностями, связанными с наличием больших градиентов и значительных перепадов физи-
ческих параметров, нелинейностью и нелокальностью функции нагрева, поскольку
действие ультрафиолетового излучения от звезды очень резко обрывается на малых
расстояниях от поверхности планеты. Это накладывает повышенные требования к ис-
пользуемой численной схеме. Основное требование к численной схеме при решении эво-
люционной задачи состоит в том, чтобы расчет стационарного решения на каждом эта-
пе выполнялся достаточно быстро. Поэтому предпочтение следует отдавать схемам,
позволяющим выполнять расчет с приемлемой точностью при меньшем числе узлов
сетки.

В работах [1, 2] использовалась классическая схема Маккормака [3] для расчета
гидродинамического истечения атмосферы. Однако данная схема обеспечивала
устойчивый счет лишь при существенных ограничениях на параметры задачи.
В работах [4–6] рассмотрены компактные схемы типа Маккормака, проведены
исследования устойчивости и продемонстрированы тестовые расчеты. В компактных
схемах, в отличие от обычных, численные производные неявным образом связаны
с сеточными значениями функций, и для их нахождения нужно обращать матрицу. Пер-
воначально в работе [4] использовалось обращение трехдиагональной матрицы.
В работах [5, 6] предложены схемы, в которых трехдиагональная матрица расщепля-
ется на две двухдиагональные, обращение которых не представляет труда. Преиму-
щество используемой в нашей работе компактной схемы среди прочих, рассмотрен-
ных в работе [6], заключается в максимальном предельном значении числа Куран-
та, равном 1. У остальных схем максимально допустимое число Куранта строго
меньше 1.

В работе [7] представлены первые результаты применения компактной схемы ти-
па Маккормака для гидродинамической задачи истечения атмосферы на равномерной
сетке, которая обеспечивает четвертый порядок аппроксимации по пространству. По-
казано значительное преимущество компактной схемы, которая позволяет устойчиво
решать задачу в более широком диапазоне параметров по сравненю с классической схе-
мой Маккормака. Кроме того, она позволяет получать результат с хорошей точностью
при существенно меньшем числе узлов расчетной сетки. При этом значительно умень-
шается время счета.

В настоящей работе, в отличие от [7], компактная схема для задачи истечения атмо-
сферы модифицирована для неравномерной пространственной сетки, а также использо-
вана более реалистичная двумерная функция нагрева атмосферы, усредненная по сфе-
рическим углам, и учтены дополнительные важные физические факторы: ионизация,
рекомбинация и радиационное охлаждение. Выделены ключевые параметры подобия
и проиллюстрировано применение модели в конкретных случаях реальных экзопланет
TOI-421b и TOI-421c [8].
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1. Уравнения модели и постановка задачи

Геометрическая ситуация взаимодействия входящего излучения и атмосферы планеты
проиллюстрирована на рис. 1. Рассматриваем атмосферу, состоящую только из ато-
мов водорода. Для моделирования процесса убегания атмосферных частиц применя-
ем одномерные гидродинамические уравнения сохранения массы, импульса и энергии
в сферической системе координат:
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𝜕(𝜌𝑣𝑟2)
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𝑄 = 𝜂𝜎𝑖𝐽∞

⎛⎜⎝0.5

𝜋/2+arccos(𝑅𝑝/𝑟)∫︁
0

exp(−𝜏) sin(𝜃)𝑑𝜃

⎞⎟⎠ , (1)

𝜏 =

∞∫︁
𝑟

𝜎𝑖

𝑚

𝜌𝑛(𝑠)𝑠𝑑𝑠

(𝑠2 − 𝑟2 sin(𝜃)2)1/2
.

Здесь коэффициент Λ связан с охлаждающим Лайман-альфа-излучением (Λ = 7.5·10−19

эрг·см3·c−1); 𝜌, 𝑣, 𝑝, 𝑇 — соответственно массовая плотность, скорость, тепловое давле-
ние и температура газа; 𝑚 — масса атомов водорода; 𝐸𝑡ℎ — тепловая энергия всех частиц
на единицу объема (𝐸𝑡ℎ = 3/2 p); коэффициент 𝜂 представляет собой долю энергии фо-
тона, которая расходуется на нагревание (допуская, что фотон имеет энергию 20 эВ,
а энергия ионизации равна 13.6 эВ, получаем оценку 𝜂 = 1− (13.6 эВ/20 эВ) ≈ 0.32 [6]);
функция 𝑄 определяет скорость нагрева EUV; Φ — гравитационный потенциал; 𝑟 —
радиальное расстояние от центра планеты; 𝜃 — сферический угол, отсчитываемый от
направления звезды; 𝜎𝑖 — поперечное сечение ионизации; 𝐽∞ — интенсивность прихо-
дящего ультрафиолетового излучения (в единицах эрг·см−2·с−1); 𝜌𝑖 и 𝜌𝑛 — массовые
плотности ионов и нейтральных атомов водорода соответственно.

В общем случае гравитационный потенциал должен учитывать три фактора: притя-
жение планеты, приливное притяжение звезды и вклад центробежных сил, связанных

Рис. 1. Модель поглощения жесткого ультрафиолета в верхней атмосфере
Fig. 1. A model of absorption of hard ultraviolet in the upper atmosphere
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с вращением системы двух тел планета – звезда вокруг их центра масс. Суммарный
гравитационный потенциал можно выразить формулой [9]

Φ = −𝐺

[︃
𝑀𝑝

𝑟
+

𝑀𝑠

𝑑𝑠 − 𝑟
+

𝑀𝑠 +𝑀𝑝

2𝑑3𝑠

(︂
𝑑𝑠𝑀𝑠

𝑀𝑠 +𝑀𝑝

− 𝑟

)︂2
]︃
,

где 𝑀𝑝, 𝑀𝑠 — массы планеты и звезды соответственно; 𝑑𝑠 — расстояние от планеты
до звезды; 𝐺 — гравитационная постоянная. Использование заданной уравнением (1)
двумерной функции нагрева, усредненной по сферическому и азимутальному углам,
затратно в вычислительном отношении. Поэтому имеет смысл применять одномерную
аппроксимацию функции нагрева следующего вида:

𝑄 =
𝜎𝑖𝜂𝐽∞ exp(−𝜏)

1 + 𝜖𝜏
, 𝜏 =

∞∫︁
𝑟

𝜎𝑖

𝑚
𝜌𝑛(𝑠)𝑑𝑠.

Здесь 𝜖 — постоянный параметр, подбираемый из условия наилучшей аппроксимации
(𝜖 ∼ 1). Плотности нейтральных и ионизированных частиц определяются из системы
уравнений

𝜕𝜌𝑛
𝜕𝑡

+
1

𝑟2
𝜕(𝜌𝑛𝑣𝑟

2)

𝜕𝑟
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𝜕(𝜌𝑖𝑣𝑟

2)

𝜕𝑟
= 𝜈𝜌𝑛 − 𝛼𝑛𝑒𝜌𝑖, (3)

где 𝑛𝑒 — плотность электронов, определяемая условием квазинейтральности 𝑛𝑒 = 𝜌𝑖/𝑚;
𝜈 и 𝛼 — коэффициенты фотоионизации и рекомбинации [10]:

𝜈 = 0.59 · 10−7𝐽∞
exp(−𝜏)

1 + 𝜖𝜏
с−1, 𝛼 = 2.7 · 10−13

(︂
104

𝑇

)︂0.9

см3·с−1.

Общая массовая плотность представляет собой сумму массовых плотностей различных
частиц 𝜌 = 𝜌𝑛+𝜌𝑖. Тепловое давление слагается из парциальных давлений всех частиц,
включая вклад электронов 𝑝 = [(𝜌𝑛 + 𝜌𝑖)𝑚+ 𝑛𝑒]𝑘B𝑇 , где 𝑘B — постоянная Больцмана.

2. Безразмерные уравнения

Для удобства вычислений вводим безразмерные величины, определенные следующими
нормировками:

𝑝=
𝑝

𝜌0𝑣20
, 𝜌=

𝜌

𝜌0
, 𝑣=

𝑣
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, 𝑇 =

𝑇
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, 𝑟=
𝑟
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, 𝑡=
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𝑅𝑝

, 𝑣0=

√︂
𝑘𝐵𝑇0

𝑚
, 𝑋=

𝜌𝑖
𝜌
, Φ̃=

𝑅𝑝

𝐺𝑀𝑝

Φ,

где 𝜌0 и 𝑇0 — массовая плотность и температура на нижней границе вблизи поверхности
планеты.

Переходя к безразмерным переменым, получаем систему уравнений вида
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𝜕[𝑟2(0.5𝜌𝑣2 + 1.5𝑝)]

𝜕𝑡
+
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𝑄̃− 𝜌𝑋Λ̃ exp(−𝐵/𝑇 )

]︁
, (6)

𝑄̃ = 0.5𝑞0

𝜋/2+arccos(1/𝑟)∫︁
0

exp(−𝜏) sin(𝜃)𝑑𝜃, (7)

𝜏 = 𝑎0

∞∫︁
𝑟

𝜌(𝑠)(1−𝑋)
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, (8)

𝜕(𝜌𝑋)

𝜕𝑡
+

1

𝑟2
𝜕(𝜌𝑋𝑣𝑟2)

𝜕𝑟
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𝑄̃

𝑞0
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Здесь 𝜆, 𝑎0, 𝑞0, Λ̃, 𝐵, 𝜈, 𝛼̃ — безразмерные постоянные параметры, определяемые сле-
дующими выражениями:

𝜆 = 𝐺
𝑚𝑀𝑝

𝑅𝑝𝑘𝐵𝑇0

, 𝑎0 =
𝜎𝑖𝜌0𝑅𝑝

𝑚
, 𝑞0 = 𝜎𝑖𝜂𝐽∞

𝑅𝑝𝑚
1/2

(𝑘𝐵𝑇0)3/2
, Λ̃ = Λ

𝜌0𝑅𝑝

𝑚2𝑣30
, 𝐵 =

118 348

𝑇0

,

𝜈 = 0.59 · 10−7𝐽∞
𝑅𝑝

𝑣0
, 𝛼̃ = 2.7 · 10−13

(︂
104

𝑇0

)︂0.9
𝜌0𝑅𝑝

𝑚𝑣0
.

Уравнение (9) относительно доли ионов получено из уравнений (2), (3). В итоге
имеем систему безразмерных нестационарных уравнений (4)–(9), определяющих зави-
симости массовой плотности газа 𝜌, давления 𝑝, радиальной скорости 𝑣 и относительной
концентрации ионов 𝑋 от времени и радиального расстояния.

В результате нагрева может сформироваться радиальное истечение атмосферных
частиц в окружающее космическое пространство. В этом случае наиболее интересен
и важен аэродинамический режим, при котором скорость газа монотонно возрастает до
сверхзвуковых значений по мере удаления от планеты. Физические граничные условия
ставятся на нижней границе атмосферы при 𝑟 = 1, где заданы температура и плотность,
а также концентрации компонент атмосферного газа. Верхняя граница задается на до-
статочно большом расстоянии при 𝑟 = 𝑅𝑚, где скорость потока превышает скорость
звука. С этой границы возмущения не распространяются вниз по потоку, а физические
величины на ней полностью определяются значениями во внутренней области. В чис-
ленной схеме значения в граничных точках могут быть найдены из соотношений вдоль
характеристик, приходящих из внутренних точек.

Основной интерес представляет нахождение стационарного установившегося реше-
ния при постоянных внешних условиях, а также квазистационарного решения в случае
медленно меняющихся условий при расчете долговременной эволюции атмосферы. При
этом возникает вопрос задания начальных условий, которые физически не влияют на
конечное установившееся решение, однако могут вызвать численную неустойчивость
при неудачном выборе начального распределения плотности. В работах [1, 2] в качестве
начального условия использовалось равновесное изотермическое распределение Больц-
мана для плотности

𝜌 = exp [𝜆(1/𝑟 − 1)] , 𝑣 = 0.
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Однако данное условие обеспечивает устойчивый счет лишь при достаточно больших
значениях параметра 𝜆 (𝜆 ≥ 10) и умеренных значениях параметра 𝑎0. Эти ограниче-
ния можно преодолеть, если при меньших значениях 𝜆 в качестве начальных условий
задавать результаты расчета, соответствующие 𝜆 = 10. Аналогично, результат расче-
та, полученный при умеренном значении параметра 𝑎0, можно использовать в качестве
начального распределения при решении задачи для больших значений данного пара-
метра.

3. Численный метод

Система уравнений (4)–(9) может быть записана в векторной форме

𝜕U

𝜕𝑡
+

𝜕H

𝜕𝜉
= S,

где

U=

[︂
𝜌, 𝜌𝑣,

𝜌𝑣2

2
+𝐸̃𝑡ℎ, 𝜌𝑋

]︂
𝑟3 ln(𝑅𝑚), 𝑟=(𝑅𝑚)

𝜉, H=[𝜌𝑣, 𝜌𝑣2+𝑝, 𝑣(0.5𝜌𝑣2+𝐸̃𝑡ℎ+𝑝, 𝜌𝑋𝑣)]𝑟2,

S =

[︃
0,

(︃
−𝜌𝜆

𝜕Φ̃

𝜕𝑟
+ 2

𝑝

𝑟

)︃
,

(︃
−𝜌𝑣𝜆

𝜕Φ̃

𝜕𝑟
+ 𝜌(1−𝑋)

(︂
𝑄− 𝜌𝑋Λ̃ exp

(︂
−𝐵

𝑇

)︂)︂)︃
,

(𝜈𝜌(1−𝑋)− 𝛼𝜌2𝑋2)

]︃
𝑟3 ln(𝑅𝑚).

Введем сетку для вычислений 𝑡𝑗 = 𝑗∆𝑡, 𝑟𝑘 = (𝑅𝑚)
𝜉𝑘 , 𝜉𝑘 = 𝑘/𝑁 , 𝑘 = 0, 1, 2, . . . , 𝑁 , где

𝑅𝑚 — радиус внешней границы расчетной области. При этом шаг по радиусу увеличива-
ется по мере удаления от планеты. Минимальный шаг сетки равен ℎmin = (𝑅𝑚)

1/𝑁 −1 ≈
ln(𝑅𝑚/𝑁). Максимальный шаг отличается от минимального постоянным множителем
𝑅𝑚 : ℎmax = 𝑅𝑚 − (𝑅𝑚)

(𝑁−1)/𝑁 = 𝑅𝑚(1− (𝑅𝑚)
−1/𝑁) ≈ 𝑅𝑚 ln(𝑅𝑚)/𝑁 .

Cогласно работе [6] пересчет искомых величин на следующий временной шаг вы-
полняется по формуле

𝑈𝑛+1 = 𝑈𝑛 + 𝛿1ℎ
(1) + 𝛿2ℎ

(2) + 𝛿3ℎ
(3) + 𝛿4ℎ

(4) (10)

с коэффициентами 𝛿1 = 1/6, 𝛿2 = 1/3, 𝛿3 = 1/3, 𝛿4 = 1/6. Здесь

ℎ(1) = −∆𝑡𝐷𝐹 [𝐻(𝑈 𝑗)] + ∆𝑡𝑆(𝑈 𝑗), (11)

ℎ(2) = −∆𝑡𝐷𝐵[𝐻(𝑈 𝑗 + 𝛼2ℎ
(1))] + ∆𝑡𝑆(𝑈 𝑗 + 𝛼2ℎ

(1)), (12)

ℎ(3) = −∆𝑡𝐷𝐹 [𝐻(𝑈 𝑗 + 𝛼3ℎ
(2))] + ∆𝑡𝑆(𝑈 𝑗 + 𝛼3ℎ

(2)), (13)

ℎ(4) = −∆𝑡𝐷𝐵[𝐻(𝑈 𝑗 + 𝛼4ℎ
(3))] + ∆𝑡𝑆(𝑈 𝑗 + 𝛼4ℎ

(3)) (14)

с коэффициентами 𝛼2 = 1/2, 𝛼3 = 1/2, 𝛼4 = 1; 𝐷𝐹 и 𝐷𝐵 — конечно-разностные опера-
торы односторонних производных вперед и назад, которые определяются следующими
рекуррентными формулами:

𝐴𝐷𝐵
𝑘−1 + (1− 𝐴)𝐷𝐵

𝑘 =
1

∆𝜉
(𝑓𝑘 − 𝑓𝑘−1), (15)

𝐴𝐷𝐹
𝑘+1 + (1− 𝐴)𝐷𝐹

𝑘 =
1

∆𝜉
(𝑓𝑘+1 − 𝑓𝑘), (16)
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где 𝐴 =
1

2

(︂
1− 1√

3

)︂
. Рекуррентные уравнения требуют граничных условий, которые

определяются соответствующими граничными шаблонами [6]:

𝐷𝐹
0 =

[︃(︂
−25

12
+

17

12
√
3

)︂
𝑓0+

(︂
4− 25

6
√
3

)︂
𝑓1−

(︃
3− 3

√
3

2

)︃
𝑓2+

(︂
4

3
− 13

6
√
3

)︂
𝑓3−

(︂
1

4
− 5

12
√
3

)︂
𝑓4

]︃
1

∆𝜉
,

𝐷𝐵
0 =

[︃
−
(︂
25

12
+

17

12
√
3

)︂
𝑓0+

(︂
4+

25

6
√
3

)︂
𝑓1−

(︃
3+

3
√
3

2

)︃
𝑓2+

(︂
4

3
+

13

6
√
3

)︂
𝑓3−

(︂
1

4
+

5

12
√
3

)︂
𝑓4

]︃
1

∆𝜉
,

𝐷𝐹
𝑁 =

[︃(︂
25

12
+

17

12
√
3

)︂
𝑓𝑁 −

(︂
4 +

25

6
√
3

)︂
𝑓𝑁−1 +

(︃
3 +

3
√
3

2

)︃
𝑓𝑁−2 −

(︂
4

3
+

13

6
√
3

)︂
𝑓𝑁−3+

+

(︂
1

4
+

5

12
√
3

)︂
𝑓𝑁−4

]︂
1

∆𝜉
,

𝐷𝐵
𝑁 =

[︃(︂
25

12
− 17

12
√
3

)︂
𝑓𝑁 −

(︂
4− 25

6
√
3

)︂
𝑓𝑁−1 +

(︃
3− 3

√
3

2

)︃
𝑓𝑁−2 −

(︂
4

3
− 13

6
√
3

)︂
𝑓𝑁−3+

+

(︂
1

4
− 5

12
√
3

)︂
𝑓𝑁−4

]︂
1

∆𝜉
.

Для определения этих граничных шаблонов использовались приведенные в работе [6]
формулы Тейлора для односторонних производных

𝐷𝐹
0 = 𝑓 ′ +∆𝜉

√
3

6
𝑓 ′′ −∆𝜉3

3

72
𝑓 ′′′′ +𝑂(∆𝜉4), (17)

𝐷𝐵
0 = 𝑓 ′ −∆𝜉

√
3

6
𝑓 ′′ +∆𝜉3

3

72
𝑓 ′′′′ +𝑂(∆𝜉4). (18)

Эти граничные значения производных приравнивались к линейной комбинации сеточ-
ных значений функции в четырех близлежащих узлах сетки с неопределенными коэф-
фициентами:

𝐷𝐹
0 =

4∑︁
𝑘=0

𝐶1𝑘𝑓𝑘, 𝐷𝐵
0 =

4∑︁
𝑘=0

𝐶2𝑘𝑓𝑘. (19)

Далее в правых частях равенств (19) применялись разложения Тейлора, которые при-
равнивались к разложениям (17), (18). В результате определялись требуемые коэффи-
циенты 𝐶1𝑘, 𝐶2𝑘.

Применяя нижнее граничное условие для 𝐷𝐵
0 , вычисляем 𝐷𝐵

𝑘 из (15) в направле-
нии увеличения номера индекса 𝑘 : 𝑘 = 0, 1, 2, . . . , 𝑁 . Затем, используя верхнее гра-
ничное условие для 𝐷𝐹

𝑁 , вычисляем 𝐷𝐹
𝑘 из (16) в направлении уменьшения индекса

𝑘 : 𝑘 = 𝑁,𝑁 − 1, 𝑁 − 2, . . . , 0. Полученные величины 𝐷𝐵 и 𝐷𝐹 подставляем в форму-
лы (11)–(14), чтобы определить промежуточные параметры ℎ(1), ℎ(2), ℎ(3), ℎ(4), входящие
в формулы (10) для вычисления решения на следующем временном шаге. Используя
данный алгоритм, получаем нестационарное решение уравнений гидродинамики, опи-
сывающее радиальные потери атмосферных частиц. Это решение эволюционирует во
времени до установления стационарных профилей плотности, скорости и температуры
атмосферы, которые не зависят от выбранного начального условия. Вблизи поверх-
ности планеты заданы граничные условия для температуры и плотности. А на верхней
границе для достаточно большого радиуса, где поток — сверхзвуковой, на каждом шаге
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по времени в граничной точке задаем значения искомых переменных равными соответ-
ствующим значениям в ближайшем внутреннем узле сетки. Эти условия не влияют на
нижние слои атмосферы благодаря сверхзвуковому характеру потока.

4. Результаты

В качестве объектов моделирования рассмотрены реальные экзопланеты TOI-421b и
TOI-421с, обнаруженные в 2020 г. и детально описанные в статье [8]. Для этих пла-
нет задавались входные физические параметры, представленные в таблице. На рис. 2
показаны радиальные профили скорости и звукового числа Маха для двух планет.
Планета TOI-421b имеет меньшую массу и, соответственно, более слабую гравитацию
(𝜆 = 20.965) по сравнению с TOI-421c (𝜆 = 36.2). Кроме того, эта планета имеет бо-
лее близкую к звезде орбиту, поэтому получает более интенсивный поток ионизующего
излучения. Оба эти фактора (слабая гравитация и сильное излучение) способствуют
достижению большей скорости истечения атмосферы.

На рис. 3 для двух планет представлены радиальные зависимости степени ионизации
(отношения плотности ионов к общей плотности частиц) и температуры. Для планеты
TOI-421b характерны более высокие степень ионизации и максимум температуры, что
обусловлено большей интенсивностью излучения, вызывающего ионизацию и нагрев
газа. На больших расстояниях температура газа быстро спадает вследствие уменьше-
ния плотности нейтральных частиц, поглощающих излучение, а также адиабатического
охлаждения потока газа. В используемой неравномерной сетке шаг уменьшается по ме-
ре приближения к поверхности планеты, где градиенты физических параметров растут.
На рис. 4, а показаны радиальные профили давления и усредненной по углу функции
нагрева для экзопланеты TOI-421b. Давление нормировано к его значению на нижней
границе. Функция нагрева, имеющая смысл количества полощаемого тепла, приходя-
щегося на один атом, нормирована к ее значению на верхней границе вдали от планеты.
Справа показаны аналогичные профили для более массивной планеты (TOI-421с).

В обоих случаях при удалении от планеты сначала происходит резкое экспоненци-
альное падение давления, которое далее переходит в плавное степенное убывание. Более
массивная планета (TOI-421с) имеет более компактную атмосферу, и поэтому граница
зоны тепловыделения располагается ближе к планете (𝑟 = 1.5𝑅𝑝), где начинается вы-
деление тепла и отмечается переход закона спадания давления от экспоненциального
к степенному. В случае менее массивной планеты (TOI-421b) плотность атмосферного
газа медленнее спадает и граница области поглощения тепла располагается дальше от
планеты (при 𝑟 = 2.5𝑅𝑝). Важно отметить, что усредненная функция нагрева более
плавно убывает по мере приближения к планете, в то время как неусредненная функ-
ция при 𝜃 = 0 имеет существенно более резкое падение до нуля. Функции максимально
различаются на расстоянии 𝑟 = 2.44𝑅𝑝. При этом значение усредненной функции мень-
ше в четыре раза. Полный расход газа при усредненной функции нагрева уменьшается
на 40%.

Решаемая система уравнений записана в консервативной форме, что обеспечивает
выполнение законов сохранения массы, энергии и импульса для численного решения.
Однако подстановка полученных результатов расчета в уравнение Эйлера, отражаю-
щее детальный баланс сил, будет давать некоторую невязку, зависящую от используе-
мой разностной схемы. Погрешность оценивается невязкой, определяемой следующим
выражением:
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Физические параметры планет
Physical parameters of planets

Планета 𝑀p/𝑀E 𝑅𝑝/𝑅E 𝑇0, K 𝑝0, дин/см2 𝑑𝑠, AU 𝐽𝑋𝑈𝑉 , эрг/(с·см2)
TOI-421b 7.17 2.68 981.4 5e3 0.056 7452
TOI-421c 16.42 5.09 673.6 5e3 0.1189 1655

а б

Рис. 2. Профили скорости (а) и числа Маха (б ) для двух экзопланет
Fig. 2. Profiles of velocity (а) and Mach number (б ) for two exoplanets

а б

Рис. 3. Профили доли ионизованных атомов (а) и температуры (б ) для двух экзопланет
Fig. 3. Profiles of the fraction of ionized atoms (а) and temperature (б ) for two exoplanets

а б

Рис. 4. Профили давления и функции нагрева для экзопланет TOI-421b (а) и TOI-421с (б )
Fig. 4. Profiles of the pressure and heating function for exoplanets TOI-421b (а) and TOI-421с (б )
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а б

Рис. 5. Погрешности аппроксимации гидродинамического уравнения Эйлера, соответствующие
классической схеме Маккормака и используемой в данной работе компактной схеме для обеих
планет
Fig. 5. Approximation errors of the hydrodynamic Euler equation corresponding to the McCormack
class scheme and the compact scheme used in this work for both planets

𝛿 =
1

max |𝐹𝑔|

(︂
𝑣
𝜕𝑣

𝜕𝑟
+

1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝐹𝑔

)︂
,

где 𝐹𝑔 = ∇Φ. Величина 𝛿 теоретически должна равняться нулю, но в результате счета
из-за численной аппроксимации она получается отличной от нуля. Амплитуда откло-
нения данной величины от нуля зависит от численной схемы и шага сетки.

На рис. 5 показаны профили 𝛿, полученные в результате расчетов как по классиче-
ской схеме Маккормака [3], так и по используемой в нашей работе компактной схеме
для обеих планет. Видно, что классическая схема Маккормака дает довольно большую
невязку вблизи нижней границы в зоне гидростатического равновесия и начала перехо-
да в гидродинамический режим, где градиенты плотности и давления довольно велики.
Для более массивной планеты (TOI-421c) невязка существенно больше и ее максимум
находится гораздо ближе к нижней границе, где градиенты плотности и давления мак-
симальны. При этом компактная схема дает существенно меньшую погрешность и, сле-
довательно, гораздо лучше отрабатывает баланс сил даже вблизи поверхности планет.
Важно отметить, что граница зоны гидростатического равновесия располагается тем
дальше от планеты, чем меньше ее масса. Потому корректное описание этой области
наиболее важно для планет относительно малых масс.

Для количественной оценки погрешности и порядка сходимости использовалось пра-
вило Рунге. Для этого проведены расчеты на трех вложенных сетках с числами узлов
𝑁1=1000, 𝑁2=2000, 𝑁3=4000. Применение правила Рунге дало интересные результа-
ты. Сходимость оценивалась по максимуму относительных вариаций плотности и тем-
пературы, которые имеют большие градиенты. Погрешность по плотности имеет вид

∆𝜌1,2 = max

(︂
𝜌ℎ2 − 𝜌ℎ1

𝜌ℎ1

)︂
= 2.3e−2, ∆𝜌2,3 = max

(︂
𝜌ℎ3 − 𝜌ℎ2

𝜌ℎ2

)︂
= 1.4e−3.

Отношение погрешностей дает оценку показателя сходимости по плотности

𝑛 = ln
∆𝜌1,2
∆𝜌2,3

⧸︁
ln(2) ≈ 4.

Аналогично определяем погрешность по температуре

∆𝑇1,2 = max

(︂
𝑇ℎ2 − 𝑇ℎ1

𝑇ℎ1

)︂
= 3.8e−3, ∆𝑇2,3 = max

(︂
𝑇ℎ3 − 𝑇ℎ2

𝑇ℎ2

)︂
= 5.0e−4.
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В итоге для показателя сходимости по температуре получаем оценку

𝑛 = ln

(︂
∆𝑇1,2

∆𝑇2,3

)︂⧸︁
ln(2) ≈ 3.

По классической схеме Маккормака порядок сходимости получился около 2. Для двух
схем наиболее сильно различаются погрешности по температуре. Так, в случае 𝑁 = 1000
для схемы Маккормака она достигает 20%, в то время как для компактной схемы
составляет всего 0.4%.

Заключение

Показано, что применение компактной схемы типа Маккормака четвертого порядка
на неравномерной сетке позволяет эффективно решать гидродинамическую проблему
истечения газа из атмосферы планеты при наличии поглощения внешнего жесткого
ультрафиолетового излучения, что важно для моделей эволюции планет. В качестве
объектов моделирования рассмотрены две реальные экзопланеты TOI-421b и TOI-421c,
значительно различающиеся по массе и радиусу орбиты. Стационарные распределения
плотности, температуры и давления получены в результате численного интегрирования
нестационарных уравнений. С течением времени устанавливается искомое стационарное
решение, не зависящее от выбора начального условия. Проведено сравнение с класси-
ческой схемой Маккормака и показано существенное преимущество компактной схемы
типа Маккормака. В отличие от классической схемы, компактная схема показала устой-
чивый счет при предельном значении числа Куранта, равном 1. Больший порядок ап-
проксимации и запас устойчивости по числу Куранта дают существенный выигрыш по
времени счета, так как позволяют решать задачу истечения атмосферы на более круп-
ной сетке и в более широком диапазоне изменения физических параметров планет при
сохранении приемлемой точности.
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Abstract

The compact McCormack-type difference scheme with the fourth order of accuracy and a nonuni-
form grid is adapted for solving the hydrodynamic problem of the escaping planet’s atmosphere in
the presence of absorption of external extreme ultraviolet radiation, which is important for modelling
of planetary evolution. This problem requires a high accuracy difference scheme. Two real recently
discovered exoplanets TOI-421b,c, significantly differing in mass and orbit radius, were considered
as simulation objects. A peculiarity of this problem is the nonlocal heating function, which integrally
depends on the distribution of physical quantities over the radial distance and spherical angle. In
particular, this function decreases very steeply when distance near the planet decreases. Therefore,
an uneven difference grid is used with a decreasing step towards the planet. As a result of numerical
integration of time dependent spherically symmetric hydrodynamic equations, radial distributions of
density, temperature, pressure and velocity were obtained. The heating function was averaged over
spherical angles. The model took into account such fundamentally important physical processes
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as ionization and recombination, as well as Lyman-alpha radiation cooling. When carrying out
calculations, hydrodynamic equations were solved in a conservative form, ensuring conservation of
mass, momentum and energy. In this case, Euler’s hydrodynamic equation, which takes into account
the detailed balance of acting forces, was used to estimate the approximation error for the compact
difference scheme, which was compared with a similar error for the classical McCormack scheme. The
comparison shows a significant advantage of the compact difference scheme used in this research.
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