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Предложен метод уменьшения области поиска минимума функции на интер-
вале, который основан на использовании геометрических свойств квадратичных
функциональных интервалов. Доказано, что уменьшение достигается почти всю-
ду, за исключением случая нулевого линейного члена. Проведен эксперимент, ре-
зультаты которого показали перспективность применения предложенного метода
в интервальных алгоритмах оптимизации, использующих адаптивное дробление.
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Введение

В работе рассматривается практическое применение функциональных интервалов, гра-
ницы которых представляют собой квадратичные полиномы одной переменной, для
решения одной из классических задач вычислительной математики — нахождения без-
условного минимума гладкой функции одной переменной на интервале. Эта задача
решается различными способами. В частности, широкое распространение получили ин-
тервальные методы глобальной оптимизации, основанные на адаптивном дроблении
области определения функции и оценивании ее значений по получающимся подоблас-
тям [1, 2].

Интервальные методы обеспечивают высокий порядок оценивания области значений
функции на интервале, что дает преимущество по сравнению с методами более низкого
порядка лишь при достаточно малой ширине интервала, на котором рассматривается
функция (подробнее см. в разд. 3). Поэтому при использовании таких методов необходи-
мо как можно быстрее удалять из рассмотрения такие области, где минимума функции
заведомо быть не может. Алгоритмы, основанные на методе “ветвей-и-границ”, отсека-
ют такие области при рассмотрении дерева дробления, основываясь на интервальных
оценках области значений функции. Дополнительно, на каждой итерации дробления,
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уменьшение области поиска достигается с помощью различных техник, например ин-
тервального метода Ньютона для поиска нулей производной исходной функции [2]. При-
менение этих техник требует дополнительных вычислений значений или интервальных
оценок областей значений функции и/или ее производных.

Использование в интервальных алгоритмах дробления квадратичных функциональ-
ных интервалов позволит достигнуть третьего порядка точности (также как, напри-
мер, и при использовании тейлоровских моделей [3–5]) интервальной оценки минимума
функции [6]. Однако добиться уменьшения области поиска минимума можно и без до-
полнительных вычислений функции или ее производных.

В статье рассмотрен метод уменьшения области поиска минимума функции с помо-
щью геометрической интерпретации квадратичных функциональных интервалов. Его
использование может найти широкое применение в качестве составной части популяр-
ных интервальных алгоритмов глобальной оптимизации, основанных на адаптивном
дроблении области определения исследуемой функции.

В статье использованы обозначения, принятые в интервальном анализе согласно
неформальному международному стандарту [7]. В частности, интервалы и интерваль-
ные величины выделены жирным шрифтом, а семейство всех вещественных интервалов
обозначено как IR. Подчеркивание и надчеркивание — 𝑥 и 𝑥 — обозначают нижнюю
и верхнюю границы вещественного интервала 𝑥, так что в целом 𝑥 = [𝑥,𝑥] ∈ IR.

Помимо традиционных интервалов, которые представляют собой замкнутое связное
подмножество R, в работе применяются открытые интервалы, границы которых не
входят в них. Они обозначены также жирным шрифтом, а границы таких интервалов —
развернутыми вовне квадратными скобками [8]. Так, например, открытый интервал 𝑦
обозначен ]𝑦,𝑦[. Шириной интервала 𝑥 называем величину

wid 𝑥 = 𝑥− 𝑥,

а уравновешенным интервалом — интервал, для которого верно

𝑥 = −𝑥.

Арифметические операции между интервалами понимаются ниже как операции клас-
сической интервальной арифметики [1, 2, 9, 10].

1. Понятие функционального интервала

В интервальном анализе рассматриваются различные виды интервалов. Однако на
практике чаще всего применяется классический интервал, под которым понимается
ограниченное замкнутое связное подмножество вещественной оси

𝑥 = {𝑥 ∈ R | 𝑥 ≤ 𝑥 ≤ 𝑥}.

Ранее автором статьи было предложено расширить понятие интервала таким обра-
зом, чтобы его границы выражались не постоянными числами, а некоторыми функци-
ями, зависящими от параметров, которые могут принимать значения в интервалах [11].
Они названы функциональными интервалами. Чтобы определить такой функциональ-
ный интервал, зафиксируем интервалы изменений параметров 𝑥1 ∈ 𝑥1, . . . , 𝑥𝑛 ∈ 𝑥𝑛.
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Рис. 1. Функциональный интервал (1)
Fig. 1. The functional interval (1)

Тогда функциональным интервалом будем называть интервал, нижняя и верхняя гра-
ницы которого представляются соответствующими функциями

L : R𝑛 → R и U : R𝑛 → R,

удовлетворяющими свойству

∀𝑥𝑖 ∈ 𝑥𝑖, 𝑖 = 1, . . . , 𝑛, L(𝑥1, . . . , 𝑥𝑛) ≤ U(𝑥1, . . . , 𝑥𝑛).

Функции L и U аналогично будем называть границами интервала. На письме функ-
циональные интервалы обозначим так же, как и обычные числовые интервалы: на месте
левого конца интервала будем писать функцию L, а на месте правого конца — функ-
цию U. Так, например, рассмотрим однопараметрический функциональный интервал
𝑦. Если его параметр 𝑥 ∈ [−2, 2], L(𝑥) = −0.25𝑥, U(𝑥) = sin𝑥 + 1.5, то этот интервал
будет записываться как

𝑦(𝑥, [−2, 2]) = [−0.25𝑥− 1, sin𝑥+ 1.5]. (1)

Графическая интерпретация интервала (1) показана на рис. 1. Функциональный интер-
вал, границы которого представляют собой квадратичные полиномы, будем называть
квадратичным функциональным интервалом.

2. Уменьшение области поиска минимума функции

2.1. Идея

Пусть дан уравновешенный интервал 𝑥 ∈ IR. Рассмотрим на этом интервале дважды
непрерывно дифференцируемую функцию 𝑓(𝑥). Построим по 𝑓(𝑥) квадратичный одно-
параметрический функциональный интервал 𝑔(𝑥,𝑥), используя разложение функции
по формуле Тейлора [3, 4] на интервале 𝑥 (метод его построения указан в работе [6]).

Обозначим через 𝑀 минимум функции на интервале 𝑥, т. е.

𝑀 = min
𝑥

𝑓(𝑥). (2)

Пусть также известен интервал 𝑀 , в котором содержится 𝑀 :

𝑀 ∈ 𝑀 ⊂ R. (3)
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Рис. 2. Синей линией показана функция 𝑓(𝑥), серым цветом обозначен соответствующий этой
функции квадратичный функциональный интервал 𝑔(𝑥,𝑥), оранжевым цветом — интервал 𝑀
Fig. 2. The blue line shows the function 𝑓(𝑥), the gray colour indicates the quadratic functional
interval 𝑔(𝑥,𝑥) corresponding to this function, the orange colour — the interval 𝑀

На рис. 2 показан пример функции 𝑓(𝑥), а также построенный для этой функции
квадратичный функциональный интервал 𝑔(𝑥,𝑥) и интервал 𝑀 . Видно, что в про-
иллюстрированном случае можно указать такой подынтервал исходного интервала 𝑥,
на котором область значений функции 𝑓(𝑥) не содержит 𝑀 . Если можно оценить или
несложно найти этот интервал, опираясь на имеющуюся информацию о функции, то
тем самым уменьшим область поиска минимума функции, не используя дополнитель-
ных вычислений ее значений или ее производных.

Таким образом, мы рассмотрели частный случай, когда интервал 𝑥 — уравновешен-
ный. Когда имеем интервал общего вида, его можно свести к уравновешенному путем
линейного сдвига его центра в нуль.

Далее аналитически опишем метод для уменьшения области поиска минимума функ-
ции 𝑓(𝑥), а также ответим на вопрос: как часто встречаются такие случаи, в которых
можно произвести такое уменьшение описанным методом.

2.2. Описание метода уменьшения области

Пусть нижняя и верхняя границы функционального интервала 𝑔(𝑥,𝑥) представляются
функциями 𝑔(𝑥) и 𝑔(𝑥) соответственно. По построению имеет место

𝑔(𝑥) ≤ 𝑓(𝑥) ≤ 𝑔(𝑥) для любого 𝑥 ∈ 𝑥. (4)

В силу того что 𝑔(𝑥,𝑥) — квадратичный функциональный интервал, 𝑔(𝑥) и 𝑔(𝑥) пред-
ставляют собой квадратичные полиномы и имеют вид [6]

𝑔(𝑥) = 𝑎𝑥2 + 𝑏𝑥+ 𝑐,
𝑔(𝑥) = 𝑎𝑥2 + 𝑏𝑥+ 𝑐,

(5)

где коэффициенты 𝑎, 𝑎, 𝑏, 𝑐 определяются следующим образом:

𝑎 ≤ min { 𝑓 ′′(𝑥) | 𝑥 ∈ 𝑥 },
𝑎 ≥ max { 𝑓 ′′(𝑥) | 𝑥 ∈ 𝑥 },
𝑏 = 𝑓 ′(0),
𝑐 = 𝑓(0).
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Желая найти те подобласти исходного интервала 𝑥, в области значений функции на
которых может содержаться 𝑀 , мы должны разрешить относительно 𝑥 включение

𝑓(𝑥) ∈ 𝑀 . (6)

Поскольку функция 𝑓(𝑥) может иметь сложный вид, аналитически решить такое вклю-
чение может быть трудно, а зачастую и невозможно. Поэтому вместо исходного вклю-
чения будем решать более слабое, тем самым огрубляя множество решений в бо́льшую
сторону, чтобы не исключать решения исходного неравенства из рассмотрения. Для
ослабления используем функциональные границы 𝑔(𝑥) и 𝑔(𝑥) интервальной оценки
функции 𝑓(𝑥) вместо самой этой функции. Поскольку функции границ имеют заранее
определенный вид квадратичных полиномов, ослабленное включение будет поддавать-
ся аналитическому решению.

Включение (6) всегда имеет непустое решение. Чтобы обосновать этот факт, рас-
смотрим предельный случай, когда интервал, на котором ищется решение этого вклю-
чения, представляет собой единственную точку 𝑥* ∈ 𝑥. Тогда 𝑔(𝑥*) = 𝑓(𝑥*) = 𝑔(𝑥*),
𝑀 = 𝑓(𝑥*), а 𝑀 = [𝑓(𝑥*), 𝑓(𝑥*)]. Включение 𝑓(𝑥) ∈ [𝑓(𝑥*), 𝑓(𝑥*)] имеет решение в ви-
де 𝑥*. В силу свойств естественного интервального расширения (см., к примеру, [1])
множество решений исходного включения (6) будет наверняка содержать 𝑥*, а значит,
иметь как минимум одно решение.

Интервальный анализ позволяет рассматривать включения как системы двусторон-
них неравенств, которые далее могут быть представлены в виде обычных систем нера-
венств. Так, например, включение (6) эквивалентно системе неравенств{︂

𝑓(𝑥) ≤ 𝑀 ,
𝑓(𝑥) ≥ 𝑀 .

С учетом (2) и (3) данная система эквивалентна одному неравенству

𝑓(𝑥) ≤ 𝑀 .

Используя (4), ослабим его до
𝑔(𝑥) ≤ 𝑀 . (7)

Переписав (7) по развернутой формуле из (5), получим

𝑎𝑥2 + 𝑏𝑥+ 𝑐 ≤ 𝑀 .

Каждый из коэффициентов, который входит в это неравенство, т. е. 𝑎, 𝑎 (входит неявно
в 𝑀 ), 𝑏 и 𝑐, может быть меньше нуля, больше нуля или быть равным нулю. Таким об-
разом, полный перебор всех этих вариантов будет состоять из 81 (= 34) случая, если не
учитывать дополнительные требования на соотношения коэффициентов друг с другом.
Как следствие, полное аналитическое решение трудоемко и громоздко для реализации.
Поэтому пойдем от обратного и дадим ответ на вопрос: в каких случаях мы не сможем
описанным выше методом уменьшить область поиска минимума функции 𝑓(𝑥)? Ответ
на этот вопрос оформим в качестве теоремы.

Теорема. Если в неравенстве (7) выполнено 𝑏 ̸= 0, то для любого невырожденного
уравновешенного интервала 𝑥 можно указать хотя бы один его непустой подынтер-
вал, на котором это неравенство не имеет решений.
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Доказательство. Так как 𝑥 — невырожденный, то

𝑥 < 0 < 𝑥.

Рассмотрим неравенство (7). Из формулы (4) следует, что в качестве интервала 𝑀 ,
фигурирующего в (7) и определенного посредством (3), можно взять

𝑀 =
[︁
min
𝑥

𝑔(𝑥), min
𝑥

𝑔(𝑥)
]︁
. (8)

Используя (5), можем заключить, что

𝑀 = min
𝑥

𝑔(𝑥) ≤ 𝑔(0) = 𝑐.

Как следствие, неравенство (7) может быть ослаблено до неравенства

𝑔(𝑥) ≤ 𝑐, (9)

поэтому множество решений расширится. Переписав полученное неравенство, исполь-
зуя (5), получим

𝑎𝑥2 + 𝑏𝑥+ 𝑐 ≤ 𝑐, (10)

что эквивалентно
𝑎𝑥2 + 𝑏𝑥 ≤ 0.

Чтобы решением данного неравенства была вся числовая прямая, необходимо и доста-
точно выполнения условий {︂

𝑎 ≤ 0,
𝑏 = 0.

Таким образом, если 𝑏 ̸= 0, то, значит, исходное, более сильное неравенство (7)
также имеет отличное от всей числовой оси решение, коль скоро при этом более слабое
неравенство (9) имеет решение, отличное от числовой оси.

Теперь докажем, что когда ослабленное неравенство (9) имеет решение, отличное от
всей числовой оси, оно имеет как минимум один непустой подынтервал, на котором это
неравенство не выполняется.

Итак, теперь рассмотрим случай 𝑏 ̸= 0. Вернемся к неравенству

𝑎𝑥2 + 𝑏𝑥 ≤ 0.

Для начала рассмотрим случай 𝑎 = 0, при котором получаем

𝑏𝑥 ≤ 0. (11)

Поскольку 𝑏 ̸= 0, возможны только случаи, когда 𝑏 < 0 и 𝑏 > 0. Решение неравенства
для каждого из этих случаев, а также непустые подынтервалы, на которых решение не
достигается, представлены в табл. 1.

Далее полагаем, что 𝑎 ̸= 0. Чтобы найти точки пересечения квадратичной параболы
с осью абсцисс, решим уравнение

𝑎𝑥2 + 𝑏𝑥 = 0.
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Т а б л и ц а 1. Решение неравенства (11) для различных знаков 𝑏
Table 1. The solution of the inequality (11) for different signs of 𝑏

𝑏 Решение неравенства на 𝑥 Подынтервал 𝑥 без решений
Менее 0 [0,𝑥] ]𝑥, 0[

Более 0 [𝑥, 0] ]0,𝑥[

Т а б л и ц а 2. Решение неравен-
ства (10)
Table 2. The solution of the inequa-
lity (10)

𝑎 𝑥2 𝑥2 ∈ 𝑥 𝑥2 /∈ 𝑥

< 0 < 0 [𝑥, 𝑥2] ∪ [0,𝑥] [0,𝑥]

< 0 > 0 [𝑥, 0] ∪ [𝑥2,𝑥] [𝑥, 0]

> 0 < 0 [𝑥2, 0] [𝑥, 0]

> 0 > 0 [0, 𝑥2] [0,𝑥]

Т а б л и ц а 3. Подынтервалы 𝑥, на которых ре-
шений неравенства (10) не существует
Table 3. Subintervals of the 𝑥 where there are no
solutions of (10)

𝑎 𝑥2 𝑥2 ∈ 𝑥 𝑥2 /∈ 𝑥

< 0 < 0 ]𝑥2, 0[ ]𝑥, 0[

< 0 > 0 ]0, 𝑥2[ ]0,𝑥[

> 0 < 0 ]𝑥, 𝑥2[∪]0,𝑥[ ]0,𝑥[

> 0 > 0 ]𝑥, 0[∪]𝑥2,𝑥[ ]𝑥, 0[

‘

Его корни
𝑥1 = 0, 𝑥2 = −𝑏/𝑎.

Заметим, что 𝑥2 ̸= 0 в силу того, что 𝑏 ̸= 0. Для всех возможных случаев знаков 𝑎 и 𝑥2

решения неравенства представлены в табл. 2. Кроме того, для этих случаев в табл. 3
указаны непустые подынтервалы 𝑥, в которых неравенство не имеет решений.

Во всех случаях, рассмотренных выше, мы получили, что при 𝑏 ̸= 0 можно указать
непустые подынтервалы 𝑥, в которых решение неравенства (9) не существует. Отсюда
следует, что более сильное неравенство (7) на этих подынтервалах также не будет иметь
решений.

Заметим, что в некоторых случаях множество решений неравенства из теоремы
представляет собой объединение двух непересекающихся интервалов. Это значит, что
если мы применяем описанный выше метод для уменьшения области поиска минимума
функции в интервальных алгоритмах глобальной оптимизации, основанных на адап-
тивном дроблении области определения (см., например, [1, 2]), то в этом случае он
автоматически производит разбиение интервала на подынтервалы.

3. Пример уменьшения области поиска

Рассмотрим функцию (рис. 3)

𝑓(𝑥) = sin 3𝑥+ cos𝑥, 𝑥 ∈ [−2, 2] (12)

и построим для нее однопараметрический функциональный интервал (по способу, ука-
занному в работе [6]). Вычислим ее первую и вторую производные

𝑓 ′(𝑥) = 3 cos (3𝑥)− sin𝑥,

𝑓 ′′(𝑥) = −9 sin (3𝑥)− cos𝑥
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Рис. 3. График функции (12) на интервале
[−2, 2]
Fig. 3. The graph of the function (12) on the
interval [−2, 2]

Рис. 4. Серым цветом показан функциональ-
ный интервал (13), синяя линия — график
функции (12)
Fig. 4. The gray area shows the functional
interval (13), the blue line — the function
graph (12)

и проведем дополнительные вычисления значений функции и интервальной оценки про-
изводной:

𝑓(0) = sin 0 + cos 0 = 1,

𝑓 ′(0) = 3 cos 0− sin 0 = 3,

𝑓 ′′([−2, 2]) = −9 sin ([−2, 2])− cos ([−2, 2]) ⊂ [−9, 9]− [−1, 1] = [−10, 10].

Построенный функциональный интервал будет иметь вид (рис. 4)

[−5𝑥2 + 3𝑥+ 1, 5𝑥2 + 3𝑥+ 1]. (13)

Заметим, что интервальная оценка области значений функции (12), полученная с по-
мощью данного функционального интервала, равная [−25, 27], будет шире, чем, напри-
мер, оценка [−2, 2], полученнная при использовании классической интервальной ариф-
метики для оценивания области значений функции на интервале [−2, 2].

В качестве верхней границы минимума функции возьмем минимум верхней границы
(см. формулу (8)) интервала (13) согласно известной формуле минимума квадратичной
функции с положительным старшим коэффициентом:

1− 32

4 · 5
= 1− 9

20
= 0.55.

Несмотря на более широкую интервальную оценку значений функции с помощью
функционального интервала (13), мы получили, в целом, более точную оценку на верх-
нюю границу интервала минимума функции из-за локального характера формулы Тей-
лора. При использовании интервала оценки с помощью классической интервальной
арифметики можно получить даже более узкую интервальную оценку для минимума
в виде [−2, 0.55]. Но для получения такой оценки требуется дополнительное вычисление
функции, которое может оказаться трудоемким.

Решим неравенство
−5𝑥2 + 3𝑥+ 1 ≤ 0.55
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на интервале [−2, 2]. Решением будут интервалы[︀
−2, 0.1 · (3− 3

√
2)
]︀

и
[︀
0.1 · (3 + 3

√
2), 2

]︀
,

которые можно огрубить для облегчения вычислений до

[−2,−0.12] и [0.72, 2].

Величину уменьшения области поиска минимума будем характеризовать с помощью
числового показателя 𝐾, который определяется по формуле

𝐾 = 1− Ширина области после уменьшения
wid 𝑥

=

= 1− (−0.12− (−2)) + (2− 0.72)

2− (−2)
=

3.16

4
= 1− 0.79 = 0.21.

(14)

То есть область поиска минимума уменьшилась на 21%. Величина 𝐾 в действительнос-
ти больше, но мы использовали довольно грубые округления при решении неравенства
и при нахождении интервальной оценки второй производной функции, тем самым рас-
ширив множество решений неравенства.

Заметим, что для 𝐾 ∈ ]0, 1] чем 𝐾 ближе к 1, тем меньше по ширине получилась
область поиска после применения метода уменьшения области поиска. Случай 𝐾 = 0
соответствует тому, что ширина области не изменилась (для невырожденного интервала
это невозможно по теореме из разд. 2), а случай 𝐾 = 1 соответствует сжатию области
решений в единственную точку.

Кроме того, решение неравенства состоит из двух непересекающихся интервалов,
т. е. при реализации описанного выше сценария в алгоритмах дробления не нужно пред-
принимать дополнительных действий по разбиению интервала поиска на подынтервалы.

4. О величине уменьшения области поиска минимума

В разд. 2 указано, что уменьшение области поиска будет происходить почти всюду — ис-
ключение составляет только случай 𝑏 = 0. Важным остается вопрос о величине 𝐾 (14),
которая характеризует уменьшение области поиска минимума.

Для того чтобы показать характер распределения величины 𝐾 в случае, когда все
коэффициенты 𝑎, 𝑎, 𝑏, 𝑐 равномерно распределены, проведем статистический экспери-
мент из 108 испытаний. Каждое испытание будет состоять из следующих шагов.

1. Величины 𝑏 и 𝑐 случайно генерируем по равномерному распределению на интер-
вале [−10, 10].

2. Случайно генерируем величину 𝑙 по равномерному распределению на интервале
[−10, 10]. Зададим интервал 𝑥 величиной [−|𝑙|, |𝑙|].

3. Случайно генерируем величины 𝑎 и 𝑎 по равномерному распределению на интер-
вале [−10, 10]. Если в результате генерации оказалось, что 𝑎 > 𝑎, то меняем эти
величины между собой. В случае 𝑎 = 𝑎 повторяем процесс случайной генерации.

4. Вычисляем значение минимума квадратичного полинома 𝑎𝑥2+𝑏𝑥+𝑐 на интервале
𝑥 и присваиваем его 𝑀 .

5. Находим множество решений неравенства 𝑎𝑥2 + 𝑏𝑥+ 𝑐 ≤ 𝑀 .
6. Для полученного множества решений найдем величину уменьшения области по-

иска 𝐾 по формуле (14). Запишем в результирующий список это число.
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Рис. 5. Гистограмма значений 𝐾
Fig. 5. The histogram of 𝐾 values

После проведения всех испытаний по полученному списку чисел 𝐾 построим гисто-
грамму с шагом в 0.05 (рис. 5). По ней можно сказать, что при равномерном распреде-
лении коэффициентов 𝑎, 𝑎, 𝑏, 𝑐 величина 𝐾 также будет распределена почти равномер-
но. Это хорошее качество построенного метода уменьшения области поиска минимума,
которое показывает, что на таких данных нет тенденции к только лишь небольшому
сжатию.

Однако при решении практических задач поиска минимума функции распределе-
ние значений коэффициентов будет иное, как и интервалы возможных значений этих
величин. Так, например, при уменьшении интервала поиска минимума ширина интер-
вальной оценки области значений второй производной исходной функции будет линейно
уменьшаться [1]. Поэтому естественно следует ожидать, что чем у́же будет интервал
поиска (и тем больше функциональный квадратичный интервал похож на квадратич-
ную параболу), тем больше процедура уменьшения будет давать области, похожие либо
на вершину параболы, либо на один или оба конца ее ветвей (в зависимости от того,
выпукла или вогнута парабола).

Таким образом, применение процедуры, описанной в работе, перспективно к встра-
иванию в интервальные алгоритмы “ветвей-и-границ”, и дальнейшее изучение эффек-
тивности такого встраивания стоит продолжить.

Заключение

Одна из главных проблем, с которыми сталкиваются на практике при использовании
интервальных методов оптимизации высокого порядка, — тот факт, что они начинают
проявлять свое преимущество по сравнению с методами малого порядка лишь при до-
вольно малой ширине интервала. Поэтому при решении практических задач необходи-
мо как можно быстрее уменьшать область поиска до интервалов таких размеров, где
методы высокого порядка обнаружат свою эффективность.

Общий подход интервальных методов адаптивного дробления решает эту проблему
путем разбиения исходной области поиска на подынтервалы. Однако при изначально
широкой области поиска и появлении эффекта “застоя” интервальных оценок [1] коли-



42 Д.А. Скорик

чество подынтервалов может стать очень большим и тем самым замедлить процедуру
нахождения минимума либо переполнить память ЭВМ.

В работе рассмотрены квадратичные функциональные интервалы, которые позво-
ляют оценить минимум функции на интервале с третьим порядком точности [6]. Пре-
имущество интервалов такого вида заключается в том, что они позволяют с исполь-
зованием уже имеющейся информации отсекать бесперспективные области поиска, тем
самым сокращая дробление интервалов (несмотря на не очень эффективное интерваль-
ное оценивание области значений функции на широком интервале).

Показано, что рассмотренный в работе способ уменьшения области поиска миниму-
ма перспективен для использования, например, при решении задачи глобальной опти-
мизации методом “ветвей-и-границ”. Однако эффективность применения этого метода
следует подробнее исследовать на практике при решении конкретных задач.
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Abstract

The paper addresses the practical application of functional intervals, whose boundaries are
quadratic polynomials of one variable, in order to solve one of the classical problems of computational
mathematics — finding the absolute minimum of a smooth function of one variable on an interval.

Currently, this problem is solved in various ways. In particular, interval methods of global
optimization based on adaptive fragmentation of the domain of function definition and estimation
of its values by the resulting sub-domains have become widespread.

The interval methods, which provide a high order of estimation for the range of values of the
function on the interval, are more advantegeous over the lower-order methods only whena the width
of the functional interval is small. Therefore, when using such methods, it is necessary to quickly
remove from consideration the areas in which cannot be a minimum of the considered function.

Algorithms based on the “branches-and-bounds” method cut off such areas when considering the
splitting tree, based on interval estimates for the range of values of the function. Additionally, at
each iteration of the crushing, the reduction of the search area is achieved using various techniques.
The application of these techniques requires additional calculations of values or interval estimates
for the areas of values of the function and/or its derivatives.

The article proposes a method for reducing the search area of the minimum function, which uses
a geometric interpretation of quadratic functional intervals. The method can be widely appllied as an
integral part of popular interval algorithms of global optimization based on adaptive fragmentation
for the domain of definition of the considered function.

It was shown that the method of reducing the minimum search area indicated in the work is
promising for use, for example, for solving the problem of global optimization by the “branches-and-
bounds” method.

Keywords: minimum of a function, interval analysis, functional interval, search area reduction,
two-sided estimate.
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