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Рассмотрены методы восстановления дробно-линейных функциональных зави-
симостей по данным с интервальной неопределенностью. В качестве практического
приложения решена задача обработки интервальных данных измерений электро-
химического процесса формирования осадка металла. Для восстановления иско-
мой функциональной зависимости предлагается развитие метода максимума сов-
местности, ранее успешно зарекомендовавшего себя при решении задач нахожде-
ния параметров линейных зависимостей. Для случая сильной совместности пара-
метров и данных показана квазивогнутость распознающего функционала, точка
максимума которого берется в качестве оценки параметров зависимости. Рассмат-
ривается обобщение на произвольные дробно-линейные функции.
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Введение

Задача восстановления функциональной зависимости — это распространенная прак-
тическая задача, в которой по эмпирическим данным, представляющим ряд значений
независимых переменных и соответствующих им значений зависимой переменной, тре-
буется построить саму функцию заданного вида. При этом эмпирические данные, полу-
ченные опытным путем, как правило, неточны, имеют неизбежные погрешности и т. п.
На сегодняшний день существует немало математических подходов к решению таких
задач, и большинство из них опирается на теоретико-вероятностную модель погрешнос-
тей, знание их вероятностных характеристик, а также достаточный объем обрабатывае-
мых данных. Результаты восстановления зависимости представляются в виде точечной
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оценки в пространстве параметров данной функции, дополнительно к которым стро-
ятся “доверительные интервалы” оценок, соответствующие заданному уровню довери-
тельной вероятности.

Помимо используемого нами названия “задача восстановления зависимости” [1] очень
часто можно встретить и другие эквивалентные термины: “задача построения эмпири-
ческих формул” [2, 3], “задача выравнивания или сглаживания наблюдений” [4]. Иногда
говорят о задаче идентификации, задаче оценки параметров и т. п. В контексте теоре-
тико-вероятностной статистики эта задача рассматривается в регрессионном анализе
и называется задачей построения регрессии [5]. Наконец, в последние десятилетия за-
дача восстановления функциональной зависимости стала классифицироваться как одна
из основных задач машинного обучения.

В этой работе рассматривается ситуация, когда объем данных может быть неболь-
шим и вероятностные характеристики погрешностей измерений неизвестны. В этих
условиях применение традиционных статистических методов обработки данных, кото-
рые основаны на теоретико-вероятностных моделях, является необоснованным. Тем не
менее часто бывают известны максимальные величины погрешностей измерений значе-
ний функции и/или ее аргументов. Основываясь на этой информации, мы можем при-
менять подход к обработке неточных эмпирических данных, впервые предложенный
в 1962 г. в пионерной работе Л.В. Канторовича [6]. Его отличительная особенность —
описание погрешностей и неточностей с помощью неравенств и интервалов, а не как
случайных величин с какими-то функциями распределения. Таким образом, в самой
постановке задачи присутствует “интервальность” данных, отражающая тот факт, что
вместо точных значений результатов измерений у нас имеются лишь некоторые интер-
валы их возможных значений. Иными словами, исходными данными задачи являются
“интервалы неопределенности” или, в многомерном случае, “брусы неопределенности”,
а математической основой решения задачи служат методы интервального анализа (см.,
к примеру, [7–9]).

Главная цель этой работы — построение и обоснование методов восстановления дроб-
но-линейных функциональных зависимостей по данным, которые имеют интервальную
неопределенность. Это востребованная практическая задача, которая встречается во
многих физических, экономических и других вопросах. Мы будем решать поставлен-
ную задачу с помощью метода максимума совместности (ранее — метод максиму-
ма согласования), разработанного первым автором этой статьи в работах [10–15]. Для
решения задач восстановления зависимостей по интервальным данным на сегодняш-
ний день существует немало различных подходов, в частности метод центра неопреде-
ленности, методы исчерпывания информационного множества и др. Среди них метод
максимума совместности выгодно отличается возможностью обобщения на нелинейные
задачи, а также своей способностью справляться с любыми интервальными данными
как для независимых аргументов, так и для значений функции.

Теоретические результаты работы иллюстрируются решением практической задачи,
относящейся к определению времени наращивания рыхлого осадка в электрохимичес-
ких процессах. Ранее эта задача решалась командой исследователей из Института ма-
тематики и механики УрО РАН и Института высокотемпературной электрохимии УрО
РАН [16, 17]. В настоящее время нет ее полного и точного решения. Для адекватного
моделирования явления необходим подход, который включал бы в себя выбор показа-
теля, характеризующего изменение свойств рыхлого осадка, а также оценку области
возможного изменения этого показателя. Поскольку процесс формирования рыхлых
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осадков — случайный и неточный по своей природе, а также зависит от внешних фак-
торов, для определения времени получения осадка нужна тщательная математическая
обработка входных данных.

Функция, описывающая образование рыхлых осадков, в работах [16, 17] рассматри-
вается в виде

𝑊 (𝑡) =
𝑎𝑡+ 𝑏

𝑐𝑡+ 𝑑
,

где 𝑡 — время; 𝑎, 𝑏, 𝑐 и 𝑑 — некоторые параметры. При измерениях 𝑊 допускаются по-
грешности, для которых известно предельное абсолютное значение 𝛥. Как следствие,
можно считать, что данные измерений адекватно описываются интервалами своих воз-
можных значений вида [𝑊 − 𝛥,𝑊 + 𝛥]. Измерение моментов времени 𝑡 может быть
как точным, так и неточным, имея в последнем случае также интервальную неопреде-
ленность.

Для выбора показателя, определяющего переход от электроосаждения цинка в фор-
ме дендритных частиц к компактному металлу, в работе [16] выполнены измерения
физических и электрохимических характеристик процесса роста рыхлого осадка на
электроде. Полученный в результате эксперимента набор данных в графической ин-
терпретации напоминает набор “отрезков-столбиков” (интервалов неопределенности),
через которые необходимо провести графики функций заданного вида. На этой осно-
ве далее может быть построен так называемый коридор совместных зависимостей [18],
который позволит оценить пределы возможных значений восстанавливаемых функций,
т. е. неопределенность предсказания будущего по построенной зависимости.

1. Базовые понятия интервального анализа

Цель этого раздела — напомнить некоторые понятия и факты из интервального анали-
за, на которые опирается изложение нашей статьи. Если читатель уже знаком с этим
материалом, он может переходить к следующему разделу.

Интервалом вещественной оси R называется замкнутый числовой промежуток ви-
да 𝑥 = [𝑥, 𝑥], образованный всеми числами между 𝑥 и 𝑥, включая их самих. Всюду
в тексте интервалы и другие интервальные объекты будут обозначаться жирным ма-
тематическим шрифтом в соответствии с неформальным стандартом [19]. Кроме того,
нижний (левый) конец интервала 𝑥 будем обозначать с помощью подчеркивания — как
𝑥, а верхний (правый) конец интервала 𝑥 — с помощью надчеркивания, как 𝑥, так что
в целом

𝑥 = [𝑥,𝑥] = {𝑥 ∈ R | 𝑥 ≤ 𝑥 ≤ 𝑥}.
Интервал называется вырожденным при 𝑥 = 𝑥 и невырожденным иначе. В целом
множество всех интервалов вещественной оси обозначается IR.

В дальнейшем потребуются также некоторые характеристики интервалов:
mid𝑥 = 1

2
(𝑥+ 𝑥) — середина интервала 𝑥,

rad𝑥 = 1
2
(𝑥− 𝑥) — радиус интервала 𝑥,

|𝑥| = max{|𝑥|, |𝑥|} — модуль или абсолютное значение интервала 𝑥.
Абсолютное значение интервала — это максимум модулей чисел из этого интервала.
Различные свойства введенных понятий и дальнейшие результаты можно найти, на-
пример, в книгах [7–9].
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В многомерном случае интервалы можно определять различными способами, вы-
бор которых диктуется удобством решения тех или иных задач. Одно из наиболее по-
пулярных определений многомерного интервала — это прямое декартово произведение
одномерных интервалов

𝑥 = 𝑥1 × 𝑥2 × . . .× 𝑥𝑛 = {𝑥 ∈ R𝑛 | 𝑥𝑖 ∈ 𝑥𝑖 для всех 𝑖 = 1, . . . , 𝑛}.

Будем называть 𝑥 интервальным вектором и писать 𝑥 = (𝑥1,𝑥2, . . . ,𝑥𝑛)
⊤. Для таких

многомерных интервалов часто используют также термин брусы, так как геометрически
они соответствуют прямоугольным параллелепипедам в R𝑛 с гранями, параллельными
координатным осям. Введенные выше характеристики интервалов — середина, радиус,
модуль — для случая интервалов-брусов применяются покомпонентно и поэлементно.
Помимо брусов популярны также многомерные интервалы в виде косых параллелепи-
педов, параллелотопов, шаров некоторой нормы, эллипсоидов и т. п.

На множестве интервалов могут быть определены операции и отношения, позволя-
ющие организовать преобразования интервалов, выкладки и рассуждения с ними для
решения различных математических задач. Одним из популярных способов опреде-
ления на множестве интервалов арифметических операций является определение “по
представителям”:

𝑥 ⋆ 𝑦 := {𝑥 ⋆ 𝑦 | 𝑥 ∈ 𝑥, 𝑦 ∈ 𝑦}, где ⋆ ∈ {+,−, ·, /}.

Иными словами, результат интервальной арифметической операции определяется как
множество всевозможных результатов этой операции между представителями интер-
валов (при условии, что этот результат определен). Нетрудно показать, что, за ис-
ключением деления на интервал с нулем, это множество тоже является интервалом.
Справедливы следующие конструктивные формулы [7–9]:

𝑥+ 𝑦 = [𝑥+ 𝑦,𝑥+ 𝑦], (1)

𝑥− 𝑦 = [𝑥− 𝑦,𝑥− 𝑦], (2)

𝑥 · 𝑦 =
[︀
min

{︀
𝑥𝑦,𝑥𝑦,𝑥𝑦,𝑥𝑦

}︀
,max

{︀
𝑥𝑦,𝑥𝑦,𝑥𝑦,𝑥𝑦

}︀]︀
, (3)

𝑥/𝑦 = 𝑥 · [1/𝑦, 1/𝑦], если 0 /∈ 𝑦. (4)

Алгебраическая система ⟨ IR, +, −, ·, / ⟩, носителем которой является множество
IR интервалов вещественной оси R, а арифметические операции “+”, “−”, “·”, “/” опре-
делены по формулам (1)–(4), называется классической интервальной арифметикой.
Интервальные арифметические операции можно комбинировать между собой и далее
использовать для оценки областей значений различных выражений. Напомним резуль-
тат, который будет широко использоваться далее.

Основная теорема интервальной арифметики [7, 8]. Пусть 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) —
рациональная функция вещественных аргументов 𝑥1, 𝑥2, . . . , 𝑥𝑛, т. е. 𝑓 задается
аналитическим выражением, которое является конечной комбинацией переменных
𝑥1, 𝑥2, . . . , 𝑥𝑛 и констант с четырьмя арифметическими операциями. Если для нее
определен результат 𝑓(𝑥1,𝑥2, . . . ,𝑥𝑛) подстановки вместо аргументов интервалов
их изменения 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ IR и выполнения всех действий над ними по правилам
интервальной арифметики, то{︀

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛)
⃒⃒
𝑥1 ∈ 𝑥1, 𝑥2 ∈ 𝑥2, . . . , 𝑥𝑛 ∈ 𝑥𝑛

}︀
⊆ 𝑓(𝑥1,𝑥2, . . . ,𝑥𝑛), (5)
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т. е. 𝑓(𝑥1,𝑥2, . . . ,𝑥𝑛) содержит область значений функции 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) на брусе
(𝑥1,𝑥2, . . . ,𝑥𝑛). Если же выражение для 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) содержит не более чем по
одному вхождению каждой переменной в первой степени, то в (5) вместо включения
выполняется точное равенство.

Обобщением конструкции, которая используется в основной теореме интервальной
арифметики, является понятие интервального расширения функции [7–9].

Напомним, что интервальная функция 𝑓 : KR𝑛 → KR𝑚 является интервальным
продолжением точечной функции 𝑓 : R𝑛 → R𝑚 на множестве 𝐷 ⊂ R𝑛, если 𝑓(𝑥) = 𝑓(𝑥)
для всех точечных аргументов 𝑥 ∈ 𝐷.

Интервальная функция 𝑓 : IR𝑛 → IR𝑚 называется интервальным расширением
точечной функции 𝑓 : R𝑛 → R𝑚 на 𝐷 ⊂ R𝑛, если она определена на множестве I𝐷 всех
интервалов, содержащихся в 𝐷 и, кроме того:

— является интервальным продолжением 𝑓 на 𝐷;
— монотонна по включению на I𝐷, т. е. для любых 𝑥, 𝑦 ∈ I𝐷, имеет место имплика-

ция 𝑥 ⊆ 𝑦 ⇒ 𝑓(𝑥) ⊆ 𝑓(𝑦).
Если 𝑓 — интервальное расширение для точечной функции 𝑓 , то для всякого бруса

𝑋 и любого 𝑥 ∈ 𝑋 справедливо 𝑓(𝑥) = 𝑓(𝑥) ∈ 𝑓(𝑋) и потому интервал 𝑓(𝑋) является
внешней интервальной оценкой области значений ran (𝑓,𝑋). В интервальном анали-
зе за последние полвека было предложено и исследовано немало различных способов
построения интервальных расширений функций, отличающихся сложностью вычисле-
ния, точностью оценок и т. п. В частности, простейшее интервальное расширение ра-
циональной функции, конструкция которого дается основной теоремой интервальной
арифметики, называют естественным интервальным расширением.

2. Теоретические основы

2.1. Обсуждение задачи восстановления зависимости

Пусть дано параметрическое семейство функциональных зависимостей

𝑦 = 𝑓(𝑥, 𝛽), (6)

где 𝑥 ∈ R𝑚 — вектор независимых переменных, 𝑦 ∈ R — зависимая переменная, 𝛽 —
параметр (одномерный или многомерный). Одной из наиболее важных и популярных
практических задач является задача определения значения параметра 𝛽, при котором
функция (6) заданного вида наилучшим образом приближает (аппроксимирует и пр.)
данный набор значений 𝑥 и 𝑦. Эти значения могут быть получены в результате изме-
рений или наблюдений в ходе экспериментов и т. п. Сформулированная выше задача
называется задачей восстановления зависимостей. Ее простейший вариант — нахож-
дение параметров (𝛽1, 𝛽2, . . . , 𝛽𝑚) линейной функции вида

𝑦 = 𝛽1𝑥1 + . . .+ 𝛽𝑚𝑥𝑚 (7)

по данным измерений независимых переменных 𝑥1, 𝑥2, . . . , 𝑥𝑚 и соответствующих зна-
чений функции 𝑦.

Далее будем считать, что исходными данными задачи является набор интервалов
для независимых и зависимых переменных, так что в результате 𝑖-го измерения (экспе-
римента) получены брус (𝑥𝑖1, . . . ,𝑥𝑖𝑚) для независимых переменных и интервал 𝑦𝑖 для
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Рис. 1. Иллюстрация задачи восстановления функциональной зависимости по данным с ин-
тервальной неопределенностью
Fig. 1. An illustration of the data fitting problem under interval uncertainty

зависимой переменной, 𝑖 = 1, . . . , 𝑛. Конкретные способы возникновения интервальных
данных могут быть очень разнообразны, и читатель может составить представление
о них, к примеру, из книги [18]. В целом полученные данные можно записать в виде
прямоугольной 𝑛× (𝑚+ 1)-таблицы

𝑥11, 𝑥12, . . . 𝑥1𝑚, 𝑦1,
𝑥21, 𝑥22, . . . 𝑥2𝑚, 𝑦2,

...
... . . . ...

...
𝑥𝑛1, 𝑥𝑛2, . . . 𝑥𝑛𝑚, 𝑦𝑛,

(8)

где 𝑥𝑖𝑗 — значение 𝑥𝑗 в 𝑖-м измерении, а 𝑦𝑖 — значение 𝑦 в 𝑖-м измерении, 𝑖 = 1, 2, . . . , 𝑛.
Эти данные образуют семейство брусов вида (𝑥𝑖1, . . . ,𝑥𝑖𝑚,𝑦𝑖) в R𝑚+1, которые соответ-
ствуют отдельным измерениям (наблюдениям). Их называют брусами неопределеннос-
ти измерений [18], и наглядно они показаны на рис. 1.

Ниже в наших конструкциях будут интенсивно использоваться интервальная 𝑛×𝑚-
матрица 𝑋 = (𝑥𝑖𝑗) и интервальный вектор-брус 𝑦 = (𝑦𝑖), составленные из данных
задачи (8), т. е. интервалов независимых переменных и интервалов значений функции
соответственно. Отдельному 𝑖-му измерению отвечает 𝑖-я строка (𝑥𝑖1, . . . ,𝑥𝑖𝑚) матрицы
𝑋, которую будем обозначать посредством 𝑋 𝑖:, т. е. как сечение массива 𝑋.1 В целом
искомую функцию вида (6) нужно построить так, чтобы она наилучшим образом “при-
ближала” интервальные данные, а ее график в идеале проходил бы, тем или иным
способом, через заданные брусы неопределенности (рис. 1).

Пусть 𝛽 — 𝑙-мерный вектор параметров, т. е. 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑙) ∈ R𝑙. Формально
подставляя полученные в ходе экспериментов интервальные данные (8) в выражение
для функциональной зависимости (6), получаем интервальную систему уравнений от-
носительно неизвестных 𝛽1, 𝛽2, . . . , 𝛽𝑙:

1Напомним, что это удобное и выразительное обозначение из Matlab’а и подобных ему языков
программирования в настоящее время широко распространилось в вычислительной математике.
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{︃
𝑓(𝑥𝑖1,𝑥𝑖2, . . . ,𝑥𝑖𝑚, 𝛽1, 𝛽2, . . . , 𝛽𝑙) = 𝑦𝑖,

𝑖 = 1, 2, . . . , 𝑛,
(9)

или в краткой форме {︃
𝑓(𝑋 𝑖:, 𝛽) = 𝑦𝑖,

𝑖 = 1, 2, . . . , 𝑛.

Нахождение оценки параметров зависимости (6) — это фактически “решение”, в опреде-
ленном смысле, выписанной выше интервальной системы уравнений (9) относительно
𝛽1, 𝛽2, . . . , 𝛽𝑙 аналогично тому, как построение параметров модели в случае обычных
точечных данных сводится к нахождению решений или псевдорешений системы урав-
нений, похожей на систему (9).

Для случая восстановления линейной зависимости вида (7) интервальная система
уравнений (9) принимает более специальную форму⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑥11𝛽1 + 𝑥12𝛽2 + . . . + 𝑥1𝑚𝛽𝑚 = 𝑦1,

𝑥21𝛽1 + 𝑥22𝛽2 + . . . + 𝑥2𝑚𝛽𝑚 = 𝑦2,
...

... . . . ...
...

𝑥𝑛1𝛽1 + 𝑥𝑛2𝛽2 + . . . + 𝑥𝑛𝑚𝛽𝑚 = 𝑦𝑛,

(10)

или кратко
𝑋𝛽 = 𝑦, (11)

где 𝑋 = (𝑥𝑖𝑗) и 𝑦 = (𝑦𝑖) — введенные выше интервальная 𝑛×𝑚-матрица и интерваль-
ный 𝑛-вектор, которые образованы данными измерений.

Но для интервальных уравнений и систем уравнений понятие решения гораздо бо-
гаче, чем его прародитель — решения (или даже псевдорешения) обычных уравнений.
Решения интервальных уравнений, неравенств и т. п. можно трактовать различными
способами, смотря по тому, какой тип интервальной неопределенности несут интер-
валы, входящие параметрами в это уравнение, систему уравнений или неравенств [7].
Эти различные смыслы понимания решений интервальных уравнений отвечают раз-
личным способам приближения интервальных данных в нашей задаче восстановления
зависимости, т. е. различным способам прохождения графика восстанавливаемой функ-
циональной зависимости (6) через брусы неопределенности измерений. Впервые это об-
стоятельство было отмечено в работе [11], и оно влечет важные следствия для методов
решения задачи восстановления зависимостей по интервальным данным.

Исторически первым множеством решений для интервальных систем уравнений бы-
ло объединенное множество решений, которое определяется как множество всевозмож-
ных решений обычных (точечных) систем, параметры которых принадлежат заданным
интервалам. Для системы уравнений (9) строгое определение этого множества решений,
которое мы будем обозначать 𝛯uni (от фразы united solution set), выглядит следующим
образом:

𝛯uni =
{︀
𝛽 ∈ R𝑙 | 𝑓(𝑥, 𝛽) = 𝑦𝑖 для некоторых 𝑥 ∈ 𝑋 𝑖: и 𝑦𝑖 ∈ 𝑦𝑖, 𝑖 = 1, 2, . . . , 𝑛

}︀
,

или формально

𝛯uni =
{︀
𝛽 ∈ R𝑙 | (∃𝑥 ∈ 𝑋 𝑖:)(∃𝑦𝑖 ∈ 𝑦𝑖) 𝑓(𝑥, 𝛽) = 𝑦𝑖, 𝑖 = 1, 2, . . . , 𝑛

}︀
. (12)
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Определение 1. Набор параметров 𝛽1, 𝛽2, . . . , 𝛽𝑙 функции (6) называется слабо
совместным с интервальными данными (𝑥𝑖1,𝑥𝑖2, . . . ,𝑥𝑖𝑚,𝑦𝑖), 𝑖 = 1, 2, . . . , 𝑛, если для
каждого измерения 𝑖 в пределах соответствующих интервалов найдутся такие предста-
вители 𝑥𝑖1 ∈ 𝑥𝑖1, 𝑥𝑖2 ∈ 𝑥𝑖2, . . . , 𝑥𝑖𝑚 ∈ 𝑥𝑖𝑚 и 𝑦𝑖 ∈ 𝑦𝑖, что

𝑓(𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑚, 𝛽1, 𝛽2, . . . , 𝛽𝑙) = 𝑦𝑖.

Этому определению отвечает тот способ прохождения графика восстанавливаемой
функциональной зависимости через брусы неопределенности, когда график может про-
сто иметь какие-то общие точки с этим брусами (рис. 2, а).

Но объединенное множество решений — не единственное из множеств решений для
интервальных уравнений и систем уравнений. В 1970–1980-е гг. была осознана ценность
другого множества решений, которое получило название допускового множества ре-
шений. Для системы уравнений (9) строгое определение этого множества решений, ко-
торое мы будем обозначать 𝛯tol (от фразы tolerable solution set), выглядит следующим
образом:

𝛯tol = {𝛽 ∈ R𝑛 | для любого 𝑥 ∈ 𝑋 𝑖: выполнено 𝑓(𝑥, 𝛽) ∈ 𝑦𝑖, 𝑖 = 1, 2, . . . , 𝑛},

или формально

𝛯tol =
{︀
𝛽 ∈ R𝑙 | (∀𝑥 ∈ 𝑋 𝑖:)(∃𝑦𝑖 ∈ 𝑦𝑖) 𝑓(𝑥, 𝛽) = 𝑦𝑖, 𝑖 = 1, 2, . . . , 𝑛

}︀
. (13)

Допусковое множество решений образовано всеми такими решениями 𝛽 точечных сис-
тем (9), для которых значение 𝑓(𝑥, 𝛽) попадает в интервалы правой части 𝑦𝑖,
𝑖 = 1, 2, . . . , 𝑛, при любых значениях 𝑥 ∈ 𝑋 𝑖:. Таким образом, 𝛯tol отличается от 𝛯uni

тем, что в его определении при интервальных величинах 𝑋 𝑖: логическими кванторами
(задающими тип интервальной неопределенности [7]) вместо кванторов существования
“∃” стоят кванторы всеобщности “∀”.

Из самого определения множеств решений (12) и (13) следует, что

𝛯𝑡𝑜𝑙 ⊆ 𝛯𝑢𝑛𝑖,

т. е. допусковое множество решений всегда является подмножеством объединенного
множества решений. Условия, определяющие допусковое множество решений, более

а б

Рис. 2. Иллюстрация слабой (а) и сильной (б ) совместности параметров функциональной
зависимости и интервальных данных задачи
Fig. 2. Illustration of weak (а) and strong (б ) compatibility for parameters of a functional depen-
dence and interval data of the problem
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жесткие, и оно может оказаться пустым даже для вполне обыденных случаев. Для нас
важно то, что допусковому множеству решений отвечает другой способ приближения
интервальных данных, который мы также отметим своим определением.

Определение 2. Набор параметров 𝛽1, 𝛽2, . . . , 𝛽𝑙 функции (6) называется сильно
совместным с интервальными данными (𝑥𝑖1,𝑥𝑖2, . . . ,𝑥𝑖𝑚,𝑦𝑖), 𝑖 = 1, 2, . . . , 𝑛, если для
каждого измерения 𝑖 для любых значений аргументов 𝑥𝑖1 ∈ 𝑥𝑖1, 𝑥𝑖2 ∈ 𝑥𝑖2, . . . , 𝑥𝑖𝑚 ∈ 𝑥𝑖𝑚

найдется такое 𝑦𝑖 ∈ 𝑦𝑖 в пределах интервала значений функции, что

𝑓(𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑚, 𝛽1, 𝛽2, . . . , 𝛽𝑙) = 𝑦𝑖.

Этому определению соответствует способ прохождения графика восстановленной
функциональной зависимости 𝑓(𝑥, 𝛽) через брусы неопределенности данных, когда гра-
фик содержится в “коридоре”, задаваемом интервалом 𝑦𝑖, независимо от конкретных
значений 𝑥𝑖1 ∈ 𝑥𝑖1, 𝑥𝑖2 ∈ 𝑥𝑖2, . . . , 𝑥𝑖𝑚 ∈ 𝑥𝑖𝑚 (еще говорят — “равномерно по 𝑥𝑖1 ∈ 𝑥𝑖1,
𝑥𝑖2 ∈ 𝑥𝑖2, . . . , 𝑥𝑖𝑚 ∈ 𝑥𝑖𝑚”). В то же время слабая совместность согласно определению 1
подразумевает, что график восстановленной функциональной зависимости 𝑓(𝑥, 𝛽) “хоть
как-то задевает” брусы неопределенности. Как было показано в [11, 14], это может при-
вести к появлению бессмысленных и “нефизичных” ответов при решении сложных задач
восстановления зависимостей для сильно налегающих друг на друга брусов неопреде-
ленности. Сильная совместность не допускает подобных патологий.

Множества решений (12) и (13) часто объединяют общим термином — информаци-
онные множества задачи восстановления зависимостей [18]. Так называют множества
параметров, которые являются совместными (согласуются) с данными в том или ином
конкретном смысле, который требуется в задаче.

Если информационное множество задачи (т. е. необходимое по смыслу задачи мно-
жество решений) непусто, то из него можно выбирать оценку параметров. Но если
множество решений системы (9) пусто, т. е. система уравнений несовместна в нужном
нам смысле, то возникает методическая проблема — как выбирать оценку?

Естественная идея состоит в том, чтобы тогда в качестве оценки параметров функ-
ции (6) взять точку, в которой достигается “наименьшая несовместность”. Для этого
необходимо определить количественную меру совместности/несовместности системы
уравнений, построенной по данным задачи и восстанавливаемой зависимости, и для
нахождения оценки параметров максимизировать эту меру.

2.2. Мера совместности интервальных уравнений

Что брать в качестве количественной меры совместности для интервальных уравне-
ний и систем уравнений? В традиционном неинтервальном случае естественной мерой
совместности уравнения или системы уравнений на каком-нибудь приближенном ре-
шении является невязка — разность между левой и правой частями уравнения при
подстановке в него этого приближения. Но для исследования совместности интерваль-
ных уравнений, под которой понимается непустота их множеств решений, подобная
конструкция не годится. Для определения подходящей меры совместности для интер-
вальных уравнений и систем уравнений нужно внимательнее посмотреть на условия,
которые характеризуют принадлежность точки множеству решений.

Условия принадлежности точки различным множествам решений интервальной сис-
темы уравнений (9) могут быть сформулированы как условия на взаимное расположе-
ние в R𝑛 области значений левой части системы уравнений, т. е. множества
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ℱ(𝑋, 𝛽) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
𝑓(𝑥11, 𝑥12, . . . , 𝑥1𝑚, 𝛽1, 𝛽2, . . . , 𝛽𝑙)

𝑓(𝑥21, 𝑥22, . . . , 𝑥2𝑚, 𝛽1, 𝛽2, . . . , 𝛽𝑙)

... . . . ... . . . ...

𝑓(𝑥𝑛1, 𝑥𝑛2, . . . , 𝑥𝑛𝑚, 𝛽1, 𝛽2, . . . , 𝛽𝑙)

⎞⎟⎟⎟⎟⎟⎠ ∈ R𝑛

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
𝑥𝑖𝑗 ∈ 𝑥𝑖𝑗,

𝑖 = 1, 2, . . . , 𝑛,
𝑗 = 1, 2, . . . ,𝑚

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (14)

и бруса правой части 𝑦 =
(︀
𝑦1,𝑦2, . . . ,𝑦𝑛

)︀⊤. Точка 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑙)
⊤ принадлежит

объединенному множеству решений 𝛯uni тогда и только тогда, когда

ℱ(𝑋, 𝛽) ∩ 𝑦 ̸= ∅. (15)

Точка 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑙)
⊤ принадлежит допусковому множеству решений 𝛯tol тогда

и только тогда, когда
ℱ(𝑋, 𝛽) ⊆ 𝑦. (16)

Это вытекает из самих определений объединенного и допускового множеств решений.
Но для того чтобы практически применять сформулированные выше признаки и далее
развивать вычислительные методы, нужно указать конструктивный способ нахождения
области значений ℱ(𝑋, 𝛽).

Это непростая задача даже в одномерном случае, т. е. при оценивании областей зна-
чений отдельных компонент вектор-функции. Но в многомерной ситуации трудности
возрастают за счет новых эффектов. Прежде всего это несовпадение формы идеальной
области значений с формой интервальных брусов, которыми мы ее оцениваем. В резуль-
тате оценивание области значений интервальными методами даст брус внешней оценки,
который, скорее всего, не будет равен точной области значений, но лишь содержит ее.
Тогда, к примеру, проверка пересечения (15) становится проблематичной (рис. 3).

Сформулированное затруднение преодолевается в случае, когда область значений
вектор-функции ℱ(𝑋, 𝛽) есть прямое декартово произведение областей значений от-
дельных компонент. Тогда область значений сама является интервальным брусом. Это
условие выполнено для множества (14), если интервальные величины, получающиеся
в результате различных измерений и входящие в разные компоненты вектор-функции,

ℱ(𝑋, 𝛽)

𝑦

Рис. 3. Проблема оценивания области значений вектор-функции
Fig. 3. Illustration to the problem when the range of values for a vector function is established
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являются независимыми друг от друга в том смысле, как это понимается в современном
интервальном анализе. Обычно считается, что это условие выполнено для интерваль-
ных результатов измерений, полученных в разные моменты времени (см. подробности
в [7, 18]).

Обозначим посредством 𝑓(𝑥𝑖1,𝑥𝑖2, . . . ,𝑥𝑖𝑚, 𝛽1, 𝛽2, . . . , 𝛽𝑙) область значений отображе-
ния 𝑓 при изменении первых 𝑚 аргументов в пределах интервалов 𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑚

соответственно, т. е. пусть

𝑓(𝑥𝑖1,𝑥𝑖2, . . . ,𝑥𝑖𝑚, 𝛽1, 𝛽2, . . . , 𝛽𝑙) :=

:=
{︀
𝑓(𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑚, 𝛽1, 𝛽2, . . . , 𝛽𝑙) | 𝑥𝑖1 ∈ 𝑥𝑖1, 𝑥𝑖2 ∈ 𝑥𝑖2, . . . , 𝑥𝑖𝑚 ∈ 𝑥𝑖𝑚

}︀
.

Эта область значений может быть найдена точно или же оценена объемлющим интерва-
лом с помощью методов интервального анализа. Ниже для простоты предположим, что
нам доступна точная интервальная оценка этого множества значений. Это в самом деле
реализуется на практике для линейных и некоторых частных случаев нелинейных отоб-
ражений (см. разд. 3). Тогда условиям (15) и (16) можно придать более конструктивный
характер.

Именно, точка 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑙)
⊤ принадлежит объединенному множеству реше-

ний 𝛯uni тогда и только тогда, когда(︀
𝑓(𝑋 𝑖1, 𝛽), 𝑓(𝑋 𝑖2, 𝛽), . . . , 𝑓(𝑋 𝑖𝑛, 𝛽)

)︀⊤ ∩ 𝑦 ̸= ∅,

или, в развернутой форме,⎛⎜⎜⎜⎜⎜⎝
𝑓(𝑥11,𝑥12, . . . ,𝑥1𝑚, 𝛽1, 𝛽2, . . . , 𝛽𝑙)

𝑓(𝑥21,𝑥22, . . . ,𝑥2𝑚, 𝛽1, 𝛽2, . . . , 𝛽𝑙)

... . . . ... . . . ...

𝑓(𝑥𝑛1,𝑥𝑛2, . . . ,𝑥𝑛𝑚, 𝛽1, 𝛽2, . . . , 𝛽𝑙)

⎞⎟⎟⎟⎟⎟⎠ ∩

⎛⎜⎜⎜⎜⎜⎝
𝑦1

𝑦2

...

𝑦𝑛

⎞⎟⎟⎟⎟⎟⎠ ̸= ∅.

Это утверждение является непосредственным обобщением критерия Бекка принадлеж-
ности объединенному множеству решений для интервальных линейных систем уравне-
ний (см. [7]).

Точка 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑙)
⊤ принадлежит допусковому множеству решений тогда

и только тогда, когда (︀
𝑓(𝑋 𝑖1, 𝛽), 𝑓(𝑋 𝑖2, 𝛽), . . . , 𝑓(𝑋 𝑖𝑛, 𝛽)

)︀⊤ ⊆ 𝑦,

или, в развернутой форме,⎛⎜⎜⎜⎜⎜⎝
𝑓(𝑥11,𝑥12, . . . ,𝑥1𝑚, 𝛽1, 𝛽2, . . . , 𝛽𝑙)

𝑓(𝑥21,𝑥22, . . . ,𝑥2𝑚, 𝛽1, 𝛽2, . . . , 𝛽𝑙)

... . . . ... . . . ...

𝑓(𝑥𝑛1,𝑥𝑛2, . . . ,𝑥𝑛𝑚, 𝛽1, 𝛽2, . . . , 𝛽𝑙)

⎞⎟⎟⎟⎟⎟⎠ ⊆

⎛⎜⎜⎜⎜⎜⎝
𝑦1

𝑦2

...

𝑦𝑛

⎞⎟⎟⎟⎟⎟⎠ . (17)

Для пересечения брусов и для включения одного бруса в другой, соответственно,
можно ввести количественные меры, так что тогда совместность или несовместность
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интервальной системы уравнений будет охарактеризована количественным образом.
Этот план был реализован в линейном случае в работах [10–13], и его результатом
являются так называемые распознающие функционалы множеств решений, специаль-
ные функции, с помощью которых можно дать количественную меру совместности или
несовместности интервальных уравнений. Фактически в этой статье мы распространя-
ем разработанную ранее технику на общий нелинейный случай.

Ниже мы подробно рассматриваем допусковое множество решений и связанную
с ним сильную совместность интервальных данных и параметров восстанавливаемой
функции, так как они обладают более благоприятными математическими свойствами
и смысл сильной совместности лучше соответствует реальному процессу измерений с по-
грешностями для входов и выходов какого-то объекта. Рассмотрим поэтому отношение
включения (17).

Пусть даны два интервала 𝑎, 𝑏 ⊂ R, причем 𝑎 ⊆ 𝑏. Как можно количественно оха-
рактеризовать “запас включения” интервала 𝑎 в интервал 𝑏, т. е. то, “насколько сильно”
𝑎 включен в 𝑏? Один из возможных естественных способов сделать это был предложен
в [20], и он заключается в следующем. Начнем равномерно “раздувать” меньший интер-
вал 𝑎 относительно его середины на величину 𝑡, т. е. организуем семейство интервалов
𝑎 + [−𝑡, 𝑡] для различных 𝑡 ∈ R, и отследим момент, когда включение получающегося
интервала в 𝑏 нарушится. Чем больше нужно будет взять значение 𝑡 для нарушения
включения 𝑎 + [−𝑡, 𝑡] ⊆ 𝑏, тем бо́льшим является резерв (запас) включения интервала
𝑎 в интервал 𝑏. В многомерном случае, если 𝑎 и 𝑏 — интервальные векторы, то эту
конструкцию можно применить покомпонентно.

Основываясь на сформулированных выше идеях, введем

Определение 3. Для интервальных векторов 𝑎, 𝑏 ∈ IR𝑛 резервом интервального
включения 𝑎 ⊆ 𝑏 (или же просто резервом) мы называем наибольшее число Rsv ∈ R,
такое что

𝑎+ [−Rsv ,Rsv ] · (1, 1, . . . , 1)⊤ ⊆ 𝑏.

Отметим, что это определение имеет смысл также при отрицательном Rsv, если все
арифметические операции и отношение включения рассматриваются в полной интер-
вальной арифметике Каухера KR (см. детали в [7]). Если Rsv < 0, то [−Rsv ,Rsv ] —
неправильный интервал из KR и абсолютное значение резерва показывает, насколько
сильно в отношении 𝑎 ⊆ 𝑏 левая часть далека от включения в правую. В целом смысл
понятия резерва вполне очевиден из его определения: если рассматриваемое включе-
ние истинно, то его “резерв” — это наибольший радиус интервала, на который можно
“раздуть” левую часть включения (или сузить правую), чтобы оно еще оставалось ис-
тинным. Если же рассматриваемое включение неверно, то мы всегда можем добить-
ся его выполнения, сужая левую часть, хотя для этого может понадобиться перейти
к неправильным интервалам. В этом случае резерв превращается в “дефицит включе-
ния” и показывает, насколько нужно сузить левую часть, чтобы она стала включаться
в правую или, что равносильно, насколько нужно раздуть правую часть, чтобы она
поглотила левую.

Выведем аналитическое представление для резерва Rsv. Если 𝑎 и 𝑏 — одномерные
интервалы, для которых 𝑎 ⊆ 𝑏, то 𝑎 ≥ 𝑏 и 𝑎 ≤ 𝑏, так что

Rsv = min
{︀
𝑎− 𝑏, 𝑏− 𝑎

}︀
. (18)
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Если 𝑎 и 𝑏 — интервальные 𝑛-векторы, для которых 𝑎 ⊆ 𝑏, то

Rsv = min
1≤𝑖≤𝑛

min
{︀
𝑎𝑖 − 𝑏𝑖, 𝑏𝑖 − 𝑎𝑖

}︀
. (19)

Выражения (18) и (19) не очень удобны для исследования, поскольку дают представ-
ление для резерва через концы интервалов, тогда как в определении резерва раздутие
и сужение интервалов 𝑎 и 𝑏 выполняются симметрично относительно их середин. Как
следствие, желательно иметь альтернативное представление резерва включения через
середины и радиусы интервалов.

Имеем

min
{︀
𝑎− 𝑏, 𝑏− 𝑎

}︀
= min

{︀
𝑎−mid 𝑏+ rad 𝑏,mid 𝑏+ rad 𝑏− 𝑎

}︀
=

= rad 𝑏+min
{︀
𝑎−mid 𝑏,mid 𝑏− 𝑎

}︀
=

= rad 𝑏−max
{︀
mid 𝑏− 𝑎,𝑎−mid 𝑏

}︀
=

= rad 𝑏−
⃒⃒
𝑎−mid 𝑏

⃒⃒
= rad 𝑏−

⃒⃒
mid 𝑏− 𝑎

⃒⃒
,

где использовано представление модуля интервала в виде |𝑎| = max {−𝑎,𝑎} (см. [7]).
Соответственно, для многомерного случая вместо (19) получаем следующее выражение
для резерва включения:

Rsv = min
1≤𝑖≤𝑛

{︀
rad 𝑏𝑖 −

⃒⃒
mid 𝑏𝑖 − 𝑎𝑖

⃒⃒}︀
.

Отталкиваясь от полученного выражения, можем переписать критерий (17) при-
надлежности точки допусковому множеству решений в следующем виде. Точка 𝛽 =
(𝛽1, 𝛽2, . . . , 𝛽𝑙)

⊤ принадлежит допусковому множеству решений интервальной системы
уравнений (9) тогда и только тогда, когда

min
1≤𝑖≤𝑛

{︁
rad𝑦𝑖 −

⃒⃒⃒
mid𝑦𝑖 − 𝑓

(︀
𝑋 𝑖:, 𝛽

)︀⃒⃒⃒}︁
≥ 0.

С другой стороны, даже отрицательные значения выражения в левой части имеют
смысл, так как они показывают “дефицит совместности” системы в точке 𝛽.

В силу сказанного будет удобно ввести специальную функцию

Tol (𝛽,𝑋,𝑦) = min
1≤𝑖≤𝑛

{︁
rad𝑦𝑖 −

⃒⃒⃒
mid𝑦𝑖 − 𝑓(𝑋 𝑖:, 𝛽)

⃒⃒⃒}︁
, (20)

которая зна́ком и величиной своих значений показывает совместность или несовмест-
ность точки 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑙)

⊤ с данными, 𝑋 и 𝑦, задачи восстановления зави-
симости и дает количественную меру этой совместности. Будем называть функцию
Tol : R𝑙 × IR𝑛×𝑚 × IR𝑛 → R, задаваемую посредством (20), распознающим функцио-
налом допускового множества решений 𝛯tol интервальной системы уравнений (9). Он
обладает следующим основным свойством:

Tol (𝛽,𝑋,𝑦) ≥ 0 ⇐⇒ 𝛽 ∈ 𝛯tol ,

т. е. зна́ком своих значений “распознает” принадлежность точки множеству решений.
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Отметим, что описанные выше конструкции ранее были детально разработаны для
линейного случая, когда восстанавливаемая функция имеет вид (7) и мы должны ре-
шать интервальную линейную систему вида (10)–(11). Распознающий функционал для
линейного случая имеет вид (см. [7, 11, 14])

Tol (𝛽,𝑋,𝑦) = min
1≤𝑖≤𝑛

{︃
rad𝑦𝑖 −

⃒⃒⃒⃒
⃒mid𝑦𝑖 −

𝑚∑︁
𝑗=1

𝑥𝑖𝑗𝛽𝑗

⃒⃒⃒⃒
⃒
}︃
, (21)

т. е. является специальным случаем функционала (20). Он обладает хорошими свой-
ствами, в частности, является вогнутой функцией.

2.3. Метод максимума совместности

Метод максимума совместности — это метод нахождения оценок параметров функ-
циональной зависимости по интервальным данным, основанный на нахождении точки,
обеспечивающей наибольшее значение совместности. Он опирается на нахождение без-
условного максимума (на всем пространстве R𝑙) распознающего функционала Tol.

Опираясь на вид восстанавливаемой зависимости (6) и интервальные данные (8),
организуем интервальную систему уравнений (9){︃

𝑓(𝑋 𝑖:, 𝛽) = 𝑦𝑖,

𝑖 = 1, 2, . . . , 𝑛,

где 𝑋 = (𝑥𝑖𝑗) — 𝑛×𝑚-матрица интервалов независимых переменных, 𝑦𝑖 — интервалы
значений функции, 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑙)

⊤ — вектор параметров функции (6). Организуем
распознающий функционал Tol (𝛽,𝑋,𝑦) вида (20) для допускового множества реше-
ний этой интервальной системы уравнений. Решая задачу безусловной максимизации
распознающего функционала, естественно приходим к методу оценивания параметров,
который и будем называть методом максимума совместности:

Оценкой параметров берем точку argmaxTol, в которой достигается
наибольшее значение распознающего функционала Tol.

В силу теории, изложенной в предшествующем разделе, найденная точка в самом
деле доставляет максимум совместности системе уравнений (9). Более точно:

— если max Tol ≥ 0, то эта точка лежит в непустом множестве параметров, сильно
совместных с данными;

— если max Tol < 0, то множество параметров, сильно совместных с данными, пусто,
но в этой точке минимизируется “несовместность” параметров и данных.

3. Восстановление дробно-линейной функции

Выше мы изложили метод максимума совместности для решения задачи восстанов-
ления зависимостей в общем виде для произвольных нелинейных функций. Здесь де-
тально рассмотрим конкретизацию метода максимума совместности для восстановле-
ния дробно-линейной функции по интервальным данным.
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3.1. Постановка задачи

Для описания зависимости дифференциального выхода по току 𝑊 (𝑡) от времени 𝑡
в электрохимическом процессе осаждения металлов ранее была предложена [16] дробно-
линейная функция

𝑊 (𝑡) =
𝑎𝑡+ 𝑏

𝑐𝑡+ 𝑑
(22)

с положительными параметрами 𝑎, 𝑏, 𝑐 и 𝑑. Необходимо найти эти параметры по ряду
измерений значений 𝑊𝑖 функции 𝑊 (𝑡) в заданные моменты времени 𝑡𝑖, 𝑖 = 1, 2, . . . , 𝑛.
При этом измерения значений функции сопровождаются погрешностями, для которых
известна только их максимальная абсолютная величина 𝛥 = 0.0175. Таким образом,
можно рассматривать получаемые значения 𝑊𝑖 как интервальные, обозначая их 𝑊 𝑖 =
[𝑊𝑖 −𝛥,𝑊𝑖 +𝛥], 𝑖 = 1, 2, . . . , 𝑛.

Более сложная ситуация связана с неточным заданием самих моментов времени
𝑡𝑖, которые также могут иметь интервальную неопределенность. В этом случае нужно
найти параметры 𝑎, 𝑏, 𝑐 и 𝑑 по набору данных (𝑡𝑖,𝑊 𝑖), 𝑖 = 1, 2, . . . , 𝑛.

Количество параметров в выражении (22) можно, очевидно, уменьшить до трех, по-
делив числитель и знаменатель на какой-то из ненулевых параметров. Будем считать
таким ненулевым параметром 𝑐, поскольку при его занулении дробно-линейная специ-
фика функции исчезает и она становится просто линейной. Иными словами, условие
𝑐 ̸= 0 требуется по существу рассмотрения дробно-линейной функции. Итак, будем
восстанавливать далее функциональную зависимость вида

𝑊 (𝑡) =
𝑎𝑡+ 𝑏

𝑡+ 𝑑
, (23)

зависящую от трех параметров 𝑎, 𝑏, 𝑑.
Метод максимума совместности, который мы применяем для решения поставленной

задачи, требует исследования множества решений интервальной системы уравнений,
построенной по обрабатываемым данным и восстанавливаемой зависимости. В нашем
случае она имеет вид ⎧⎪⎨⎪⎩

𝑎𝑡𝑖 + 𝑏

𝑡𝑖 + 𝑑
= 𝑊 𝑖,

𝑖 = 1, 2, . . . , 𝑛.

(24)

В слабой версии метода максимума совместности оценки параметров берутся из объ-
единенного множества решений этой интервальной системы, т. е. множества

𝛯uni =

{︂
(𝑎, 𝑏, 𝑑) ∈ R3

⃒⃒⃒
(∃𝑡𝑖 ∈ 𝑡𝑖)(∃𝑊𝑖 ∈ 𝑊 𝑖)

(︂
𝑎𝑡𝑖 + 𝑏

𝑡𝑖 + 𝑑
= 𝑊𝑖

)︂
, 𝑖 = 1, 2, . . . , 𝑛

}︂
, (25)

а в сильной версии — из допускового множества решений

𝛯tol =

{︂
(𝑎, 𝑏, 𝑑) ∈ R3

⃒⃒⃒
(∀𝑡𝑖 ∈ 𝑡𝑖)(∃𝑊𝑖 ∈ 𝑊 𝑖)

(︂
𝑎𝑡𝑖 + 𝑏

𝑡𝑖 + 𝑑
= 𝑊𝑖

)︂
, 𝑖 = 1, 2, . . . , 𝑛

}︂
. (26)

Для случая точного (неинтервального) задания моментов времени 𝑡𝑖, когда интер-
валы 𝑡𝑖 стягиваются в точки, интервальная система уравнений (24) принимает упро-
щенный вид ⎧⎪⎨⎪⎩

𝑎𝑡𝑖 + 𝑏

𝑡𝑖 + 𝑑
= 𝑊 𝑖,

𝑖 = 1, 2, . . . , 𝑛,

(27)



50 С.П. Шарый, Е.П. Шашкина

а ее объединенное и допусковое множества решений, т. е. множества (25) и (26), сов-
падают друг с другом. Но если интервальная неопределенность присутствует также
в значениях 𝑡𝑖, то объединенное множество решений и допусковое множество решений
отличаются друг от друга и аналогично отличаются друг от друга результаты примене-
ния слабой и сильной версий метода максимума совместности. Далее для случая интер-
вальных 𝑡𝑖 применим сильную версию метода максимума совместности, обладающую
лучшими свойствами и меньшей трудоемкостью получения оценки (см. подразд. 3.2
и 3.3).

3.2. Свойства распознающего функционала

Для выбора подходящих численных методов и эффективного нахождения максимума
распознающего функционала и нужно исследовать его свойства. Рассмотрим снача-
ла упрощенную ситуацию, когда моменты времени 𝑡𝑖 задаются точно. Распознающий
функционал множества решений (допускового или объединенного) для интервальной
системы уравнений (27) в соответствии с теорией, изложенной в разд. 2, имеет вид

Tol
(︀
(𝑎, 𝑏, 𝑑)⊤

)︀
= min

1≤𝑖≤𝑛

{︃
rad𝑊 𝑖 −

⃒⃒⃒⃒
⃒mid𝑊 𝑖 −

𝑎𝑡𝑖 + 𝑏

𝑡𝑖 + 𝑑

⃒⃒⃒⃒
⃒
}︃
. (28)

Оценка параметров 𝑎, 𝑏 и 𝑑 функции (22) по методу максимума совместности получается
как аргумент безусловного максимума этого распознающего функционала.

Трудоемкость решения задачи оптимизации существенно зависит от “рельефа” гра-
фика целевой функции и от того, сколько у нее локальных экстремумов и как они соот-
носятся друг с другом. Если какая-либо функция имеет кроме глобального экстремума
еще и отличные от него локальные экстремумы, то нахождение глобального оптимума
в этом случае, как правило, сильно затрудняется. Большое количество численных мето-
дов оптимизации предназначены для поиска только локальных экстремумов и факти-
чески должны опираться на информацию о том, что локальные экстремумы являются
одновременно и глобальными. Функции одного вещественного аргумента, обладающие
этим свойством, называются, как известно, унимодальными (этот термин происходит из
статистики). В многомерном случае понятие унимодальности почти не применяется, но
существуют другие равнозначные ему понятия, одним из которых мы и воспользуемся.

Напомним

Определение 4. Множество 𝑆 ⊆ R𝑙 называется выпуклым, если одновременно с
любыми двумя своими точками содержит отрезок прямой, который их соединяет. Ины-
ми словами, множество 𝑆 ⊆ R𝑙 называется выпуклым, если для любых 𝑥, 𝑦 ∈ 𝑆 и любого
𝜆 ∈ [0, 1] точка 𝜆𝑥+ (1− 𝜆)𝑦 также лежит в 𝑆.

Определение 5. Пусть 𝑆 — выпуклое множество в R𝑙. Функция 𝑓 : 𝑆 → R назы-
вается квазивогнутой, если для любых 𝑥, 𝑦 ∈ 𝑆 и 𝜆 ∈ [0, 1] выполняется неравенство

𝑓
(︀
𝜆𝑥+ (1− 𝜆)𝑦

)︀
≥ min{𝑓(𝑥), 𝑓(𝑦)}.

Квазивогнутые функции являются дальнейшим обобщением вогнутых функций.
В частности, если функция вогнута, т. е. если

𝑓
(︀
𝜆𝑥+ (1− 𝜆)𝑦

)︀
≥ 𝜆𝑓(𝑥) + (1− 𝜆)𝑓(𝑦) для 𝜆 ∈ [0, 1],

то она также квазивогнута, поскольку min{𝑓(𝑥), 𝑓(𝑦)} ≤ 𝜆𝑓(𝑥) + (1− 𝜆)𝑓(𝑦).
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Одним из полезных свойств квазивогнутых функций является тот факт, что по-
точечный минимум набора квазивогнутых функций — тоже квазивогнутая функция.
Далее нам потребуется свойство квазивогутных функций, эквивалентное их определе-
нию и основанное на понятии лебеговых множеств. Напомним, что для вещественного
числа 𝛼 лебеговыми множествами функции 𝑓 , соответствующими уровню 𝛼, называют
множества вида {𝑥 | 𝑓(𝑥) ≥ 𝛼} и {𝑥 | 𝑓(𝑥) ≤ 𝛼}. Справедливо

Свойство (см. [21]). Функция 𝑓(𝑥) : R𝑙 ⊇ 𝑆 → R, заданная на выпуклом множестве
𝑆, является квазивогнутой функцией тогда и только тогда, когда ее лебеговы множества
𝑓𝛼 = {𝑥 ∈ 𝑆 | 𝑓(𝑥) ≥ 𝛼} — выпуклые для любого 𝛼 ∈ R.

Предложение 1. Распознающий функционал Tol (𝑎, 𝑏, 𝑑), задаваемый с помощью
выражения (28), является квазивогнутой функцией переменной (𝑎, 𝑏, 𝑑)⊤ ∈ R3 в полу-
пространстве 𝑑 ≥ 0.

Доказательство. Покажем, что для любого вещественного числа 𝛼 лебегово мно-
жество уровня 𝛼 функционала Tol является выпуклым.

Выражение (28) для распознающего функционала имеет специфический вид: его
значение формируется как минимум значений семейства 𝑛 однотипных выражений,
которые стоят внутри фигурных скобок в (28). Будем называть их образующими рас-
познающего функционала. Если Tol (𝑎, 𝑏, 𝑑) ≥ 𝛼, то

rad𝑊 𝑖 −

⃒⃒⃒⃒
⃒mid𝑊 𝑖 −

𝑎𝑡𝑖 + 𝑏

𝑡𝑖 + 𝑑

⃒⃒⃒⃒
⃒ ≥ 𝛼, 𝑖 = 1, 2, . . . , 𝑛,

что равнозначно ⃒⃒⃒⃒
⃒mid𝑊 𝑖 −

𝑎𝑡𝑖 + 𝑏

𝑡𝑖 + 𝑑

⃒⃒⃒⃒
⃒ ≤ rad𝑊 𝑖 − 𝛼, 𝑖 = 1, 2, . . . , 𝑛.

Раскрывая модуль, получим

−rad𝑊 𝑖 + 𝛼 ≤ mid𝑊 𝑖 −
𝑎𝑡𝑖 + 𝑏

𝑡𝑖 + 𝑑
≤ rad𝑊 𝑖 − 𝛼, 𝑖 = 1, 2, . . . , 𝑛,

т. е.

mid𝑊 𝑖 − rad𝑊 𝑖 + 𝛼 ≤ 𝑎𝑡𝑖 + 𝑏

𝑡𝑖 + 𝑑
≤ mid𝑊 𝑖 + rad𝑊 𝑖 − 𝛼, 𝑖 = 1, 2, . . . , 𝑛.

Учитывая, что

mid𝑊 𝑖 − rad𝑊 𝑖 = 𝑊 𝑖 и mid𝑊 𝑖 + rad𝑊 𝑖 = 𝑊 𝑖,

в качестве промежуточного итога получаем

𝑊 𝑖 + 𝛼 ≤ 𝑎𝑡𝑖 + 𝑏

𝑡𝑖 + 𝑑
≤ 𝑊 𝑖 − 𝛼, 𝑖 = 1, 2, . . . , 𝑛. (29)

Вспомним, что по условию задачи параметр 𝑑 положителен. Моменты времени 𝑡𝑖 —
числа также положительные, так что все 𝑡𝑖+𝑑 > 0. Как следствие, можем умножить обе
части 𝑖-го двойного неравенства (29) на 𝑡𝑖 + 𝑑, и смысл нервенств при этом сохранится:

(𝑊 𝑖 + 𝛼)(𝑡𝑖 + 𝑑) ≤ 𝑎𝑡𝑖 + 𝑏 ≤ (𝑊 𝑖 − 𝛼)(𝑡𝑖 + 𝑑), 𝑖 = 1, 2, . . . , 𝑛.

После преобразований будем окончательно иметь
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑑 ≥ 0,

𝑡𝑖𝑎+ 𝑏− (𝑊 𝑖 − 𝛼)𝑑 ≤ (𝑊 𝑖 − 𝛼)𝑡𝑖,

𝑡𝑖𝑎+ 𝑏− (𝑊 𝑖 + 𝛼)𝑑 ≥ (𝑊 𝑖 + 𝛼)𝑡𝑖,

𝑖 = 1, 2, . . . , 𝑛,

Полученная система линейных алгебраических неравенств относительно переменных
𝑎, 𝑏 и 𝑑 задает в пространстве R3 пересечение 2𝑛 + 1 замкнутых полупространств, т. е.
выпуклое многогранное множество. В силу приведенного выше свойства мы доказали
квазивогнутость распознающего функционала. ■

Рассмотрим теперь общий случай, когда моменты времени 𝑡𝑖, в которые проводятся
измерения, неточны и сами имеют интервальную неопределенность. Иными словами, за-
даны интервалы 𝑡𝑖, 𝑖 = 1, 2 . . . , 𝑛, и теперь нужно рассматривать допусковое множество
решений интервальной системы уравнений (24) и его распознающий функционал ви-
да (20). При этом для вычисления значений функционала мы должны точно оценивать
область значений отображения 𝑓 из (20), которое в нашем конкретном случае является
функцией 𝑊 (𝑡) аргумента 𝑡 и имеет вид (23).

Чтобы получить с помощью интервальной техники точную область значений для
функции (22), т. е.

𝑊 (𝑡) =
𝑎𝑡+ 𝑏

𝑡+ 𝑑

на интервале 𝑡 ∈ 𝑡𝑖, можно использовать простой трюк. Выполним преобразования:

𝑎𝑡+ 𝑏

𝑡+ 𝑑
=

(𝑎𝑡+ 𝑎𝑑)− (𝑎𝑑− 𝑏)

𝑡+ 𝑑
= 𝑎− 𝑎𝑑− 𝑏

𝑡+ 𝑑
. (30)

Полученное выражение содержит лишь одно вхождение переменной 𝑡, а потому его есте-
ственное интервальное расширение по 𝑡 ∈ 𝑡𝑖 совпадает с точной областью значений. Как
следствие, распознающий функционал допускового множества решений интервальной
системы уравнений (24) можно взять в следующем виде, удобном для вычислений:

Tol (𝑎, 𝑏, 𝑑) = min
1≤𝑖≤𝑛

{︃
rad𝑊 𝑖 −

⃒⃒⃒⃒
⃒mid𝑊 𝑖 +

𝑎𝑑− 𝑏

𝑡𝑖 + 𝑑
− 𝑎

⃒⃒⃒⃒
⃒
}︃
. (31)

Предложение 2. Распознающий функционал Tol (𝑎, 𝑏, 𝑑), задаваемый с помо-
щью (31), является квазивогнутой функцией переменной (𝑎, 𝑏, 𝑑) в полупространстве
R3, задаваемом неравенством 𝑑 ≥ 0.

Доказательство. Снова будем опираться на приведенное выше свойство и пока-
жем, что для любого вещественного числа 𝛼 лебегово множество уровня 𝛼 функционала
Tol является выпуклым.

Если Tol (𝑎, 𝑏, 𝑑) ≥ 𝛼, то

rad𝑊 𝑖 −

⃒⃒⃒⃒
⃒mid𝑊 𝑖 +

𝑎𝑑− 𝑏

𝑡𝑖 + 𝑑
− 𝑎

⃒⃒⃒⃒
⃒ ≥ 𝛼, 𝑖 = 1, 2, . . . , 𝑛,

что равнозначно⃒⃒⃒⃒
⃒mid𝑊 𝑖 +

𝑎𝑑− 𝑏

𝑡𝑖 + 𝑑
− 𝑎

⃒⃒⃒⃒
⃒ ≤ rad𝑊 𝑖 − 𝛼, 𝑖 = 1, 2, . . . , 𝑛. (32)
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Вспомнив, что модуль интервала определяется как

|𝑎| = max{|𝑎|, |𝑎|},

можем переписать систему неравенств (32) в виде⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⃒⃒⃒⃒
mid𝑊 𝑖 +

𝑎𝑑− 𝑏

𝑡𝑖 + 𝑑
− 𝑎

⃒⃒⃒⃒
≤ rad𝑊 𝑖 − 𝛼,

⃒⃒⃒⃒
mid𝑊 𝑖 +

𝑎𝑑− 𝑏

𝑡𝑖 + 𝑑
− 𝑎

⃒⃒⃒⃒
≤ rad𝑊 𝑖 − 𝛼,

𝑖 = 1, 2, . . . , 𝑛.

Каждое отдельное неравенство в полученной системе далее рассматривается анало-
гично тому, как это сделано в доказательстве предложения 1, поскольку теперь интер-
вальности в них нет. Снова решением этой системы неравенств относительно
𝑎, 𝑏 и 𝑑 получаем пересечение полупространств в R3, т. е. выпуклое многогранное мно-
жество. ■

На практике измерения, выполненные в разные моменты времени, могут оказать-
ся неравноценными, так как условия их выполнения не вполне одинаковы и т. п. Для
учета этого обстоятельства можно ввести вектор положительных весовых множителей
𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛)

⊤, с помощью которого выражение для распознающего функциона-
ла (31) получит вид

Tol (𝑎, 𝑏, 𝑑) = min
1≤𝑖≤𝑛

{︃
𝑤𝑖

(︃
rad𝑊 𝑖 −

⃒⃒⃒⃒
⃒mid𝑊 𝑖 +

𝑎𝑑− 𝑏

𝑡𝑖 + 𝑑
− 𝑎

⃒⃒⃒⃒
⃒
)︃}︃

. (33)

3.3. Реализация и результаты

Из доказанной выше квазивогнутости функционала Tol следует, что восстановление па-
раметров искомой дробно-линейной зависимости, как аргумента максимума распозна-
ющего функционала, выполняется без больших трудностей. Квазивогнутая функция не
может иметь более одного локального максимума, хотя он может достигаться на “пла-
то”, т. е. множестве аргументов с ненулевой мерой. Для численного отыскания этого
максимума могут быть применены развитые методы негладкой выпуклой оптимизации
(см., к примеру, [22]).

Ранее первым автором для систем компьютерной математики Scilab, Matlab
и Octave была реализована программа tolsolvty [23], вычисляющая максимум рас-
познающего функционала (21) допускового множества решений для интервальных ли-
нейных систем уравнений. Мы адаптировали ее для нахождения максимума распозна-
ющего функционала допускового множества решений (26) для интервальной системы
уравнений (24), соответствующей дробно-линейным зависимостям. Кроме того, про-
грамма была переписана на языке программирования Python и вошла составной ча-
стью в популярную библиотеку интервальных вычислений IntvalPy [24]. С помощью
новой программы были найдены оценки коэффициентов 𝑎, 𝑏 и 𝑑 в дробно-линейной
функции (23) для ряда практических задач.

В табл. 1 представлен листинг наиболее важной части нашей программы — функ-
ции calcfg для вычисления значений максимизируемого распознающего функционала
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(обозначено идентификатором f) и его суперградиента (обозначено идентификатором
g). Для удобства программирования вектор аргументов распознающего функционала,
т. е. (𝑎, 𝑏, 𝑑)⊤, обозначен посредством x, так что x = (x[0], x[1], x[2])⊤. Предполагается,
что к моменту вызова этой программы определены переменные t, Wc и Wr, обозначаю-
щие соответственно интервальный вектор 𝑡 моментов времени, вектор середин и вектор
радиусов для интервального вектора 𝑊 результатов измерений функции. Кроме того,
должна быть задана переменная weight — вектор весовых коэффициентов для образу-
ющих распознающего функционала из выражения (33).

Помимо значений f и g функция calcfg вычисляет также вектор cn из значений об-
разующих распознающего функционала в найденной точке аргумента максимума. Век-
тор cn может оказаться полезным при более глубоком анализе результатов обработки
данных на предмет выявления “аномальных” измерений, которые являются выбросами
(промахами). Наконец, стоит пояснить, что в строках 17 и 19 применяется операция
“∼”, заменяющая в булевом векторе index нули на единицы и наоборот.

Опишем теперь результаты расчетов по восстановлению дробно-линейной зависимос-
ти для одного электрохимического эксперимента, выполненного в Институте высоко-
температурной электрохимии Уральского отделения Российской академии наук. Исход-
ные числовые данные этого эксперимента сведены в табл. 2, причем значения функции
𝑊 рассматриваются как базовые, вокруг которых далее строятся, как вокруг центров,
интервалы с радиусом 𝛥 = 0.0175. Исходная выборка содержала 63 измерения, но на
этапе предобработки 11 из них были определены как “возможные выбросы” и удалены
из выборки.

Для интервальных данных, полученных на основе табл. 2, была выполнена аппрок-
симация с помощью функции вида (23), т. е.

𝑊 (𝑡) =
𝑎𝑡+ 𝑏

𝑡+ 𝑑
.

Т а б л и ц а 1. Процедура-функция для вычисления значений распознающего функционала
и его суперградиента
Table 1. The function for computing the values of the recognizing functional and its supergradient

1 def calcfg ():
2 index = x >= 0
3 Wcm = Wc - (x[0]*t + x[1]) / (t + x[2])
4 infs , sups = Wcm.inf , Wcm.sup
5 cn = weight *(Wr - np.maximum(abs(infs),abs(sups)))
6 mc = np.argmin(cn)
7
8 tmc = t[mc]
9 dx1 = 1 / (tmc + x[2])

10 dx2 = tmc / (tmc + x[2])
11 dx3 = -(x[0]* tmc + x[1]) / (tmc + x[2]) **2
12 infg = np.array ([dx1.inf , dx2.inf , dx3.inf])
13 supg = np.array ([dx1.sup , dx2.sup , dx3.sup])
14
15 f = cn[mc]
16 if -infs[mc] <= sups[mc]:
17 g = weight[mc]*( infg*index + supg *(~ index))
18 else:
19 g = -weight[mc]*( supg*index + infg *(~ index))
20 return f, g
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Т а б л и ц а 2. Данные измерений параметров электрохимического эксперимента
Table 2. Measurement data of electrochemical experiment parameters

№ 𝑡 𝑊 № 𝑡 𝑊

1 0.7 0.79018 27 13.683 0.89509
2 1.2333 0.80252 28 14.25 0.90126
3 2.05 0.81349 29 14.8 0.89827
4 2.7333 0.82331 30 15.833 0.90408
5 3.3333 0.82331 31 16.35 0.89170
6 3.7 0.84740 32 17.017 0.91607
7 4.2833 0.84740 33 17.6 0.90408
8 4.6833 0.86012 34 18.283 0.91812
9 5.0667 0.85404 35 18.833 0.89827
10 5.4667 0.86012 36 19.533 0.92007
11 5.8833 0.86571 37 20.3 0.92702
12 6.25 0.84740 38 21.083 0.92857
13 7.15 0.87088 39 21.767 0.91812
14 7.55 0.86012 40 22.45 0.91812
15 8 0.87566 41 23.233 0.92857
16 8.3833 0.85404 42 24.017 0.92857
17 8.8 0.86571 43 24.85 0.93286
18 9.25 0.87566 44 25.767 0.93896
19 9.7 0.87566 45 26.683 0.93896
20 10.15 0.87566 46 27.667 0.94318
21 10.633 0.88424 47 28.717 0.94671
22 11.15 0.89170 48 29.567 0.93417
23 11.65 0.88809 49 30.75 0.95272
24 12.083 0.87088 50 31.983 0.95463
25 12.683 0.90674 51 37.267 0.96891
26 13.15 0.88010 52 45.617 0.98002

Рис. 4. Отрезки неопределенности и график функции 𝑊 (𝑡), соответствующей максимуму сов-
местности
Fig. 4. Uncertainty segments and graph of the function 𝑊 (𝑡), corresponding to the maximum
compatibility
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Фактически функция этого вида приближалась на временно́м интервале 𝑡 ∈ [0, 50]. Па-
раметры искомой функции были найдены методом максимума совместности с помощью
модифицированной версии программы tolsolvty, которая дала значения параметров
𝑎 = 16.237, 𝑏 = 1.0366 и 𝑑 = 20.323. Таким образом, искомая зависимость получает вид

𝑊 (𝑡) =
16.237𝑡+ 1.0366

𝑡+ 20.323
. (34)

Максимальное значение распознающего функционала, т. е., иными словами, мера
совместности исходных интервальных данных задачи и построенной функциональной
зависимости (34), равна

Tol
(︀
(16.237, 1.0366, 20.323)⊤

)︀
= 0.0008275.

Она положительна, так что допусковое множество решений (26) непусто, а найденная
оценка параметров (𝑎, 𝑏, 𝑑)⊤ лежит в нем и сильно совместна с данными.

4. Обобщения

Рассмотрим обобщение развитой выше техники восстановления функциональных зави-
симостей на дробно-линейные функции произвольного числа переменных, имеющие вид

𝑦 = 𝑦(𝑥1, 𝑥2, . . . , 𝑥𝑚) =
𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑚𝑥𝑚 + 𝑏

𝑐1𝑥1 + 𝑐2𝑥2 + . . .+ 𝑐𝑚𝑥𝑚 + 𝑑
, (35)

где 𝑥1, 𝑥2, . . . , 𝑥𝑚 — независимые переменные.
Пусть дан ряд измеренных значений 𝑥1, 𝑥2, . . . , 𝑥𝑚 и 𝑦, имеющих интервальную

неопределенность, т. е.
𝑥11, 𝑥12, . . . , 𝑥1𝑚, 𝑦1,

𝑥21, 𝑥22, . . . , 𝑥2𝑚, 𝑦2,
...

... . . . ...
...

𝑥𝑛1, 𝑥𝑛2, . . . , 𝑥𝑛𝑚, 𝑦𝑛,

(36)

причем результаты 𝑖-го измерения суть 𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑚, 𝑦𝑖. Требуется найти значения
параметров 𝑎1, 𝑎2, . . . , 𝑎𝑚, 𝑏, 𝑐1, 𝑐2, . . . , 𝑐𝑚, 𝑑, при которых функция (35) наилучшим об-
разом приближает данные (36). Как и ранее, исследуем сначала частный случай задачи,
когда значения независимых переменных 𝑥1, 𝑥2, . . . , 𝑥𝑚 задаются точно и интервальная
неопределенность присутствует только в значениях 𝑦.

В соответствии с теорией, развитой в подразд. 2.2 и 2.3, распознающий функционал
допускового множества решений интервальной системы уравнений (9), которая должна
решаться для определения параметров функции (35), выглядит следующим образом:

Tol (𝑎1, 𝑎2, . . . , 𝑎𝑚, 𝑏, 𝑐1, 𝑐2, . . . , 𝑐𝑚, 𝑑) =

= min
1≤𝑖≤𝑛

{︃
rad𝑦𝑖 −

⃒⃒⃒⃒
⃒mid𝑦𝑖 −

𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑚𝑥𝑚 + 𝑏

𝑐1𝑥1 + 𝑐2𝑥2 + . . .+ 𝑐𝑚𝑥𝑚 + 𝑑

⃒⃒⃒⃒
⃒
}︃
. (37)

Оценки параметров 𝑎1, 𝑎2, . . . , 𝑎𝑚, 𝑏, 𝑐1, 𝑐2, . . . , 𝑐𝑚, 𝑑 функции (35) по методу максимума
совместности получаются как аргументы безусловного максимума этого распознающего
функционала.
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Предложение 3. Распознающий функционал Tol : R2𝑚+2 → R, задаваемый
посредством (37), является квазивогнутой функцией переменной (𝑎1, 𝑎2, . . . , 𝑎𝑚, 𝑏, 𝑐1,
𝑐2, . . . , 𝑐𝑚, 𝑑) на любом выпуклом множестве из R2𝑚+2, на котором знаменатель выра-
жения (35) не обращается в нуль.

Доказательство. Оно фактически повторяет доказательство предложения 1 с той
лишь разницей, что тогда знаменатель дроби предполагался положительным, а сейчас
он может быть и отрицательным. ■

Перейдем теперь к общей ситуации, когда значения независимых переменных также
имеют интервальную неопределенность. Согласно теории, изложенной в разд. 2, распо-
знающий функционал допускового множества решений интервальной системы уравне-
ний (9) должен иметь в этом случае вид

Tol (𝑎1, 𝑎2, . . . , 𝑎𝑚, 𝑏, 𝑐1, 𝑐2, . . . , 𝑐𝑚, 𝑑) = min
1≤𝑖≤𝑛

{︁
rad𝑦𝑖−

⃒⃒⃒
mid𝑦𝑖−𝑦(𝑥𝑖1,𝑥𝑖2, . . . ,𝑥𝑖𝑚)

⃒⃒⃒}︁
, (38)

где 𝑦(𝑥𝑖1,𝑥𝑖2, . . . ,𝑥𝑖𝑚) — область значений дробно-линейной функции (35) на брусе
(𝑥𝑖1,𝑥𝑖2, . . . ,𝑥𝑖𝑚). Ее нахождение представляет основную трудность при работе с этим
распознающим функционалом, так как воспользоваться трюком (30) с преобразовани-
ем дробно-линейного выражения к единственному вхождению переменной мы уже не
можем. Тем не менее другие средства приводят к успеху и в этом случае.

Задача вычисления оптимальной интервальной оценки области значений дробно-
линейной функции вида (35) решена в работе [25], где построен алгоритм, имеющий
квадратичную по числу переменных трудоемкость. Его можно применить для вычис-
ления распознающего функционала (38).

Если количество 𝑚 переменных невелико, то для нахождения области значений вы-
ражения (35) можно воспользоваться следующими простыми соображениями. Рассмот-
рим производную дробно-линейной функции одной переменной 𝑥:(︂

𝑎𝑥+ 𝑏

𝑐𝑥+ 𝑑

)︂′

=
𝑎(𝑐𝑥+ 𝑑)− (𝑎𝑥+ 𝑏)𝑐

(𝑐𝑥+ 𝑑)2
=

𝑎𝑑− 𝑏𝑐

(𝑐𝑥+ 𝑑)2
.

Всюду для тех аргументов 𝑥, где знаменатель не зануляется, т. е. 𝑐𝑥 + 𝑑 ̸= 0, дробно-
линейная функция имеет производную одного знака, совпадающую со знаком выра-
жения 𝑎𝑑 − 𝑏𝑐. Им определяется характер возрастания или убывания функции.2 Если
𝑎𝑑− 𝑏𝑐 = 0, то производная зануляется и рассматриваемая функция является констан-
той. В любом случае минимум и максимум дробно-линейной функции одной переменной
достигаются на концах интервала области определения.

Далее, для отыскания минимума общего дробно-линейного выражения (35) (для
максимума рассуждения аналогичны) можно использовать то обстоятельство, что на-
хождение минимума по совокупности переменных сводится к последовательному на-
хождению минимумов по отдельным переменным:

min
𝑥1∈𝑥𝑖1,...,𝑥𝑚∈𝑥𝑖𝑚

𝑦(𝑥1, 𝑥2, . . . , 𝑥𝑚) = min
𝑥1∈𝑥𝑖1

min
𝑥2∈𝑥𝑖2

. . . min
𝑥𝑚∈𝑥𝑖𝑚

𝑦(𝑥1, 𝑥2, . . . , 𝑥𝑚).

Каждый из выписанных экстремумов достигается на концах соответствующего интер-
вала, т. е.

min
𝑥1∈𝑥𝑖1,...,𝑥𝑛∈𝑥𝑖𝑚

𝑦(𝑥1, 𝑥2, . . . , 𝑥𝑚) = min
𝑥1∈{𝑥𝑖1,𝑥𝑖1}

min
𝑥2∈{𝑥𝑖2,𝑥𝑖2}

. . . min
𝑥𝑛∈{𝑥𝑖𝑚,𝑥𝑖𝑚}

𝑦(𝑥1, 𝑥2, . . . , 𝑥𝑚). (39)

2Напомним, что дробно-линейная функция рассматриваемого нами вида (22) при условии 𝑎𝑑−𝑏𝑐 ̸= 0
называется невырожденной; см., к примеру, [26].
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Поэтому общий минимум можно найти, перебрав все 2𝑚 вершин бруса области опреде-
ления (𝑥𝑖1,𝑥𝑖2, . . . ,𝑥𝑖𝑚). Аналогично с максимумом выражения (22).

Предложение 4. Распознающий функционал Tol : R2𝑚+2 → R, задаваемый посред-
ством (38), является квазивогнутой функцией переменной (𝑎1, 𝑎2, . . . , 𝑎𝑚, 𝑏, 𝑐1, 𝑐2, . . . ,
𝑐𝑚, 𝑑) на любом выпуклом множестве, где знаменатель не обращается в нуль.

Доказательство. В силу представления (39) распознающий функционал (38) яв-
ляется нижней огибающей конечного семейства функционалов вида (37). Более точно,
в силу определения модуля интервала

Tol (𝑎1, 𝑎2, . . . , 𝑎𝑚, 𝑏, 𝑐1, 𝑐2, . . . , 𝑐𝑚, 𝑑) =

= min
1≤𝑖≤𝑛

min
𝑥1∈{𝑥𝑖1,𝑥𝑖1}

. . . min
𝑥𝑛∈{𝑥𝑖𝑚,𝑥𝑖𝑚}

{︃
rad𝑦𝑖 −

⃒⃒⃒⃒
⃒mid𝑦𝑖 −

𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑚𝑥𝑚 + 𝑏

𝑐1𝑥1 + 𝑐2𝑥2 + . . .+ 𝑐𝑚𝑥𝑚 + 𝑑

⃒⃒⃒⃒
⃒
}︃

=

= min
𝑥1∈{𝑥𝑖1,𝑥𝑖1}

1≤𝑖≤𝑛

. . . min
𝑥𝑛∈{𝑥𝑖𝑚,𝑥𝑖𝑚}

1≤𝑖≤𝑛

min
1≤𝑖≤𝑛

{︃
rad𝑦𝑖 −

⃒⃒⃒⃒
⃒mid𝑦𝑖 −

𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑚𝑥𝑚 + 𝑏

𝑐1𝑥1 + 𝑐2𝑥2 + . . .+ 𝑐𝑚𝑥𝑚 + 𝑑

⃒⃒⃒⃒
⃒
}︃
.

В предложении 3 обоснована квазивогнутость функций вида

min
1≤𝑖≤𝑛

{︃
rad𝑦𝑖 −

⃒⃒⃒⃒
⃒mid𝑦𝑖 −

𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑚𝑥𝑚 + 𝑏

𝑐1𝑥1 + 𝑐2𝑥2 + . . .+ 𝑐𝑚𝑥𝑚 + 𝑑

⃒⃒⃒⃒
⃒
}︃
.

Следовательно, их минимум по всем 𝑥1 ∈ {𝑥𝑖1,𝑥𝑖1}, . . . , 𝑥𝑛 ∈ {𝑥𝑖𝑚,𝑥𝑖𝑚}, 𝑖 = 1, 2, . . . , 𝑛,
т. е. нижняя огибающая, также квазивогнут. ■

Выводы

Главные итоги нашей работы таковы:
✓ Разработана теоретическая схема метода максимума совместности (сильная вер-

сия) для восстановления нелинейных функциональных зависимостей.
✓ Доказана квазивогнутость распознающего функционала допускового множества

решений для случая восстановления дробно-линейной функции, что дает возмож-
ность эффективно находить максимум функционала и быть уверенным в одно-
значности ответа.

✓ Программа tolsolvty для нахождения максимума распознающего функционала
допускового множества решений для интервальных линейных систем была моди-
фицирована под дробно-линейную задачу.

✓ Для конкретных данных электрохимического эксперимента найдены параметры
дробно-линейной функции, при которых эта функциональная зависимость обес-
печивает наилучшую аппроксимацию.
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Abstract

The paper addresses methods for the solution of curve fitting problem from inaccurate data that
have interval uncertainty, i. e. about which it is only known that they belong to some intervals of
possible values. Under these conditions, it is necessary to construct a functional dependence from
a given class that has the best possible consistency (compatibility) with the interval data. In order
to construct the required functional dependence, we develop the maximum compatibility method,
in which, to find the parameters of a function, it is required to maximize the so-called recognizing
functional of the solution set to an interval system of equations built from interval data and the
expression of the constructed function. A strong version of the maximum compatibility method is
preferred, as it is more practical and has better theoretical properties. Previously, a strong version
of the maximum compatibility method has successfully proven itself in solving data fitting for linear
function, from interval data.

In the theoretical part of the paper, a general approach to the nonlinear curve fitting problem is
proposed, and then the practically important fractional-linear function is discussed in more detail.
It is shown that the recognizing functional of the information set of the problem in this special
case is a quasi-concave function, so that its maximum is unique. In addition, the quasi-concavity
property radically simplifies the numerical maximization of the recognizing functional. As a practical
application, the problem of processing interval measurement data of the electrochemical process of
metal deposit formation is solved.

Finally, the paper considers a generalization of the proposed technique for constructing the
best fit linear-fractional functions from interval data applied to the case of an arbitrary number of
variables. We substantiate the quasi-concavity of the recognizing functional of the information set
for the problem arising in this case, which allows applying the developed methods of non-smooth
optimization for finding their maximums.

Keywords: data fitting problem, interval uncertainty, linear-fractional function, compatibility of
parameters and data, strong compatibility, maximum compatibility method, recognizing functional,
quasiconcavity.
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