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Для описания трехмерной конвекции в мантии Земли привлекается хорошо из-
вестная математическая модель, включающая уравнения Навье –Стокса в прибли-
жении Обербека – Буссинеска и геодинамическом приближении. Численная модель
конвекции в настоящей работе основывается на неявной реализации метода рас-
щепления по физическим процессам. Поля скорости и дефекта давления находятся
методом стационирования. На каждом слое по времени интегрируется уравнение
температуропроводности. Авторы применяют в качестве схемы интегрирования
неявную схему стабилизирующей поправки. Осуществляются итерации по нели-
нейности. Выполнено тестирование построенной численной модели путем решения
модельной задачи о конвекции в единичном кубе в жидкости с нелинейной вяз-
костью, соответствующей конвекции в общей мантии Земли. Результаты расчетов
хорошо согласуются с результатами этого теста. Однако в сравнении с разработан-
ной ранее численной моделью на основе неявного метода расщепления с коррекци-
ей давления для достижения сопоставимой точности расчетов при использовании
неявной реализации метода расщепления по физическим процессам требуется при-
мерно в два раза большее компьютерное время. Построен тест для задач конвекции
в верхней мантии Земли; приведены результаты численных экспериментов, под-
тверждающие его надежность. Основные числовые параметры теста выбирались
аналогичными параметрам в известном международном тесте для общемантийной
конвекции. Задача решалась с применением трех численных моделей, основанных
на неявных методах расщепления.
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Введение

Конвективные процессы в мантии Земли обусловлены гравитационным воздействием
на мантийный материал в совокупности с тепловой дифференциацией недр. Ключевым
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вопросом при изучении недр планеты является выяснение причин и условий, влияю-
щих на пространственно-временную эволюцию конвекции в мантии Земли, поскольку
именно эта характеристика во многом определяет кинематику литосферных плит и гео-
логическую историю развития континентальных областей. Численные модели трехмер-
ной конвекции в мантии Земли представлены в целом ряде работ [1–22] (там же можно
найти более подробную библиографию). Отметим работу [6], в которой для решения
модельной задачи о конвективном течении высоковязкой жидкости с вязкостью, зави-
сящей от температуры, построен численный метод, основанный на введении вектор-
ного потенциала скорости и применении метода конечных элементов со специальным
базисом из кубических сплайнов для расчета этого потенциала. Из недавно вышедших
отметим также работу [16], в которой в двумерном приближении рассчитана модель
мантийной конвекции с фазовыми переходами и неньютоновской вязкостью с внутрен-
ними источниками тепла. В работе [19] анализируется влияние сжимаемости вещества
и сферичности мантии на распределение температуры в различных моделях мантий-
ной конвекции. Приводится математическая модель, дающая усредненное по латерали
распределение температуры по глубине в основной части мантии, согласующееся с дан-
ными о термодинамических параметрах вещества мантии и значениями температуры
в реперных точках, связанных с фазовыми переходами. Вопросы математического мо-
делирования общемантийной конвекции (до глубины порядка 2900 км) обсуждаются
в [19, 21]. Отмечается, что в настоящее время остается существенная неопределенность
граничных значений температуры мантии на глубинах 2700–2850 км. Построен клас-
тер обработки геофизических данных в модели облачных технологий [20]. В качестве
примера решена задача о сферической мантийной конвекции с использованием данных
сейсмической томографии. Предложенная архитектура позволяет существенно сокра-
тить время расчетов.

Хорошо известно, что методы расщепления по физическим процессам и простран-
ственным переменным по-прежнему являются эффективными при решении задач гид-
родинамики [23, 24]. В настоящей работе анализируется применение не рассмотренного
авторами ранее неявного метода расщепления по физическим процессам к расчету мо-
дельных задач конвекции в мантии Земли в сопоставлении с неявным методом расщеп-
ления с коррекцией давления [23–27]. Продолжены численные эксперименты по разра-
ботке и тестированию численных моделей конвекции в мантии Земли. Осуществлено
сопоставление с рядом не рассмотренных ранее вариантов расчетов международного
теста [1]. Предложен тест для численных моделей конвекции в верхней мантии Земли.

1. Математическая постановка задачи

Для моделирования конвекции в верхней мантии Земли привлекается известная ма-
тематическая модель, включающая в себя обезразмеренные уравнения Навье – Стокса
в приближении Обербека –Буссинеска и геодинамическом приближении [28]:

∇V = 0, (1)
∇𝑝 = ∇𝜎 + (Ra𝑇 ) e, (2)
𝜕𝑇

𝜕𝑡
+∇(V𝑇 ) = ∇2𝑇, (3)

где V = (𝑣1, 𝑣2, 𝑣3) = (𝑢, 𝑣, 𝑤) — вектор скорости; 𝑝 — дефект давления; 𝜎 — тензор вяз-
ких напряжений; e=(0, 0, 1) — безразмерный единичный вектор; Ra=𝛼𝑔𝑧𝜌0𝑑

3∆𝑇/𝜂0𝜒 —
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число Рэлея; 𝛼 — температурный коэффициент расширения жидкости; 𝑔𝑧 — 𝑧-компо-
нента вектора ускорения силы тяжести g; ∆𝑇 — разность между температурой на по-
дошве верхней мантии и температурой на поверхности; 𝑑 — расстояние от поверхности
Земли до нижнемантийной границы; 𝜒 — коэффициент температуропроводности; 𝜌0,
𝜂0 — характерные значения плотности 𝜌 и динамической вязкости 𝜂 соответственно.
Плотность жидкости считается линейной функцией температуры.

В связи с тем, что ниже будут приведены результаты тестирования численных мо-
делей, сформулируем постановку модельной задачи [1]. В декартовой прямоугольной
системе координат в прямоугольном параллелепипеде

Π = [0, 𝑋]× [0, 𝑌 ]× [0, 𝑍] (4)

для компонент вектора скорости и температуры ставились граничные условия

𝑥 = 0, 𝑥 = 𝑋, 0 ≤ 𝑦 ≤ 𝑌, 0 ≤ 𝑧 ≤ 𝑍,

𝑢 =
𝜕𝑣

𝜕𝑥
=

𝜕𝑤

𝜕𝑥
=

𝜕𝑇

𝜕𝑥
= 0,

𝑦 = 0, 𝑦 = 𝑌, 0 ≤ 𝑥 ≤ 𝑋, 0 ≤ 𝑧 ≤ 𝑍,

𝑣 =
𝜕𝑢

𝜕𝑦
=

𝜕𝑤

𝜕𝑦
=

𝜕𝑇

𝜕𝑦
= 0,

𝑧 = 0, 0 ≤ 𝑥 ≤ 𝑋, 0 ≤ 𝑦 ≤ 𝑌,

𝑢 = 𝑣 = 𝑤 = 0, 𝑇 = 1,

𝑧 = 𝑍, 0 ≤ 𝑥 ≤ 𝑋, 0 ≤ 𝑦 ≤ 𝑌,

𝑢 = 𝑣 = 𝑤 = 𝑇 = 0.

(5)

К системе дифференциальных уравнений (1)–(3) необходимо также добавить началь-
ное распределение температуры 𝑇 (𝑥, 𝑦, 𝑧, 0) = 𝑇 (𝑥, 𝑦, 𝑧). Ввиду стационарности уравне-
ний (1), (2) давление и компоненты вектора скорости при 𝑡 = 0 не задаются.

На рис. 1 схематически изображена расчетная область. Условия (5) можно проком-
ментировать следующим образом. Для вектора скорости на боковых гранях задаются

Рис. 1. Схема расчетной области
Fig. 1. Scheme of the calculation area
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условия проскальзывания, а на нижней и верхней — условия прилипания. Для тем-
пературы на боковых гранях ставятся условия теплоизоляции (адиабатическая стен-
ка), т. е. первые нормальные производные на вертикальных стенках равны нулю. На
верхней и нижней гранях ставятся условия Дирихле: нулевая температура на верхней
и 𝑇 = 𝑇0 = 1 на нижней. Размерные значения 𝑇0: 1800 ∘C для верхней мантии и 2700 ∘C
для всей мантии.

1. Численное моделирование, основанное на решении системы дифференциальных
уравнений (1)–(3) с применением неявного метода расщепления по пространствен-
ным переменным с поправкой давления, осуществлялось по следующему алгорит-
му [12, 22–27]:

𝑣𝑖 − 𝑣𝑚,𝑛
𝑖

∆𝜏𝑣
= −

(︂
𝜕𝑝

𝜕𝑥𝑖

)︂𝑚,𝑛

ℎ

+

(︂
𝜕

𝜕𝑥𝑘

𝜂𝑚
(︂
𝜕𝑣𝑖
𝜕𝑥𝑘

+
𝜕𝑣𝑚,𝑛

𝑘

𝜕𝑥𝑖

)︂)︂
ℎ

+ Ra𝑇𝑚𝑒𝑖, (6)

∇2
ℎ(𝛿𝑝) =

(∇Ṽ)ℎ
∆𝜏𝑣

, (7)

(𝛿𝑝) = 𝑝𝑚,𝑛+1 − 𝑝𝑚,𝑛, (8)

V𝑚,𝑛+1 − Ṽ

∆𝜏𝑣
= −∇ℎ(𝛿𝑝)

𝑚,𝑛+1, (9)

𝑇𝑚+1 = 𝑇𝑚 −∆𝑡
(︀
∇(V𝑚,𝑛+1𝑇𝑚+1)−∇2𝑇𝑚+1

)︀
ℎ
. (10)

Здесь ∆𝑡 — величина шага сетки по времени; 𝑚 — номер временно́го слоя; 𝑛 — номер
итерации; ∆𝜏𝑣 — величина итерационного параметра для вычислений вектора скорос-
ти (6); ∆𝜏𝑝 — величина итерационного параметра для решения задачи Неймана при
решении уравнения Пуассона для разности давления 𝛿𝑝 (7) (или давления 𝑝 во вто-
ром случае — см. ниже формулу (11)), индекс ℎ означает сеточный аналог выражения
в скобках; x = (𝑥1, 𝑥2, 𝑥3) = (𝑥, 𝑦, 𝑧).

Численная реализация алгоритма сводится к выполнению следующих этапов (с при-
менением схемы стабилизирующей поправки и как схемы интегрирования, и как ите-
рационной схемы).

• На первом этапе находится промежуточное поле скорости из векторного уравне-
ния (6).

• Методом стационирования из уравнения (7) рассчитывается поле разности давле-
ний (𝛿𝑝)

(𝛿𝑝)𝑠+1 − (𝛿𝑝)𝑠

∆𝜏𝑝
= ∇2

ℎ(𝛿𝑝)
𝑠+1 − (∇Ṽ)ℎ

∆𝜏𝑣

с условиями Неймана на границах до тех пор, пока не будет выполнено условие
сходимости по внутреннему индексу 𝑠 (расчет производится на слое 𝑚 по времени
и на слое 𝑛 по фиктивному времени для компонент вектора скорости). Итераци-
онный процесс заканчивается, если выполнено условие

max
𝑖,𝑗,𝑘

⃒⃒
(𝛿𝑝)𝑚,𝑛,𝑠+1

𝑖,𝑗,𝑘 − (𝛿𝑝)𝑚,𝑛,𝑠
𝑖,𝑗,𝑘

⃒⃒
max
𝑖,𝑗,𝑘

⃒⃒
(𝛿𝑝)𝑚,𝑛,𝑠

𝑖,𝑗,𝑘

⃒⃒ < 𝜀, (11)

где 𝜖 > 0 — малая положительная величина (𝜖 = 0.00001). После выполнения
условия сходимости (11) из уравнения (8) вычисляется давление на (𝑛+1)-м слое:

𝑝𝑚,𝑛+1 = (𝛿𝑝)𝑚,𝑛,𝑠+1 + 𝑝𝑚,𝑛.
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• Из уравнения (9) отыскивается окончательное поле скорости на итерационном
слое 𝑛+ 1 для временного слоя 𝑚.

• Путем решения уравнения (10) с шагом по времени ∆𝑡 вычисляется поле темпе-
ратуры на временном слое 𝑚 + 1. Процесс повторяется до некоторого значения
𝑡𝑀 = 𝑀∆𝑡, 𝑚 = 1, 2, . . . ,𝑀 .

2. Расчеты с применением неявной версии метода расщепления по физическим про-
цессам осуществляются по схеме [26]

𝑣𝑖 − 𝑣𝑚,𝑛
𝑖

∆𝜏𝑣
=

[︂
𝜕

𝜕𝑥𝑘

𝜂𝑚
(︂
𝜕𝑣𝑖
𝜕𝑥𝑘

+
𝜕𝑣𝑚,𝑛

𝑘

𝜕𝑥𝑖

)︂]︂
ℎ

+ Ra𝑇𝑚𝑒𝑖, (12)

∇2
ℎ𝑝 =

(∇Ṽ)ℎ
∆𝜏𝑣

, (13)

V𝑚,𝑛+1 − Ṽ

∆𝜏𝑣
= −∇ℎ𝑝

𝑚,𝑛+1, (14)

𝑇𝑚+1 = 𝑇𝑚 −∆𝑡(∇(V𝑚,𝑛+1𝑇𝑚+1)−∇2𝑇𝑚+1)ℎ.

На первом шаге (12) находится промежуточное значение вектора скорости без учета
давления. На втором (13) — решается задача Неймана для уравнения Пуассона для
давления:

(𝑝)𝑠+1 − (𝑝)𝑠

∆𝜏𝑝
= ∇2

ℎ(𝑝)
𝑠+1 − (∇Ṽ)ℎ

∆𝜏𝑣
.

Здесь ∆𝜏𝑝 — величина итерационного параметра при решении задачи Неймана уравне-
ния Пуассона (13). На следующем шаге (14) уточняются компоненты вектора скорос-
ти. По-прежнему схема стабилизирующей поправки используется и как итерационная,
и как схема интегрирования.

Последовательность вычислений аналогична предыдущему случаю.

2. Некоторые результаты тестирования численных моделей
трехмерных конвективных течений в мантии Земли

2.1. Общемантийная конвекция

Размерные значения (в системе СИ), которые использованы в [1] и в настоящей работе
для всей мантии: 𝑑 = 2700 000 м, ∆𝑇 = 3700 ∘C, 𝜒 = 10−6 м2/с, 𝛼 = 10−5 (∘C)−1,
𝜌 = 3300 кг/м3, 𝑔𝑧 = 10 м/с2, 𝜂0 = 1.2065 · 1024 кг/(м·с).

В качестве начального распределения температуры 𝑇 принято [1]:

𝑇 (𝑥, 𝑦, 𝑧) = (1− 𝑧) + 0.2
(︁
cos

𝜋𝑥

𝑋
+ cos

𝜋𝑦

𝑌

)︁
sin(𝜋𝑧).

Поле обезразмеренной переменной вязкости задавалось формулой

𝜂(𝑇 )=exp

(︂
𝜃

𝑇+Θ
− 𝜃

0.50+Θ

)︂
, 𝜃=

225

ln(𝑞)
− 0.25 ln(𝑞), Θ=

15

ln(𝑞)
− 0.50, 𝑞=

𝜂|𝑇=0

𝜂|𝑇=1

=20.

При сопоставлении с [1] расчеты производились в прямоугольном параллелепипе-
де (4), в котором 𝑋 = 𝑌 = 𝑍 = 1. Учитывая масштабный множитель при вязкости
𝜂0 = 1.2065 · 1024 кг/(м·с), получим число Рэлея Ra = 20 000. В задаче [1] с переменной
вязкостью вычислялись характерные величины, приведенные в табл. 1. Вычисления
проводились на равномерной сетке с числом узлов 33×33×65. Результаты численных
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Т а б л и ц а 1. Вычисляемые параметры тестирования
Table 1. Calculated test parameters

№ п/п Параметр

1
Число Нуссельта по формуле Nu = −(𝑋𝑌 )−1

∫︁∫︁
𝑆top

𝜕𝑇

𝜕𝑧
𝑑𝑥𝑑𝑦, где 𝑆top — верхняя

поверхность параллелепипеда

2
Среднеквадратичная скорость 𝑉𝑟𝑚𝑠 =

⎯⎸⎸⎷ 1

𝑋𝑌 𝑍

∫︁∫︁∫︁
𝐴

(𝑢2 + 𝑣2 + 𝑤2)𝑑𝑥𝑑𝑦𝑑𝑧, где

𝐴 — объем параллелепипеда со сторонами 𝑋, 𝑌 , 𝑍 = 1

3 Значение вертикальной компоненты скорости 𝑤 и температуры 𝑇 в угловых точках
среднего сечения конвективного слоя

4 Значение теплового потока 𝑄=−𝜕𝑇/𝜕𝑧 в угловых точках верхней поверхности куба

5
Интегральный параметр, вычисляемый по формуле 𝜆(𝑥, 𝑧) =

𝑌∫︁
0

𝜕𝑇

𝜕𝑧
𝑑𝑦 вдоль линий,

параллельных оси 𝑌 : от точки (0, 0, 1/4) до точки (0, 1, 1/4), от точки (1/2, 0, 1/4)
до (1/2, 1, 1/4) и от точки (1, 0, 1/4) до точки (1, 1, 1/4)

6
Средняя температура 𝑇𝑚 =

∫︁∫︁
𝑆𝑧

𝑇𝑑𝑥𝑑𝑦, вычисляемая на горизонтальных сечениях

области 𝑆𝑧=0.75 и 𝑆𝑧=0.50 на глубинах 𝑧 = 3/4 и 𝑧 = 1/2

7 Значения высоты рельефа 𝐻𝑧 в углах вычислительной области, м
8 Значение вертикальной компоненты вектора завихренности в точке (3/4, 1/2, 3/4)

экспериментов представлены в табл. 2, где Chr — расчетные данные Кристенсена (наи-
более полные из [1]); MCP — расчеты авторов на основе алгоритма с коррекцией давле-
ния; MFP — расчеты авторов с применением неявной реализации метода расщепления
по физическим процессам.

Ошибка Err вычислялась по формуле

Err =
⃒⃒⃒⃒
Test − Method

Test

⃒⃒⃒⃒
· 100%,

где Method — это расчеты на основе MCP либо MFP; Test — на основе Chr (табл. 2)
либо Che — результаты расчетов авторов с применением неявной версии метода искус-
ственной сжимаемости (табл. 3 и 4). Результаты расчетов близки. Однако, как показали
численные эксперименты, вычисления по неявной реализации метода расщепления по
физическим процессам до достижения представленной точности требовали примерно
в два раза больше компьютерного времени. Значительно уменьшились диапазоны ва-
рьирования шага по времени ∆𝑡 и итерационных параметров ∆𝜏𝑝, ∆𝜏𝑣. По-видимому,
такая ситуация обусловлена отсутствием свойства полной аппроксимации у неявного
метода расщепления по физическим процессам.

В настоящей работе расчеты проводились также и в условиях теста M. Огавы
(М.Ogawa), одного из соавторов статьи [1], который предложил для вычислений рас-
ширенную область с соотношениями по направлениям 𝑥 и 𝑦, равными 3𝑋, 3𝑌 и 𝑍 = 1.

На рис. 2 сопоставляются результаты расчетов авторов и М.Огавы для вариан-
та переменной вязкости. Расчеты выполнены на равномерной сетке с числом узлов
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Т а б л и ц а 2. Сопоставление результатов Busse при 𝑑 = 2700 км, Ra = 20 000
Table 2. Comparison of Busse results at 𝑑 = 2700 km, Ra = 20 000

Параметр Chr MCP Err, % MFP Err, %
Nu 3.0393 3.0430 0.1219 3.0974 1.8760
𝑉𝑟𝑚𝑠 35.1300 35.0419 0.2515 35.6258 1.3918

𝑇 (0, 0, 1/2) 0.9053 0.9056 0.0388 0.9089 0.3970
𝑇 (0, 1, 1/2) 0.4957 0.4992 0.7179 0.4987 0.6047
𝑇 (1, 1, 1/2) 0.2393 0.2413 0.8305 0.2407 0.6207
𝑤(0, 0, 1/2) 165.9000 164.3950 0.9154 168.4820 1.5328
𝑤(0, 1, 1/2) −26.7200 −26.1664 2.1159 −27.0296 1.1455
𝑤(1, 1, 1/2) −58.2300 −58.0118 0.3761 −59.0306 1.3563
𝑄(0, 0) 0.5059 0.5052 0.1385 −0.5079 0.3917
𝑄(0, 1) 0.1921 0.1895 1.3825 −0.1961 2.0191
𝑄(1, 1) 0.1388 0.1357 2.2977 −0.1377 0.8149
𝑇𝑚(3/4) 0.5659 0.5638 0.3757 0.5690 0.5361
𝑇𝑚(1/2) 0.5816 0.5824 0.1424 0.5840 0.4083
𝜆(0, 1/4) 5.8339 5.8056 0.4882 5.9550 2.0329
𝜆(1/2, 1/4) 1.7136 1.7332 1.1290 1.7216 0.4637
𝜆(1, 1/4) 0.7684 0.7792 1.3888 0.7668 0.2085

𝜔𝑧(3/4, 1/4, 3/4) −11.1250 −10.9808 1.3133 −11.4215 2.5958
𝐻𝑧(0, 0, 1) 10 838.0000 10 795.2000 0.3967 10 597.7000 2.2679
𝐻𝑧(0, 1, 1) −3908.0000 −4101.3700 4.7147 −3972.1100 1.6140
𝐻𝑧(1, 1, 1) −12 480.0000 −12 745.0000 2.0791 −12 175.9000 2.4975

Т а б л и ц а 3. Сопоставление результатов авторов при 𝑑 = 700 км, Ra = 20 000
Table 3. Comparison of the authors’ results at 𝑑 = 700 km, Ra = 20 000

Параметр Chе MCP Err, % MFP Err, %
Nu 2.0604 2.0598 0.0285 2.0972 1.7555
𝑉𝑟𝑚𝑠 13.7104 13.7075 0.0209 13.9715 1.8689

𝑇 (0, 0, 1/2) 0.7908 0.7894 0.1765 0.7956 0.5992
𝑇 (0, 1, 1/2) 0.2487 0.2487 0.0351 0.2476 0.4156
𝑇 (1, 1, 1/2) 0.1088 0.1088 0.0079 0.1076 1.1378
𝑤(0, 0, 1/2) 63.4244 63.1805 0.3860 65.0906 2.5599
𝑤(0, 1, 1/2) −7.2279 −7.2096 0.2540 −7.4178 2.5596
𝑤(1, 1, 1/2) −10.2565 −10.2501 0.0625 −10.4727 2.0645
𝑄(0, 0) −1.1540 −1.1542 0.0093 −1.1558 0.1508
𝑄(0, 1) −1.5146 −1.5144 0.0105 −1.5099 0.3122
𝑄(1, 1) −1.7274 −1.7271 0.0139 −1.7188 0.4996
𝑇𝑚(3/4) 0.2923 0.2921 0.0732 0.2948 0.8557
𝑇𝑚(1/2) 0.3123 0.3124 0.0431 0.3130 0.2135
𝜆(0, 1/4) 6.0523 6.0851 0.5381 6.2090 2.5225
𝜆(1/2, 1/4) 0.7369 0.7389 0.2820 0.7468 1.3369
𝜆(1, 1/4) 0.2161 0.2161 0.0161 0.2169 0.3664

𝜔𝑧(3/4, 1/4, 3/4) −4.8476 −4.8213 0.5465 −4.9173 1.4170
𝐻𝑧(0, 0, 1) 1187.0800 1172.9800 1.2026 1168.7900 1.5651
𝐻𝑧(0, 1, 1) −361.9130 −355.1840 1.8946 −345.3380 4.7999
𝐻𝑧(1, 1, 1) −861.1850 −853.0450 0.9543 −834.3620 3.2148
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65×65×129 с применением метода расщепления по физическим процессам. Можно ви-
деть хорошее согласие. Ранее [29] отмечалось хорошее согласие расчетов М. Огавы [1]
и расчетов авторов по схеме (6)–(10) с коррекцией давления. Неявная схема расщепле-
ния по физическим процессам требует примерно в два раза больше машинного времени
в сравнении с неявным методом при коррекции давления.

Т а б л и ц а 4. Сопоставление результатов авторов при 𝑑 = 700 км, Ra = 200 000
Table 4. Comparison of the authors’ results at 𝑑 = 700 km, Ra = 200 000

Параметр Chе MCP Err, % MFP Err, %
Nu 3.7140 3.6747 1.0582 3.7898 2.0409
𝑉𝑟𝑚𝑠 55.4932 54.6256 1.5634 56.3206 1.4910

𝑇 (0, 0, 1/2) 0.8149 0.8073 0.9326 0.8163 0.1718
𝑇 (0, 1, 1/2) 0.2020 0.2009 0.5446 0.2063 2.1287
𝑇 (1, 1, 1/2) 0.0944 0.0934 1.0593 0.0969 2.6483
𝑤(0, 0, 1/2) 443.0000 433.9810 2.0359 446.7170 0.8391
𝑤(0, 1, 1/2) −21.0000 −20.8308 0.8057 −21.1528 0.7276
𝑤(1, 1, 1/2) −45.7566 −45.6074 0.3261 −46.8730 2.4399
𝑄(0, 0) −1.3369 −1.3401 0.2394 −1.3554 1.3838
𝑄(0, 1) −1.1035 −1.0953 0.7431 −1.0991 0.3987
𝑄(1, 1) −0.9741 −0.9689 0.5338 −0.9657 0.8623
𝑇𝑚(3/4) 0.2701 0.2700 0.0370 0.2767 2.4435
𝑇𝑚(1/2) 0.2373 0.2345 1.1799 0.2408 1.4749
𝜆(0, 1/4) 15.0200 14.5908 2.8575 15.4558 2.9015

𝜆(1/2, 1/4) 1.1391 1.1315 0.6672 1.1677 2.5108
𝜆(1, 1/4) 0.3590 0.3707 3.2591 0.3537 1.4763

𝜔𝑧(3/4, 1/4, 3/4) −11.0000 −11.1332 1.2109 −11.3603 3.2755
𝐻𝑧(0, 0, 1) 906.2890 883.8920 2.4713 900.5250 0.6360
𝐻𝑧(0, 1, 1) −274.7800 −279.3020 1.6457 −283.4540 3.1567
𝐻𝑧(1, 1, 1) −579.5500 −578.0870 0.2524 −587.0770 1.2988

а б

Рис. 2. Результаты расчетов варианта переменной вязкости: линии 𝑇 = const соответствуют
𝑧 = 0.5; а — расчеты М. Огавы; б — результаты авторов
Fig. 2. The calculation results for case of the variable viscosity: lines 𝑇 = const corresponding to
𝑧 = 0.5; а — calculations of M. Ogawa, б — the authors’ results
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2.2. Верхняя мантия Земли

Представим сформулированный по аналогии с [1] тест для верхней мантии. Основные
параметры задачи в системе СИ для верхней мантии выбирались следующими:

𝑑 = 700 000 м, ∆𝑇 = 1800 ∘C, 𝜒 = 10−6 м2/с, 𝛼 = 2 · 10−5 (∘C)−1,

𝜌0 = 3300 кг/м3, 𝑔𝑧 = 10 м/с2, 𝜂0 = 1.01871 · 1022 кг/(м·с), Ra = 20 000.
(15)

Обезразмеренная переменная вязкость для верхней мантии задавалось формулой
(см. рис. 3)

𝜂(𝑥, 𝑦, 𝑧, 𝑡) = exp(𝑏(1− 𝑧)− 𝑎𝑇 (𝑥, 𝑦, 𝑧, 𝑡)), (16)

𝑎 = 3.89, 𝑏 = 5.84.

Основные характеристики задачи для верхней мантии (см. табл. 3, столбец 2) пред-
варительно получены с помощью решения задачи неявной версией метода искусствен-
ной сжимаемости [13] на двух сетках (65×65×129 и 129×129×257) с последующей экс-
траполяцией по Ричардсону по формуле

Φ2,1
𝑖,𝑗,𝑘 =

4Φ2
2𝑖−1,2𝑗−1,2𝑘−1 − Φ1

𝑖,𝑗,𝑘

3
, 𝑖, 𝑗, 𝑘 — номера узлов сетки.

Эта новая задача решалась также методом (Ψ−Ω) [7–11] и неявным методом рас-
щепления по пространственным переменным с коррекцией давления [12, 22]. Все три
вышеупомянутые численные модели дали практически совпадающие параметры из на-
бора параметров теста [1] с переменной вязкостью (16). В настоящей работе для ре-
шения задачи привлекался также неявный метод расщепления по физическим про-
цессам (12)–(14). Сопоставление результатов с результатами, полученными методом
расщепления по пространственным переменным с коррекцией давления, приведены
в табл. 3.

Таким образом, в роли тестового решения выступает вышеупомянутое решение на
последовательности двух сеток с экстраполяцией по Ричардсону. Согласие достаточ-
но хорошее. В изложенных выше тестовых расчетах число Рэлея Ra = 20 000, однако

Рис. 3. Вязкость, вычисленная по (16) при 𝑡 = 0, на горизонтальной оси, на вертикальной —
глубина
Fig. 3. The viscosity calculated by (16) at 𝑡 = 0 on the horizontal axis, on the vertical — the depth
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при численном моделировании реальных задач [11] приходится проводить расчеты при
Ra = 200 000. В настоящей работе сформулирован тест и для этого числа Рэлея; такое
число Ra достигалось в условиях (15), но при 𝜂0 = 1.01871 · 1021 кг/(м·с). Тестовое ре-
шение (как и в табл. 3) формировалось на основе неявной версии метода искусственной
сжимаемости на двух сетках с последующей экстраполяцией по Ричардсону. Результа-
ты расчетов (см. табл. 4) с применением существенно различающихся методов близки,
что свидетельствует о надежности числовых данных.

Заключение

Разработана численная модель конвекции в мантии Земли, основанная на неявном ме-
тоде расщепления по физическим процессам. Результаты расчетов с ее применением хо-
рошо согласуются с результатами известного международного теста по общемантийной
конвекции и расчетами на основе других численных моделей авторов, однако требуется
значительно (примерно в два раза) большее компьютерное время в сравнении с рас-
четами по неявному методу расщепления с коррекцией давления. Построен тест для
численных моделей конвективных течений в верхней мантии Земли, соответствующий
двум значениям числа Рэлея: Ra = 20 000 и Ra = 200 000.
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Abstract
To describe three-dimensional convection in the Earth’s mantle, a well-known mathematical

model is used, which includes the Navier – Stokes equations in the Oberbeck – Boussinesq approxima-
tion and the geodynamic approximation. The numerical model of convection in this paper is based
on the implicit implementation of the splitting method by physical processes. The velocity field and
the pressure defect on each layer are determined in time by the stationing method. At each layer, it
is necessary to integrate the thermal conductivity equation over time. The authors use an implicit
scheme of stabilizing correction as an integration scheme. Non-linearity iterations are performed. The
constructed numerical model was tested by solving the model problem of convection in a unit cube
in a liquid with a nonlinear viscosity corresponding to convection in the Earth’s general mantle [1].
The calculation results are in good agreement with the results of this test. However, in comparison
with the previously developed numerical model based on the implicit splitting method with pressure
correction, it takes about twice as much computer time to achieve comparable calculation accuracy
when using the implicit implementation of the splitting method for physical processes. A test for
convection problems in the upper mantle of the Earth is constructed; the results of numerical
experiments confirming its reliability are presented. The main numerical parameters of the test were
chosen similar to the parameters in the well-known international test for general-party convection [1].
The problem was solved using three numerical models based on implicit splitting methods.

Keywords: three-dimensional convection in the Earth’s mantle, implicit difference splitting
schemes, testing.
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