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На основе метода квазиинвариантов построены различные модификации схемы
CABARET, аппроксимирующие систему уравнений газовой динамики неизоэнтро-
пических течений. Проведен сравнительный анализ точности этих модификаций
при расчете трех различных задач Римана (в частности, задач Сода и Лакса)
о распаде начального разрыва в политропном газе. Показано, что некоторые мо-
дификации схемы CABARET могут иметь существенные преимущества по срав-
нению с другими модификациями этой схемы относительно различных критериев,
связанных с оптимальной локализацией сильных и слабых разрывов точного ре-
шения.

Ключевые слова: схема CABARET, метод квазиинвариантов, уравнения газо-
вой динамики.

Цитирование: Колотилов В.А., Остапенко В.В. Анализ различных модифика-
ций схемы CABARET, аппроксимирующей уравнения газовой динамики. Вычис-
лительные технологии. 2024; 29(3):52–69. DOI:10.25743/ICT.2024.29.3.005.

Введение

Стандартный алгоритм схемы CABARET [1, 2], аппроксимирующей гиперболическую
систему законов сохранения [3], предполагает, что эта система допускает запись в форме
инвариантов. В этом случае монотонные модификации схемы CABARET [4–8] позво-
ляют с высокой точностью локализовать сильные и слабые разрывы точного решения.
Однако, если гиперболическая система не допускает записи в форме инвариантов, то
для построения схемы CABARET, аппроксимирующей эту систему, необходимо приме-
нять квазиинварианты [2], которые в общем случае определяются неоднозначно.

В [9] приводится метод построения квазиинвариантов на основе некоторой недивер-
гентной формы записи аппроксимируемой гиперболической системы законов сохране-
ния. Дана классификация квазиинвариантов относительно их нелинейной зависимости
от искомых функций этой недивергентной системы и описан способ получения квазиин-
вариантов заданного порядка нелинейности. В качестве примера для системы уравне-
ний газовой динамики неизоэнтропических течений [3], которая замыкается уравнением
состояния

𝑝 = 𝑝(𝜌, 𝑆), (1)
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где 𝑝, 𝜌 и 𝑆 — давление, плотность и энтропия, построены три различных семейства
квазиинвариантов, получаемые из классической недивергентной формы записи этой
системы относительно функций 𝜌, 𝑢, 𝑆, где 𝑢 — скорость газа. Поскольку каждому се-
мейству квазиинвариантов соответствует своя модификация схемы CABARET, то в [9]
проведен сравнительный анализ точности этих модификаций при расчете задачи Сода
о распаде начального разрыва в политропном газе.

В настоящей работе, являющейся продолжением работы [9], для системы уравнений
газовой динамики неизоэнтропических течений, которая замыкается одним из следую-
щих уравнений состояния

𝑝 = 𝑝(𝜌, 𝜀), (2)
𝜀 = 𝜀(𝜌, 𝑝), (3)

где 𝜀 — внутренняя энергия, построены различные семейства квазиинвариантов, полу-
чаемые из двух недивергентных форм записи этой системы относительно функций 𝜌,
𝑢, 𝜀, что соответствует уравнению состояния (2), и относительно функций 𝜌, 𝑢, 𝑝, что
соответствует уравнению состояния (3). Каждому из этих семейств квазиинвариантов
соответствует своя модификация схемы CABARET. Проведен сравнительный анализ
точности этих модификаций при расчете трех различных задач Римана (в частности,
задач Сода и Лакса) о распаде начального разрыва в политропном газе. Показано, что
некоторые модификации схемы CABARET могут иметь существенные преимущества по
сравнению с другими модификациями этой схемы относительно критериев, связанных
с оптимальной локализацией сильных и слабых разрывов точного решения.

1. Гиперболическая система законов сохранения

Рассмотрим строго гиперболическую систему законов сохранения

u𝑡 + (f(u))𝑥 = 0 (4)

и некоторую недивергентную форму ее записи

û𝑡 + 𝐴(û)û𝑥 = 0, (5)

где u(𝑥, 𝑡) — искомая, а f(u) — заданная гладкая вектор-функции, содержащие 𝑚 ком-
понент; û = g(u) — невырожденное преобразование вектора базисных переменных u,

𝐴(u) = 𝐺−1(u)𝐴
(︀
g−1(u)

)︀
𝐺(u), 𝐴(u) = 𝑓u(u), 𝐺(u) = g−1

u (u),

𝐺−1 — матрица, обратная к матрице 𝐺; g−1 — вектор-функция, обратная к g. При û = u
и 𝐴(u) = 𝐴(u) уравнение (5) представляет собой стандартную недивергентную форму
записи системы (4).

Систему (5) можно записать в характеристической форме

l̂
𝑖
(û)û𝑡 + 𝜆̂𝑖(û)̂l

𝑖
(û)û𝑥 = 0, 𝑖 = 1, 2, . . . ,𝑚, (6)

где 𝜆̂𝑖 и l̂
𝑖

— собственные значения и левые собственные векторы матрицы 𝐴. При
𝑚 ≥ 3 дифференциальные формы l̂

𝑖
(û)𝑑û системы (6) в общем случае неинтегрируе-

мы [3], в силу чего система (4) не имеет полного набора инвариантов. В этом случае
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в алгоритме схемы CABARET необходимо использовать квазиинварианты системы (6),
метод построения и классификация которых приведены в [9]. Для краткого описания
этого метода зафиксируем некоторую дифференциальную форму l̂

𝑖
(û)𝑑û, при ее записи

далее в этом разделе значок “тильда” над переменными будем для краткости опускать.
Если дифференциальная форма l𝑖(u)𝑑u неинтегрируема, то может существовать та-

кой вектор ū𝑖[u] = (𝑢̄𝑖
1, . . . , 𝑢̄

𝑖
𝑠), где 𝑠 ≤ 𝑚, состоящий из некоторых компонент вектора

u, что интегрируемой является дифференциальная форма l𝑖(ū𝑖[u𝑐], ũ𝑖[u])𝑑u, где u𝑐 —
произвольный постоянный вектор, а ũ𝑖[u] = (𝑢̃𝑖

1, . . . , 𝑢̃
𝑖
𝑚−𝑠) — вектор, состоящий из тех

компонент вектора u, которые не вошли в вектор ū𝑖[u]. Функцию 𝑤𝑖(ū𝑖[u𝑐],u), полу-
чаемую в результате такого интегрирования, будем называть квазиинвариантом систе-
мы (5) порядка 𝑠. При этом система (5) может иметь 𝐶𝑠

𝑚 различных квазиинвариантов
порядка 𝑠, где 𝐶𝑠

𝑚 — биноминальный коэффициент. В [9] показано, что при 𝑚 ≥ 2
система (5) всегда допускает квазиинвариаты порядков 𝑠 = 𝑚,𝑚− 1,𝑚− 2.

Если дифференциальная форма l𝑖(u)𝑑u интегрируема и система (5) имеет класси-
ческий инвариант 𝑤𝑖, то для единообразия формулировок будем называть его квази-
инвариантом нулевого порядка. Для каждого 𝑖-го характеристического направления
системы (5), где 𝑖 = 1,𝑚, зададим квазиинвариант 𝑤𝑖, в результате чего формируется
вектор квазиинвариантов

w = (𝑤1, 𝑤2, . . . , 𝑤𝑚) = W(u),

относительно которого будем предполагать, что преобразование W(u) является невы-
рожденным, т. е. |Wu| ≠ 0. В [9] приводится детальное описание алгоритма схемы
CABARET, использующего данный метод квазиинвариантов.

2. Система уравнений газовой динамики

В качестве конкретной гиперболической системы (4) выберем систему уравнений газо-
вой динамики неизоэнтропических течений [3], где

u =

⎛⎝ 𝜌
𝜌𝑢
𝜌𝑒

⎞⎠ , f(u) =

⎛⎝ 𝜌𝑢
𝜌𝑢2 + 𝑝
𝑢(𝜌𝑒+ 𝑝)

⎞⎠ , (7)

𝑒 = 𝜀 + 𝑢2/2 — полная энергия газа, которая замыкается одним из трех уравнений
состояния (1)–(3). Используя уравнение состояния (1) и применяя основное термодина-
мическое тождество

𝑇𝑑𝑆 = 𝑑𝜀+ 𝑝𝑑𝑉,

где 𝑇 — температура и 𝑉 = 1/𝜌 — удельный объем, систему (4), (7) можно записать [3]
в классической недивергентной форме (5), где

û =

⎛⎝ 𝜌
𝑢
𝑆

⎞⎠ , 𝐴(û) =

⎛⎝ 𝑢 𝜌 0
𝑎 𝑢 𝑏
0 0 𝑢

⎞⎠ , (8)

𝑎 = 𝑎(𝜌, 𝑆) = 𝑝𝜌(𝜌, 𝑆)/𝜌, 𝑏 = 𝑏(𝜌, 𝑆) = 𝑝𝑆(𝜌, 𝑆)/𝜌.

При условиях 𝜌 > 0, 𝑝 > 0 и 𝑝𝜌(𝜌, 𝑆) > 0 система (1), (5), (8) является строго
гиперболической и допускает запись в характеристической форме (6), где
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𝜆̂1 = 𝑢− 𝑐, 𝜆̂2 = 𝑢, 𝜆̂3 = 𝑢+ 𝑐 (9)

— собственные значения матрицы 𝐴(û), 𝑐 =
√︀

𝑝𝜌(𝜌, 𝑆) — скорость звука в газе. В [9]
из соответствующих системе (1), (5), (8) характеристических уравнений (6) получены
три различных семейства квазиинвариантов, для каждого из которых построена своя
модификация схемы CABARET. Проведен сравнительный анализ точности этих моди-
фикаций при расчете задачи Сода о распаде начального разрыва в политропном газе.

В настоящей работе для получения других семейств квазиинвариантов, которые
используются при построении новых модификаций схемы CABARET, рассмотрим две
недивергентные формы записи (5) системы (4), (7), первая из которых получается при
уравнении состояния (2) и для нее û = (𝜌, 𝑢, 𝜀), а вторая — при уравнении состояния (3)
и для нее û = (𝜌, 𝑢, 𝑝).

2.1. Недивергентная система (5), для которой û = (𝜌,𝑢, 𝜀)

Используя уравнение состояния (2), систему (4), (7) можно записать в недивергентной
форме (5), где

û =

⎛⎝ 𝜌
𝑢
𝜀

⎞⎠ , 𝐴(û) =

⎛⎝ 𝑢 𝜌 0
𝑎 𝑢 𝑏
0 𝑑 𝑢

⎞⎠ , (10)

𝑎 = 𝑎(𝜌, 𝜀) = 𝑝𝜌(𝜌, 𝜀)/𝜌, 𝑏 = 𝑏(𝜌, 𝜀) = 𝑝𝜀(𝜌, 𝜀)/𝜌, 𝑑 = 𝑑(𝜌, 𝜀) = 𝑝(𝜌, 𝜀)/𝜌.

При выполнении неравенств

𝜌 > 0, 𝑝 > 0, 𝑝𝜌(𝜌, 𝜀) + 𝑝(𝜌, 𝜀)𝑝𝜀(𝜌, 𝜀)/𝜌
2 > 0 (11)

система (2), (5), (10) является строго гиперболической и допускает запись в характе-
ристической форме (6), в которой собственные значения матрицы 𝐴(û) определяются
по формулам (9), а соответствующие им левые собственные векторы имеют вид

l̂
1
= (−𝛼, 1,−𝛽), l̂

2
= (𝜃, 0, 1), l̂

3
= (𝛼, 1, 𝛽), (12)

𝛼 = 𝑝𝜌/(𝜌𝑐), 𝛽 = 𝑝𝜀/(𝜌𝑐), 𝜃 = −𝑝/𝜌2, 𝑐 =
√︁
𝑝𝜌 + 𝑝𝑝𝜀/𝜌2. (13)

Из формул (9) и (12) следует, что дифференциальные формы, соответствующие
характеристическим уравнениям (6) системы (2), (5), (10), имеют вид

𝑑𝑢∓ 𝛼(𝜌, 𝜀)𝑑𝜌∓ 𝛽(𝜌, 𝜀)𝑑𝜀, 𝜃(𝜌, 𝜀)𝑑𝜌+ 𝑑𝜀. (14)

Поскольку коэффициенты дифференциальных форм (14) не зависят от скорости газа 𝑢,
эти дифференциальные формы интегрируемы и система (2), (5), (10) имеет полный на-
бор инвариантов. Однако эти инварианты не допускают записи в явном виде, в силу
чего их нельзя использовать в алгоритме схемы CABARET. Поэтому далее применяют-
ся квазиинварианты системы (2), (5), (10), которые записываются следующим образом:

𝑤1 = 𝑢− 𝑤, 𝑤2 = 𝑓, 𝑤3 = 𝑢+ 𝑤, (15)

где 𝑤 и 𝑓 — искомые функции, определяемые ниже.
Применим три вида квазиинвариантов (15): квазиинварианты второго порядка

𝑤𝑖 = l𝑖(𝜌𝑐, 𝜀𝑐)û, для которых
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𝑤 = 𝛼(𝜌𝑐, 𝜀𝑐)𝜌+ 𝛽(𝜌𝑐, 𝜀𝑐)𝜀, 𝑓 = 𝜃(𝜌𝑐, 𝜀𝑐)𝜌+ 𝜀, (16)

и два вида нелинейных квазиинвариантов первого порядка, для одного из которых

𝑤 = 𝛼(𝜌𝑐, 𝜀)𝜌+ 𝐴(𝜌𝑐, 𝜀), 𝑓 = 𝜌+𝐵(𝜌𝑐, 𝜀), (17)

𝐴(𝜌𝑐, 𝜀) =

∫︁
𝛽(𝜌𝑐, 𝜀)𝑑𝜀, 𝐵(𝜌𝑐, 𝜀) =

∫︁
𝑑𝜀

𝜃(𝜌𝑐, 𝜀)
, (18)

а для другого

𝑤 = 𝐶(𝜌, 𝜀𝑐) + 𝛽(𝜌, 𝜀𝑐)𝜀, 𝑓 = 𝐷(𝜌, 𝜀𝑐) + 𝜀, (19)

𝐶(𝜌, 𝜀𝑐) =

∫︁
𝛼(𝜌, 𝜀𝑐)𝑑𝜌, 𝐷(𝜌, 𝜀𝑐) =

∫︁
𝜃(𝜌, 𝜀𝑐)𝑑𝜌. (20)

Предполагая, что собственные значения (9) удовлетворяют неравенствам

𝜆̂1 < 0, 𝜆̂2 ≥ 0, 𝜆̂3 > 0, (21)

что согласуется с параметрами течений рассматриваемых далее задач Римана, запишем
алгоритм схемы CABARET [9] на последнем шаге второго этапа, когда в результате
решения алгебраической системы ̂︁W(v̂𝑛+1

𝑗 ) = w𝑛+1
𝑗 (22)

в каждом пространственном узле 𝑥𝑗 = 𝑗ℎ разностной сетки, где ℎ — пространственный
шаг сетки, вычисляется вектор искомых переменных v̂𝑛+1

𝑗 = (𝜌, 𝑢, 𝜀)𝑛+1
𝑗 по известному

вектору квазиинвариантов w𝑛+1
𝑗 = (𝑤1, 𝑤2, 𝑤3)

𝑛+1
𝑗 , задаваемому формулами (15)–(20).

Если применяются линейные квазиинварианты (15), (16), то система (22) является
линейной и имеет вид

𝑢𝑛+1
𝑗 − 𝛼

𝑛+1/2
𝑗+1/2 𝜌

𝑛+1
𝑗 − 𝛽

𝑛+1/2
𝑗+1/2 𝜀

𝑛+1
𝑗 = (𝑤1)

𝑛+1
𝑗 , (23)

𝜃
𝑛+1/2
𝑗−1/2 𝜌

𝑛+1
𝑗 + 𝜀𝑛+1

𝑗 = (𝑤2)
𝑛+1
𝑗 , (24)

𝑢𝑛+1
𝑗 + 𝛼

𝑛+1/2
𝑗−1/2 𝜌

𝑛+1
𝑗 + 𝛽

𝑛+1/2
𝑗−1/2 𝜀

𝑛+1
𝑗 = (𝑤3)

𝑛+1
𝑗 , (25)

где
𝛼
𝑛+1/2
𝑗±1/2 = 𝛼

(︁
𝜌
𝑛+1/2
𝑗±1/2 , 𝜀

𝑛+1/2
𝑗±1/2

)︁
, 𝜃

𝑛+1/2
𝑗−1/2 = 𝜃

(︁
𝜌
𝑛+1/2
𝑗−1/2 , 𝜀

𝑛+1/2
𝑗−1/2

)︁
.

Система (23)–(25) имеет определитель

∆
𝑛+1/2
𝑗 =

(︁
𝛽
𝑛+1/2
𝑗−1/2 + 𝛽

𝑛+1/2
𝑗+1/2

)︁
𝜃
𝑛+1/2
𝑗−1/2 − 𝛼

𝑛+1/2
𝑗−1/2 − 𝛼

𝑛+1/2
𝑗+1/2 . (26)

Предполагая, что на разностной сетке

𝛼
𝑛+1/2
𝑗+1/2 = 𝛼

𝑛+1/2
𝑗−1/2 +𝑂(ℎ), 𝛽

𝑛+1/2
𝑗+1/2 = 𝛽

𝑛+1/2
𝑗−1/2 +𝑂(ℎ), (27)

с учетом формул (13) и последнего неравенства (11) из формулы (26) с точностью 𝑂(ℎ)
получаем

∆
𝑛+1/2
𝑗 = 2(𝛽𝜃 − 𝛼)

𝑛+1/2
𝑗−1/2 = −2

(︂
1

𝜌𝑐

(︀
𝑝𝜌 + 𝑝𝑝𝜀/𝜌

2
)︀)︂𝑛+1/2

𝑗−1/2

< 0.
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Таким образом, при достаточно малом ℎ система (23)–(25) однозначно разрешима во
всех пространственных узлах 𝑥𝑗 = 𝑗ℎ численной сетки.

Если применяются нелинейные квазиинварианты (15), (17), (18), то система (22)
является нелинейной и имеет вид

𝑢𝑛+1
𝑗 − 𝛼

(︁
𝜌
𝑛+1/2
𝑗+1/2 , 𝜀

𝑛+1
𝑗

)︁
𝜌𝑛+1
𝑗 − 𝐴

(︁
𝜌
𝑛+1/2
𝑗+1/2 , 𝜀

𝑛+1
𝑗

)︁
= (𝑤1)

𝑛+1
𝑗 , (28)

𝜌𝑛+1
𝑗 +𝐵

(︁
𝜌
𝑛+1/2
𝑗−1/2 , 𝜀

𝑛+1
𝑗

)︁
= (𝑤2)

𝑛+1
𝑗 , (29)

𝑢𝑛+1
𝑗 + 𝛼

(︁
𝜌
𝑛+1/2
𝑗−1/2 , 𝜀

𝑛+1
𝑗

)︁
𝜌𝑛+1
𝑗 + 𝐴

(︁
𝜌
𝑛+1/2
𝑗−1/2 , 𝜀

𝑛+1
𝑗

)︁
= (𝑤3)

𝑛+1
𝑗 . (30)

Если применяются нелинейные квазиинварианты (15), (19), (20), то система (22) также
является нелинейной и имеет следующий вид:

𝑢𝑛+1
𝑗 − 𝐶

(︁
𝜌𝑛+1
𝑗 , 𝜀

𝑛+1/2
𝑗+1/2

)︁
− 𝛽

(︁
𝜌𝑛+1
𝑗 , 𝜀

𝑛+1/2
𝑗+1/2

)︁
𝜀𝑛+1
𝑗 = (𝑤1)

𝑛+1
𝑗 , (31)

𝐷
(︁
𝜌𝑛+1
𝑗 , 𝜀

𝑛+1/2
𝑗−1/2

)︁
+ 𝜀𝑛+1

𝑗 = (𝑤2)
𝑛+1
𝑗 , (32)

𝑢𝑛+1
𝑗 + 𝐶

(︁
𝜌𝑛+1
𝑗 , 𝜀

𝑛+1/2
𝑗−1/2

)︁
+ 𝛽

(︁
𝜌𝑛+1
𝑗 , 𝜀

𝑛+1/2
𝑗−1/2

)︁
𝜀𝑛+1
𝑗 = (𝑤3)

𝑛+1
𝑗 . (33)

В случае уравнения состояния (2) общего вида численные решения нелинейных ал-
гебраических систем (28)–(30) и (31)–(33), возникающих при использовании систем
нелинейных квазиинвариантов (15), (17), (18) и (15), (19), (20), представляют собой
самостоятельные достаточно трудоемкие задачи, которые существенно усложняют ал-
горитмы соответствующих модификаций схемы CABARET. Поэтому при численном
решении уравнений газовой динамики (4), (7) с такими уравнениями состояния необ-
ходимо применять модификацию схемы CABARET, в которой используются линейные
квазиинварианты (15), (16). Для этой модификации схемы CABARET будем использо-
вать аббревиатуру CABARET-E1.

Предположим, что газ является политропным и уравнение состояния (2) имеет вид

𝑝 = (𝛾 − 1)𝜌𝜀, (34)

где 𝛾 — показатель адиабаты. В этом случае величины (13) и интегралы (18), (20)
определяются по формулам

𝛼 =

√
𝜙𝜀

𝜌
, 𝛽 =

√︂
𝜙

𝜀
, 𝜙 =

𝛾 − 1

𝛾
, 𝜃 = −(𝛾 − 1)𝜀

𝜌
, 𝑐 =

√︀
𝛾(𝛾 − 1)𝜀, (35)

𝐴(𝜌, 𝜀) = 2
√
𝜙𝜀, 𝐵(𝜌, 𝜀) = −𝜌 ln 𝜀

𝛾−1
, 𝐶(𝜌, 𝜀) =

√
𝜙𝜀 ln 𝜌, 𝐷(𝜌, 𝜀) = −(𝛾−1)𝜀 ln 𝜌. (36)

С учетом формул (35) и (36) система (28)–(30) принимает вид

𝑢𝑛+1
𝑗 −

(︁
𝜌𝑛+1
𝑗 /𝜌

𝑛+1/2
𝑗+1/2 + 2

)︁√︁
𝜙𝜀𝑛+1

𝑗 = (𝑤1)
𝑛+1
𝑗 , (37)

𝜌𝑛+1
𝑗 − 1

𝛾 − 1
𝜌
𝑛+1/2
𝑗−1/2 ln 𝜀

𝑛+1
𝑗 = (𝑤2)

𝑛+1
𝑗 , (38)

𝑢𝑛+1
𝑗 +

(︁
𝜌𝑛+1
𝑗 /𝜌

𝑛+1/2
𝑗−1/2 + 2

)︁√︁
𝜙𝜀𝑛+1

𝑗 = (𝑤3)
𝑛+1
𝑗 , (39)

а система (31)–(33) — следующий вид:
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𝑢𝑛+1
𝑗 −

√︁
𝜙𝜀

𝑛+1/2
𝑗+1/2 ln 𝜌

𝑛+1
𝑗 −

√︁
𝜙/𝜀

𝑛+1/2
𝑗+1/2 𝜀

𝑛+1
𝑗 = (𝑤1)

𝑛+1
𝑗 , (40)

𝜀𝑛+1
𝑗 − (𝛾 − 1)𝜀

𝑛+1/2
𝑗−1/2 ln 𝜌

𝑛+1
𝑗 = (𝑤2)

𝑛+1
𝑗 , (41)

𝑢𝑛+1
𝑗 +

√︁
𝜙𝜀

𝑛+1/2
𝑗−1/2 ln 𝜌

𝑛+1
𝑗 +

√︁
𝜙/𝜀

𝑛+1/2
𝑗−1/2 𝜀

𝑛+1
𝑗 = (𝑤3)

𝑛+1
𝑗 . (42)

Поскольку система (37)–(39) является нелинейной (и даже трансцендентной) отно-
сительно компонент вектора искомых переменных v̂𝑛+1

𝑗 = (𝜌, 𝑢, 𝜀)𝑛+1
𝑗 , что существенно

затрудняет их вычисление, то модификацию схемы CABARET, использующую нели-
нейные квазиинварианты (15), (17), (18), неэффективно применять для численного ре-
шения уравнений газовой динамики с политропным уравнением состояния (34).

В отличие от системы (37)–(39), система (40)–(42) является линейной относитель-
но переменных ln 𝜌𝑛+1

𝑗 , 𝑢𝑛+1
𝑗 и 𝜀𝑛+1

𝑗 . Определитель этой системы относительно данных
переменных имеет вид

∆
𝑛+1/2
𝑗 = −

√︁
𝜙𝜀

𝑛+1/2
𝑗+1/2 −

√︁
𝜙𝜀

𝑛+1/2
𝑗−1/2 − (𝛾 − 1)𝜀

𝑛+1/2
𝑗−1/2

(︂√︁
𝜙/𝜀

𝑛+1/2
𝑗+1/2 +

√︁
𝜙/𝜀

𝑛+1/2
𝑗−1/2

)︂
.

Предполагая, по аналогии с (27), что на численной сетке

𝜀
𝑛+1/2
𝑗+1/2 = 𝜀

𝑛+1/2
𝑗−1/2 +𝑂(ℎ), (43)

с точностью 𝑂(ℎ) получаем

∆
𝑛+1/2
𝑗 = −𝛾

√︁
𝜙𝜀

𝑛+1/2
𝑗−1/2 = −

√︁
𝛾(𝛾 − 1)𝜀

𝑛+1/2
𝑗−1/2 < 0.

Таким образом, при достаточно малом ℎ система (40)–(42) однозначно разрешима
во всех пространственных узлах 𝑥𝑗 = 𝑗ℎ численной сетки, что позволяет эффективно
применять модификацию схемы CABARET, использующую нелинейные квазиинвари-
анты (15), (19), (20), для численного решения уравнений газовой динамики с полит-
ропным уравнением состояния (34). Для такой модификации схемы CABARET будем
использовать аббревиатуру CABARET-E2.

2.2. Недивергентная система (5), для которой û = (𝜌,𝑢,𝑝)

Используя уравнение состояния (3), систему (4), (7) можно записать в недивергентной
форме (5), где

û =

⎛⎝ 𝜌
𝑢
𝑝

⎞⎠ , 𝐴(û) =

⎛⎝ 𝑢 𝜌 0
0 𝑢 𝑎
0 𝜌𝑐2 𝑢

⎞⎠ , (44)

𝑎 = 1/𝜌, 𝑐2 = 𝑐2(𝜌, 𝑝) = (𝑝− 𝜌2𝜀𝜌)/(𝜌
2𝜀𝑝).

При выполнении неравенств
𝜌 > 0, 𝑝 > 0, (𝑝− 𝜌2𝜀𝜌)/(𝜌

2𝜀𝑝) > 0 (45)
система (3), (5), (44) является строго гиперболической и допускает запись в характери-
стической форме (6), в которой собственные значения матрицы 𝐴(û) определяются по
формулам (9), а соответствующие им левые собственные векторы имеют вид

l1 = (0, 1,−𝛼), l2 = (1, 0,−𝛽), l3 = (0, 1, 𝛼) (46)

𝛼 =
1

𝜌𝑐
, 𝛽 =

1

𝑐2
, 𝑐 =

√︃
𝑝− 𝜌2𝜀𝜌
𝜌2𝜀𝑝

. (47)
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Из формул (9) и (46) следует, что дифференциальные формы, соответствующие
характеристическим уравнениям (6) системы (2), (5), (44), имеют вид

𝑑𝑢∓ 𝛼(𝜌, 𝑝)𝑑𝑝, 𝑑𝜌− 𝛽(𝜌, 𝑝)𝑑𝑝. (48)

Поскольку коэффициенты дифференциальных форм (48) так же, как дифференциаль-
ных форм (14), не зависят от скорости газа 𝑢, эти дифференциальные формы инте-
грируемы и система (2), (5), (44) имеет полный набор инвариантов. Однако в общем
случае эти инварианты не допускают записи в явном виде, в силу чего их нельзя исполь-
зовать в алгоритме схемы CABARET. Поэтому далее применяются квазиинварианты
системы (2), (5), (44), которые задаются по формулам (15).

Будем применять три вида квазиинвариантов (15): квазиинварианты второго поряд-
ка 𝑤𝑖 = l𝑖(𝜌𝑐, 𝑝𝑐)û, для которых

𝑤 = 𝛼(𝜌𝑐, 𝑝𝑐)𝑝, 𝑓 = 𝜌− 𝛽(𝜌𝑐, 𝑝𝑐)𝑝, (49)

и два вида нелинейных квазиинвариантов первого порядка, для одного из которых

𝑤 = 𝐴(𝜌𝑐, 𝑝), 𝑓 = 𝜌−𝐵(𝜌𝑐, 𝑝), (50)

𝐴(𝜌𝑐, 𝑝) =

∫︁
𝛼(𝜌𝑐, 𝑝)𝑑𝑝, 𝐵(𝜌𝑐, 𝑝) =

∫︁
𝛽(𝜌𝑐, 𝑝)𝑑𝑝, (51)

а для другого

𝑤 = 𝛼(𝜌, 𝑝𝑐)𝑝, 𝑓 = 𝐶(𝜌, 𝑝𝑐)− 𝑝, (52)

𝐶(𝜌, 𝑝𝑐) =

∫︁
𝑑𝜌

𝛽(𝜌, 𝑝𝑐)
. (53)

С учетом того, что собственные значения (9) удовлетворяют неравенствам (21), за-
пишем алгоритм схемы CABARET [9] на последнем шаге второго этапа, когда в резуль-
тате решения соответствующей алгебраической системы (22) вычисляется вектор иско-
мых переменных v̂𝑛+1

𝑗 = (𝜌, 𝑢, 𝑝)𝑛+1
𝑗 по известному вектору квазиинвариантов w𝑛+1

𝑗 =

(𝑤1, 𝑤2, 𝑤3)
𝑛+1
𝑗 , задаваемому формулами (15), (49)–(53).

Если применяются линейные квазиинварианты (15), (49), то система (22) является
линейной и имеет вид

𝑢𝑛+1
𝑗 − 𝛼

𝑛+1/2
𝑗+1/2 𝑝

𝑛+1
𝑗 = (𝑤1)

𝑛+1
𝑗 , (54)

𝜌𝑛+1
𝑗 − 𝛽

𝑛+1/2
𝑗−1/2 𝑝

𝑛+1
𝑗 = (𝑤2)

𝑛+1
𝑗 , (55)

𝑢𝑛+1
𝑗 + 𝛼

𝑛+1/2
𝑗−1/2 𝑝

𝑛+1
𝑗 = (𝑤3)

𝑛+1
𝑗 , (56)

где
𝛼
𝑛+1/2
𝑗±1/2 = 𝛼

(︁
𝜌
𝑛+1/2
𝑗±1/2 , 𝑝

𝑛+1/2
𝑗±1/2

)︁
, 𝛽

𝑛+1/2
𝑗−1/2 = 𝛽

(︁
𝜌
𝑛+1/2
𝑗−1/2 , 𝑝

𝑛+1/2
𝑗−1/2

)︁
.

При выполнении первого условия (27) система (54)–(56) с учетом неравенств (45) одно-
значно разрешима при достаточно малых значениях ℎ.

Если применяются нелинейные квазиинварианты (15), (50), (51), то система (22)
становится нелинейной и имеет вид

𝑢𝑛+1
𝑗 − 𝐴

(︁
𝜌
𝑛+1/2
𝑗+1/2 , 𝑝

𝑛+1
𝑗

)︁
= (𝑤1)

𝑛+1
𝑗 , (57)

𝜌𝑛+1
𝑗 −𝐵

(︁
𝜌
𝑛+1/2
𝑗−1/2 , 𝑝

𝑛+1
𝑗

)︁
= (𝑤2)

𝑛+1
𝑗 , (58)

𝑢𝑛+1
𝑗 + 𝐴

(︁
𝜌
𝑛+1/2
𝑗−1/2 , 𝑝

𝑛+1
𝑗

)︁
= (𝑤3)

𝑛+1
𝑗 . (59)
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Если применяются нелинейные квазиинварианты (15), (52), (53), то система (22) также
становится нелинейной и имеет следующий вид:

𝑢𝑛+1
𝑗 − 𝛼

(︁
𝜌𝑛+1
𝑗 , 𝑝𝑛+1

𝑗+1/2

)︁
𝑝𝑛+1
𝑗 = (𝑤1)

𝑛+1
𝑗 , (60)

𝐵
(︁
𝜌𝑛+1
𝑗 , 𝑝

𝑛+1/2
𝑗−1/2

)︁
− 𝑝𝑛+1

𝑗 = (𝑤2)
𝑛+1
𝑗 , (61)

𝑢𝑛+1
𝑗 + 𝛼

(︁
𝜌𝑛+1
𝑗 , 𝑝𝑛+1

𝑗−1/2

)︁
𝑝𝑛+1
𝑗 = (𝑤3)

𝑛+1
𝑗 . (62)

В случае уравнения состояния (3) общего вида численные решения нелинейных
алгебраических систем (57)–(59) и (60)–(62), возникающих при использовании систем
нелинейных квазиинвариантов (15), (50), (51) и (15), (52), (53), представляют собой са-
мостоятельные трудоемкие задачи, которые существенно усложняют алгоритмы соот-
ветствующих модификаций схемы CABARET. Поэтому при численном решении уравне-
ний газовой динамики (4), (7) с такими уравнениями состояния необходимо применять
модификацию схемы CABARET, в которой используются линейные квазиинвариан-
ты (15), (49). Для этой модификации схемы CABARET будем использовать аббревиа-
туру CABARET-P1.

Предположим, что газ является политропным и уравнение состояния (3) имеет вид

𝜀 =
𝑝

(𝛾 − 1)𝜌
. (63)

В этом случае величины (47) и интегралы (51) и (53) определяются по формулам

𝛼 = 1/
√
𝛾𝑝𝜌, 𝛽 = 𝜌/(𝛾𝑝), 𝑐 =

√︀
𝛾𝑝/𝜌, (64)

𝐴(𝜌, 𝑝) = 2
√︀

𝑝/(𝛾𝜌), 𝐵(𝜌, 𝑝) = (𝜌 ln 𝑝)/𝛾, 𝐶(𝜌, 𝑝) = 𝛾𝑝 ln 𝜌. (65)

С учетом формул (64) и (65) система (57)–(59) принимает вид

𝑢𝑛+1
𝑗 − 2

√︁
𝑝𝑛+1
𝑗 /(𝛾𝜌

𝑛+1/2
𝑗+1/2 ) = (𝑤1)

𝑛+1
𝑗 , (66)

𝜌𝑛+1
𝑗 − 1

𝛾

(︁
𝜌
𝑛+1/2
𝑗−1/2 ln 𝑝

𝑛+1
𝑗

)︁
= (𝑤2)

𝑛+1
𝑗 , (67)

𝑢𝑛+1
𝑗 + 2

√︁
𝑝𝑛+1
𝑗 /(𝛾𝜌

𝑛+1/2
𝑗−1/2 ) = (𝑤3)

𝑛+1
𝑗 , (68)

а система (60)–(62) — следующий вид:

𝑢𝑛+1
𝑗 − 𝑝𝑛+1

𝑗

(︁
𝛾𝑝

𝑛+1/2
𝑗+1/2𝜌

𝑛+1
𝑗

)︁−1/2

= (𝑤1)
𝑛+1
𝑗 , (69)

𝛾𝑝
𝑛+1/2
𝑗−1/2 ln(𝜌

𝑛+1
𝑗 )− 𝑝𝑛+1

𝑗 = (𝑤2)
𝑛+1
𝑗 , (70)

𝑢𝑛+1
𝑗 + 𝑝𝑛+1

𝑗 /
(︁
𝛾𝑝

𝑛+1/2
𝑗−1/2𝜌

𝑛+1
𝑗

)︁−1/2

= (𝑤3)
𝑛+1
𝑗 . (71)

Cистема, состоящая из уравнений (66) и (68), является линейной относительно пе-
ременных 𝑢𝑛+1

𝑗 ,
√︁

𝑝𝑛+1
𝑗 . При выполнении условия

𝜌
𝑛+1/2
𝑗+1/2 = 𝜌

𝑛+1/2
𝑗−1/2 +𝑂(ℎ) (72)
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эта система с учетом неравенств (45) однозначно разрешима при достаточно малых
значениях ℎ. После нахождения величин 𝑢𝑛+1

𝑗 и 𝑝𝑛+1
𝑗 значение 𝜌𝑛+1

𝑗 однозначно опре-
деляется из уравнения (67). Таким образом, модификацию схемы CABARET, исполь-
зующую нелинейные квазиинварианты (49)–(51), можно эффективно применять для
численного решения уравнений газовой динамики с политропным уравнением состоя-
ния (63). Для такой модификации схемы CABARET будем использовать аббревиатуру
CABARET-P2.

В отличие от системы (66)–(68), система (69)–(71) является нелинейной (и даже трас-
цендентной) относительно компонент вектора искомых переменных 𝜌𝑛+1

𝑗 , 𝑢𝑛+1
𝑗 и 𝑝𝑛+1

𝑗 ,
что существенно затрудняет их вычисление. Поэтому модификацию схемы CABARET,
использующую нелинейные квазиинварианты (49), (52), (53), неэффективно применять
для численного решения уравнений газовой динамики с политропным уравнением со-
стояния (63).

Отметим, что условия (27), (43) и (72), гарантирующие однозначную разрешимость
соответствующих систем линейных уравнений, будут выполнены, если аппроксимируе-
мое точное решение является достаточно гладким. Несмотря на это, приводимые в сле-
дующем разделе тестовые расчеты задач Римана показали, что предлагаемые числен-
ные алгоритмы остаются корректными (однозначно разрешимыми) и при расчете обоб-
щенных решений с ударными волнами и контактными разрывами.

3. Тестовые расчеты

В этом разделе приведены результаты тестовых расчетов трех различных задач Рима-
на о распаде разрыва для системы уравнений газовой динамики (4), (7) с уравнением
состояния политропного газа (34), где 𝛾 = 7/5. Во всех этих задачах течение газа явля-
ется дозвуковым и скорость газа неотрицательна. Так же, как и в работе [9], основные
расчеты проводились на прямоугольной численной сетке

𝑆 = {(𝑥𝑗, 𝑡𝑛) : 𝑥𝑗 = 𝑗ℎ, 𝑡𝑛+1 = 𝑡𝑛 + 𝜏𝑛, 𝑡0 = 0}, (73)

в которой ℎ — постоянный шаг сетки по пространству, а 𝜏𝑛 — шаг сетки по времени,
определяемый из условия устойчивости Куранта

𝜏𝑛 =
𝑧ℎ

max
𝑖,𝑗

|𝜆𝑖(v𝑛
𝑗+1/2)|

,

где 𝑧 = 0.5 — коэффициент запаса; v𝑛
𝑗+1/2 = vℎ(𝑥𝑗+1/2, 𝑡𝑛) — консервативные численные

переменные, заданные в полуцелых узлах 𝑥𝑗+1/2 = 𝑥𝑗+ℎ/2 сетки (73); 𝜆𝑖(u) — собствен-
ные значения матрицы Якоби 𝐴(u) = 𝑓u(u) системы (4), (7). Для иллюстрации процесса
сходимости в сеточной норме 𝐿1 численных решений vℎ к точному решению u на после-
довательности сгущающихся сеток будем приводить интегральные ошибки численных
решений, вычисляемые по формуле

∆[vℎ] = ℎ

𝑁ℎ∑︁
𝑗=1

⃒⃒
vℎ(𝑥𝑗+1/2, 𝑡)− u(𝑥𝑗+1/2, 𝑡)

⃒⃒
, 𝑁ℎ = 𝑋/ℎ. (74)

В качестве первого примера рассмотрим задачу Сода [10] с начальными данными

𝜌(𝑥, 0) =

{︂
1, 𝑥 ≤ 0,

0.125, 𝑥 > 0,
𝑝(𝑥, 0) =

{︂
1, 𝑥 ≤ 0,
0.1, 𝑥 > 0,

𝑢(𝑥, 0) = 0. (75)
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Автомодельное решение этой задачи представляет собой ударную волну, контактный
разрыв и центрированную волну разрежения, между которыми находятся области по-
стоянного течения. На рис. 1–4 и в табл. 1 приведены результаты расчетов этой задачи
по схемам CABARET-E1 и CABARET-E2 (рис. 1 и 2), а также по схемам CABARET-P1
и CABARET-P2 (рис. 3 и 4). На рис. 1–4 показаны результаты расчетов на численной
сетке (73) с пространственным шагом ℎ = 0.02, а в табл. 1 — на последовательности
сгущающихся сеток (73).

Из рис. 1 и 3 следует, что в момент времени 𝑡 = 0.06 во всех четырех схемах воз-
никают заметные нефизические осцилляции скорости и давления за фронтом ударной
волны. Амплитуды осцилляций у схем CABARET-E1 и CABARET-P1 выше, чем у схем
CABARET-E2 и CABARET-P2. С течением времени, при 𝑡 = 0.3, эти осцилляции сгла-
живаются (см. рис. 2 и 4) и все четыре схемы с одинаково высокой точностью воспроиз-
водят профиль ударной волны. Сравнение рис. 1 и 2 с рис. 3 и 4 показывает, что в схемах
CABARET-E1 и CABARET-E2 контактный разрыв размазывается гораздо сильнее, чем
в схемах CABARET-P1 и CABARET-P2, где ширина его размазывания с течением вре-
мени практически не возрастает. Из рис. 2 и 4 также следует, что схемы CABARET-P1

Рис. 1. Точное (сплошная линия) и численные решения задачи Сода по схемам CABARET-E1
(точки) и CABARET-E2 (кружки) на момент времени 𝑡 = 0.06
Fig. 1. The exact (solid line) and numerical solutions of the Sod problem according to the
CABARET-E1 (points) and CABARET-E2 (circles) at the time 𝑡 = 0.06

Т а б л и ц а 1. Интегральные ошибки (74) численных решений задачи Сода в момент време-
ни 𝑡 = 0.3
Table 1. Integral errors (74) of the numerical solutions of Sod problem at time 𝑡 = 0.3

ℎ 0.04 0.02 0.01 0.005 0.0025 0.00125
CABARET-E1 0.1078961 0.0623988 0.0297641 0.0200322 0.0129584 0.0081964
CABARET-E2 0.1002347 0.0574281 0.0256641 0.0180524 0.0117888 0.0073156
CABARET-P1 0.0853891 0.0469765 0.0179382 0.0111818 0.0069693 0.0036095
CABARET-P2 0.0873453 0.0471884 0.0167529 0.0110112 0.0070751 0.0036683
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и CABARET-P2 более точно, чем схемы CABARET-E1 и CABARET-E2, аппроксими-
руют левую границу центрированной волны разрежения. Из табл. 1 видно, что в схемах
CABARET-P2 и CABARET-P1 интегральные ошибки численных решений (74) на всех
сетках достаточно близки и меньше, чем в схемах CABARET-E1 и CABARET-E2.

Рис. 2. Точное (сплошная линия) и численные решения задачи Сода по схемам CABARET-E1
(точки) и CABARET-E2 (кружки) на момент времени 𝑡 = 0.3
Fig. 2. The exact (solid line) and numerical solutions of the Sod problem according to the
CABARET-E1 (points) and CABARET-E2 (circles) at the time 𝑡 = 0.3

Рис. 3. Точное (сплошная линия) и численные решения задачи Сода по схемам CABARET-P1
(точки) и CABARET-P2 (кружки) на момент времени 𝑡 = 0.06
Fig. 3. The exact (solid line) and numerical solutions of the Sod problem according to the
CABARET-P1 (points) and CABARET-P2 (circles) at the time 𝑡 = 0.06
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Рис. 4. Точное решение (сплошная линия) и численные решения задачи Сода по схемам
CABARET-P1 (точки) и CABARET-P2 (кружки) на момент времени 𝑡 = 0.3
Fig. 4. The exact (solid line) and numerical solutions of the Sod problem according to the
CABARET-P1 (points) and CABARET-P2 (circles) at the time 𝑡 = 0.3

Из приведенных тестовых расчетов следует, что при расчете задачи Сода схемы
CABARET-P1 и CABARET-P2 демонстрируют существенно более высокую точность,
чем схемы CABARET-E1 и CABARET-E2. Поэтому в следующих тестовых расчетах
схему CABARET-P2 будем на рисунках сравнивать со схемой CABARET-S3, пока-
завшей лучшие результаты при расчете задачи Сода среди трех модификаций схемы
CABARET, полученных в [9] при помощи квазиинвариантов, соответствующих клас-
сической недивергентной форме записи (5), (8) системы уравнений газовой динами-
ки (4), (7). В то же время в приводимых далее таблицах сравним точность сразу трех
схем: CABARET-S3, CABARET-P1 и CABARET-P2. В [9] для схемы CABARET-S3
использовалась аббревиатура CABARET3. В данной работе для единообразия обозна-
чений будем использовать для этой схемы аббревиатуру CABARET-S3, поскольку она
построена на основе недивергентной системы (5), (8), записанной относительно пере-
менных (𝜌, 𝑢, 𝑆).

В качестве второго примера рассмотрим задачу Лакса [11] с начальными данными:

𝜌(𝑥, 0) =

{︂
0.445, 𝑥 ≤ 0,
0.5, 𝑥 > 0,

𝑝(𝑥, 0) =

{︂
8.928, 𝑥 ≤ 0,
1.4275, 𝑥 > 0,

𝑢(𝑥, 0) =

{︂
0.311, 𝑥 ≤ 0,

0, 𝑥 > 0.
(76)

Автомодельное решение этой задачи представляет собой ударную волну, контактный
разрыв и центрированную волну разрежения, между которыми находятся области по-
стоянного течения. В отличие от задачи Сода (75), в точном решении задачи Лакса (76)
плотность 𝜌(𝑥, 𝑡) не является монотонно убывающей по 𝑥 функцией (рис. 5) и прини-
мает максимальные значения в области постоянного течения между ударной волной
и контактным разрывом. На рис. 5 на момент времени 𝑡 = 0.16 приведены результа-
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ты расчетов этой задачи по схемам CABARET-S3 и CABARET-P2, а в табл. 2 — на
последовательности сгущающихся сеток по трем схемам.

Из рис. 5 следует, что схемы CABARET-P2 и CABARET-S3 с одинаково высокой
точностью воспроизводят профили ударной волны и центрированной волны разреже-
ния. В то же время схема CABARET-S3 несколько меньше, чем схема CABARET-P2,
размазывает контактный разрыв, однако получаемые по этой схеме численные значе-
ния скорости и давления газа имеют в окрестности контактного разрыва характерные

Рис. 5. Точное (сплошная линия) и численные решения задачи Лакса по схемам CABARET-S3
(точки) и CABARET-P2 (кружки) на момент времени 𝑡 = 0.16
Fig. 5. The exact (solid line) and numerical solutions of the Lax problem according to the
CABARET-S3 (points) and CABARET-P2 (circles) at the time 𝑡 = 0.16

Т а б л и ц а 2. Интегральные ошибки (74) численных решений задачи Лакса в момент
времени 𝑡 = 0.16
Table 2. Integral errors (74) of the numerical solutions of Lax problem at time 𝑡 = 0.16

ℎ 0.02 0.01 0.005 0.0025 0.00125 0.000625
CABARET-S3 0.6166574 0.2024881 0.1051416 0.0774373 0.0506298 0.0378171
CABARET-P1 0.5208669 0.1769273 0.0873284 0.0727502 0.0440322 0.0332337
CABARET-P2 0.5591450 0.1790117 0.0922203 0.0713694 0.0395088 0.0308050

Т а б л и ц а 3. Интегральные ошибки (74) численных решений задачи (77) в момент време-
ни 𝑡 = 1.3
Table 3. Integral errors (74) of the numerical solutions of the problem (77) at time 𝑡 = 1.3

ℎ 0.06 0.03 0.015 0.0075 0.00375 0.001875
CABARET-S3 0.2154207 0.1287954 0.0827251 0.0386160 0.0307703 0.0193609
CABARET-P1 0.2236168 0.1352475 0.0924316 0.0447362 0.0352369 0.0222643
CABARET-P2 0.2204741 0.1307568 0.0867227 0.0407312 0.0322730 0.0205317
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нефизические (энтропийные) всплески, которые отсутствуют в численном решении по
схеме CABARET-P2. Из табл. 2 следует, что на всех сетках максимальную интеграль-
ные ошибку (74) имеет схема CABARET-S3. Схема CABARET-P2 на грубых сетках
имеет интегральную ошибку большую, чем схема CABARET-P1, а на более мелких
сетках ее интегральная ошибка становится меньше, чем у схемы CABARET-P1.

В качестве третьего примера рассмотрим задачу Римана со следующими начальны-
ми данными:

𝜌(𝑥, 0) = 1, 𝑝(𝑥, 0) =

{︂
1, 𝑥 ≤ 0,
0.5, 𝑥 > 0,

𝑢(𝑥, 0) =

{︂
1, 𝑥 ≤ 0,
0, 𝑥 > 0.

(77)

Автомодельное решение задачи представляет собой (рис. 6) две расходящиеся ударные
волны, расположенный между ними контактный разрыв и области постоянного тече-
ния, которые находятся между этими сильными разрывами.

На рис. 6 на момент времени 𝑡 = 1.3 показаны результаты расчета задачи (77) на
численной сетке (73) с пространственным шагом ℎ = 0.06 по схемам CABARET-S3
и CABARET-P2, а в табл. 3 — на последовательности сгущающихся сеток (73) по трем
схемам. Из рис. 6 видно, что схемы CABARET-P2 и CABARET-S3 с одинаково высокой
точностью воспроизводят фронты расходящихся ударных волн и приблизительно на
одинаковую ширину размазывают контактный разрыв, но при этом размазывают его
заметно сильнее, чем схемы CABARET-P1 и CABARET-P2 при расчете задачи Сода
(см. рис. 4). Из табл. 3 следует, что на всех сетках интегральные ошибки численных
решений (74) в схеме CABARET-P2 больше, чем в схеме CABARET-S3, и меньше, чем
в схеме CABARET-P1.

Рис. 6. Точное (сплошная линия) и численные решения задачи (77) по схемам CABARET-S3
(точки) и CABARET-P2 (кружки) на момент времени 𝑡 = 1.3
Fig. 6. The exact (solid line) and numerical solutions of the problem (77) according to the
CABARET-S3 (points) and CABARET-P2 (circles) at the time 𝑡 = 1.3
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Из приведенного в данном разделе сравнительного анализа точности различных
модификаций схемы CABARET следует, что наиболее эффективной при расчете задач
Римана для уравнений газовой динамики (4), (7) с политропным уравнением состоя-
ния (34) является модификация CABARET-P2, обеспечивающая наибольшую точность
при аппроксимации ударных волн, контактных разрывов и центрированных волн разре-
жения. В то же время для расчета газодинамических течений, удовлетворяющих урав-
нению состояния общего вида (3), можно рекомендовать модификацию CABARET-P1,
которая, в отличие от модификации CABARET-P2, обладает хорошей разрешимостью
в случае таких уравнений состояний.

Заключение

На основе метода квазиинвариантов построены и изучены шесть модификаций схемы
CABARET, аппроксимирующей систему уравнений газовой динамики неизоэнтропи-
ческих течений, которая замыкается различными уравнениями состояния. Проведен
сравнительный анализ разрешимости этих модификаций и их точности при расчете
трех задач Римана (в частности, задач Сода и Лакса) о распаде начального разрыва
в политропном газе, в которых течение газа является дозвуковым. В результате это-
го анализа выделены две модификации схемы CABARET, обеспечивающие хорошую
разрешимость и наибольшую точность при аппроксимации ударных волн, контактных
разрывов и центрированных волн разрежения.

В дальнейшем для этих модификаций схемы CABARET планируется применить до-
полнительную коррекцию потоковых переменных [8], обеспечивающую монотонность
этих схем в линейном приближении, что позволит сгладить нефизические схемные ос-
цилляции, возникающие на ударных волнах в начале численного счета. Предполагается
также протестировать эти модификации схемы CABARET при расчете других задач
Римана, точные решения которых содержат области как дозвукового, так и сверхзву-
кового течения газа.
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Abstract

In this paper, we construct various modifications of the CABARET scheme that approximate
the system of nonisentropic gas dynamics equations. The construction of these modifications relies
on representation of conservation laws using various non-divergent forms and using the method
of quasi-invariants. Each family of these invariants corresponds to its own modification of the
CABARET scheme. The algorithm of the resulting CABARET scheme is given for the case when
in the calculated exact solution the characteristics of one family are unidirectional, i. e. velocity
distribution of these characteristics does not change sign. A comparative analysis for the accuracy
of these modifications was carried out when calculating the Sod problem on the attenuation of an
initial discontinuity in a polytropic gas. Based on this analysis, a modification was chosen that
most accurately localizes strong and weak discontinuities in the exact solution and has the smallest
integral imbalance and the best order of convergence. Further, this modification of the CABARET
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scheme was compared with the best modification obtained from the previous work on various test
problems (including the Lax problem) without changing the sign of the rate characteristics. The
given complex analysis has shown that the new modification has better convergence compared to
the modification from the previous work. Also, using the example of the Riemann problem of two
divergent strong discontinuities, it was shown that it is impossible to correctly determine the order
of local convergence of the numerical solution to the exact one in zones of constant flows located in
the areas of influence of shock waves in the considered modifications of the CABARET scheme.
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