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In this paper an effective novel memory management strategy for IoT framework
standard over MQTT with Raspberry Pi field protocol is used in RAID 6 (redundant
array of independent drives) for data storage. RAID 6 offers a long data retention time
for archiving as well as it provides a high fault and driven failure tolerance rate. The
probability of rebuild failure rate is 0.397 % when using RAID 6. In this paper we
have proposed a memory management strategy based on loT framework for effective
testing and repair. For this purpose a novel memory testing approach i.e. Improvised
March C— (IM— March C—) Algorithm has been used with cases 32x8x1, 64x8x1,
256x8x 1 for certain predefined injected-random fault at certain location in a RAID 6.
The presented work has been tested on SPARTAN 2E, SPARTAN 3E, VIRTEX 2,
VIRTEX 4, VIRTEX 5. From the results it is clear that the proposed algorithm has
better fault coverage, requires less tracing time (0.14 s) and better device utilization.
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Introduction

In the current scenario multiple sensors are connected to multiple smart devices to acquire
high speed data through secure communication. For this purpose novel IoT (Internet of
Things) technology is used for real time data tracking. IoT is a smart network that works
on certain protocols for communicating information with sensor devices. It identifies, tracks,
locates, monitors and controls objects in real time. There are two types of protocols: IoT
network protocol and ToT data protocols [1]. ToT network protocols are set of rules for
connecting multiple devices on the same network, these are LTE, CAT 1, LTE CATM 1,
NB-IoT, Bluetooth, Zigbhee, Lora wan [2]. IoT data protocols are standards for connecting
and exchanging data with each other on a particular network. IoT Data protocols are AMQP
(advance message queuing protocol) this is an open messaging standards, [3-5] MQTT (mes-
sage queue telemetry transport) this is the sub messaging protocol used for connecting low
power devices where memory requirement is less, HI'TP (hypertext transfer protocol) is
required for secure data communication for world wide web, CoAP (constrained application
protocol) is used for saving the battery life and for increasing the storage capacity while
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reducing the data requirement to operate, DDS (data distribution service) is used for real
time data distribution, LW M2M (light weight machine to machine protocol) is designed for
the machine to machine remote management with fast IoT solutions. In this paper, we have
used an MQTT protocol with Raspberry Pi field protocol memory for testing and repair.
RAID 6 memory array is used for memory testing. RAID 6 is a redundant array of indepen-
dent disk. It provides high fault driven and failure tolerance with high data retention time
period like archiving. This system is less prone to fault during the disk rebuilding process [6].
We have used 32x8x1, 64x8x1, 256 x8x1 memory array as disk in RAID 6. For testing
them a memory testing algorithms are used. These algorithms identifies the different faults
in memory. These faults occur due to opens and short circuits in memory cells, errors in the
address decoder or errors in logical read and write operations. These faults are classified as
Stuck-at-fault (memory cell is stuck at logic one), stuck open fault (memory cell is stuck at
logic zero), transition fault (once the logic is defined then it is not accessible back), neigh-
bourhood pattern sensitive faults (memory cell can change its cell value with the influence
of the neighbourhood cell), coupling fault [7]. BIST (build in self test) controllers works
on the memory testing algorithms. These controllers provides fault-free memories [1]. The
quality of testing algorithms is defined by the fault coverage concerning the FFM (function
fault model) [§]. Various types of March testing algorithms have been designed [9], such as
March DSS algorithm for simple static faults with certain conditions for fault coverage [3],
March LSD algorithm for 75N complexity to detect all linked static and dynamic faults
but are not suitable for unlinked faults |10], March LR algorithm to detect realistic linked
faults [5], March PS algorithm for complexity of 23N to detect DRAM pattern-sensitive
faults coverage, March SS with the test length of 22N which is able to detect all really
simple static faults in RAMs but it can’t detect linked faults [11], March NS algorithm to
detect neighbourhood pattern-sensitive faults with SAF, TF, CF, and AFs. It deals with
single-bit errors for 2D memories [12].

This paper is categorized into following sections. Section [1] describes the proposed IoT
Framework in edge consists of Gateway and RAID 6. Section [2] covers the effective memory
management unit for memory testing and repair. Section [3| presents the comparative result
of the proposed algorithm. Concluding section presents conclusion and future scope.

1. Proposed IoT framework in edge computing using gateway and
RAID 6

Fig. 1] shows the proposed IoT framework standard MQTT with Raspberry Pi field protocol
for memory testing and repair. This architecture is sub-divided into three parts: master
accelerator, gateways & smart devices, and memory management unit (MMU).

Master accelerator (MA). The master accelerator (Board Com’s PCI 9000 series)
main task is to monitor, collect, analyse and process the information for further stages. It
provides information regarding the selection of memory testing algorithms. This block also
performs the normalization and optimization of the selected algorithm [13]. In this paper,
we have used the IM— March C—Algorithm,which is designed using its parents March C—
algorithm. This algorithm is selected by MA in its default settings [14]. At the end, a fault
dictionary is prepared which is connected to LCD display for real time monitoring.

Gateways and smart devices. Gateways and smart devices are the integral compo-
nents of the proposed frame work, gateway serve as the central hub that connect the smart
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Fig. 1. Proposed IoT framework in edge computing using gateway and RAID 6

devices for real time monitoring system [15]. In this paper, MQTT protocol is used with
network device (Raspberry Pi) [16] protocol for data managing and messaging,.

Memory management unit (MMU). The MMU block provides assistance to MA
block. It consists of sub blocks RAID 6 MUT (memory under test) array, memory testing and
validation, routers, fault classifier, fault dictionary, MBISR module. Further classification
of this unit is described in Sect. 2

2. Memory management units (MMU)

MMU is used for effective Memory testing and repairing as shown in Fig. 2 For memory
testing a novel memory testing approach is proposed Improvised March C— (IM March C—)
Algorithm. We have used this algorithm over following cases 32x8x 1, 64x8x 1, 256 x8x 1 for
fault detection in a RAID 6. This algorithm is derived from the parent algorithms. These

faults are injected randomly without any connection to each other at certain predefined
locations.

2.1. RAID 6

We have used three memory cases 32x8x1, 64x8x1 and 256x8x 1 array as disk in RAID 6.
These memory array are allocated through the memory allocation job manager with run
time selection on MUT. RAID 6 is used to increase the performance and reliability of the
data storage |13]. It is also known as double parity redundant array of independent drivers.
It can continue the operation even if it faces disk failure twice. It provides enhanced fault
tolerance capability.

2.2. Memory testing and validation

For memory testing and validation, we have proposed an IM— March C— algorithm for fault
detection. The proposed algorithm adheres to the feature of its parent algorithm March C—.
Difference between March C— and Proposed Improved March C—.
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e Proposed Algorithm is designed with Complementary pairs of March C— elements.

M2" and M3’ contains all sensitive operators (rd0, wrl, rd1, wr0) which are cable of
detecting all coupling CF's [2].

All linked faults will also detect in the 1 address order.

A comparison between March C— and proposed is shown in Table [1]

M1, M2/, M3’ will also detect the SAF 0/1, TF, address decoder fault.

As number of March element are reduced in IM March C— (M4’) by complementary

the March C— element (M5, M2') and (M4’, M3'). This reduces its testing power as

well as its testing time power consumption [2].

We have injected one Stuck-at-faults at memory location (1, 2), two transition faults at
memory location (0, 0), (0, 1), (2, 2) and (2, 3) and one coupling fault at memory location
(3, 2) and (3, 3) as shown in Fig. 3] These faults are randomly selected faults with non-
resemblance. Fig. 3| shows the 4x4x1 memory size in which faults are injected and memory
testing is performed using the proposed Improvised March C— algorithm.

Table [2, shows the proposed IM— March C— algorithm. Algorithm 1 has four March
elements. In step 1, write Zero operation is performed in the first March element in any
direction. In step 2 the second March element will read the expected one and write with
zero at the last address location with expected read zero and write one in the upwards
direction. In step 3, the third March element read the expected zero and write one at the
last address location with read expected one and write zero in a downwards direction. At
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Transition Fault

Table 2. IM— March C— algorithms

Algorithm 1 IM— March C—
Step 1: Twr0

Step 2: trdl, wr0, rd0, wrl

Step 3: Jrd0, wrl, rd1, wr0
Step 4: Jrdl

Fig. 3. 4x4x1 memory size

last, in step 4, the March fourth element will read the expected one in any direction. The
proposed algorithms are compared with March C— for fault coverage, tracing time and device
utilization.

2.3. Methodologies used in the proposed Improvised March C— test algorithm

Fig. |4, shows the state diagram of the proposed algorithm which is adhered to on March
C—. The notations used in proposed algorithm are as follows.

Qn: March Elements
T: Test signal (1 = Test Mode and 0 = Normal Mode)

CLR: Clear address to the memory location 0
LA: Last address
DO: Data Out
QnB: Beginning of March elements
Qnr: Read data
Qnw: Write data

States/March elements Q0 and Q1 detects the Stuck-at-1 faults and transition faults.
Q1, Q2, and Q3 detect Stuck-at-0 faults, transition faults, and coupling faults. This State
diagram is working in two-modes. First, Normal mode (at 7' = 0) with the last address
which is rolled over to the last memory location (LA = 0) this is when memory is in the
idle phase. Second, when memory testing starts then it is Test mode (at 7" = 1) with last
address which is rolled over to the last memory location (LA = 1).

The flow chart of the proposed algorithm is shown in Fig. ] Memories under test are
initially working at normal mode and once the testing starts then it switches to test mode.
In test mode four March elements perform the read and write operation based on defined
directions (upward/downward/irrelevant). When memory testing is completed an error free
memory is achieved with the Fault dictionary which is generated at every read operation.

2.4. Simulation profile of the proposed Improvised March C— test algorithm

Fig. [6] shows the RTL top view of the MUT for 32x8x1 memory size. In this MUT an
address array is 5 bit (0 to 4), data_in and data_out are 8 bit (0 to 7), and fault bit out
is 8 bit (0 to 7). A proposed algorithm is applied to MUT whose RTL top view is shown
in Fig. [7| using Xilinx ISE suite. In this clock, reset, test, last address, and data out are
input signals, and count, clear, data in, write_.CMD), up address and first address are output
signals.

Fig. [§ and [9 show the test bench waveform of MUT 32x8x1 and proposed IM March
C— algorithms, in this state change in input-output signals are shown as explained in the
state diagram.
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Fig. 4. IM March C— algorithms state diagram
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Fig. 8. Waveform of MUT 38x8x1

Fig. 9. Waveform of MUT 38x8x1




116 V. Mathur, S. K. Singh, A. K. Pundir

2.5. Process to repair the faulty memories (MBISR)

In the memory repairing process, MBISR (memory build-in self-repair) block is used to repair
the faults. In this block a solution of Faulty memories is predicted on the basis of selected
memory repair algorithm.

3. Comparative analysis

In this Section, the trade off performance of March C— and proposed IM March C— is
analyzed. As shown in Table |3| testing time required by the proposed algorithm for fault
coverage for address length 10N is less as compared to March C—. This simulation profile
for fault coverage is conducted on MATLAB. Timing details and device utilization perfor-
mance of MATS+, March C— and proposed IM is shown in Tables [4] and [5| implemented
using the Xilinx ISE suite.

Trade-off performance of proposed and March C—. Table |3 shows the trade off
performance of March C— with proposed IM— March C— based on tracing time and fault
coverage. Address length is defined as 10N. This trade-off performance is also simulated
with MATLAB. Fig. [10| shows the tracing time comparisons of March C— and IM— March
C— algorithm.

Timing details. Table[d]shows the minimum input arrival time before (Ta) the clock and
maximum output required time after (Ta) the clock for MATS+, March C— and proposed
IM— March C—. These testing algorithms are synthesized and implemented on Spartan 2E,
Spartan 3E, Virtex 2, Virtex 4, and Virtex 5. Here, the minimum input arrival time of
the proposed IM March C— algorithm required comparatively less time than MATS+ and
March C—. Fig.[11|shows the comparison of these algorithms over different selected Devices.
Here Ta defines the arrival time and Tr defines the required time.

Device utilization performance. Table o, shows the device utilization performance
for MATS+, March C— and the proposed IM March C— based on the number of slices,

T able 3. Trade-off performance based on testing time, fault detected, and address length
(complexity)

. Tracing time Address length
Algorithm (MATLAB), s Fault detected (complexity)
March C— 0.25 SAF, ADFs, TF, CF's 6x6 (10N)
Proposed Improvised March C— 0.14 SAF (2), TF (2), and, CFs (2)| 6x6 (10N)

T able 4. Time required for input and output signals

MAT+ March C— Proposed IM March C—
Device Min. i/p Tb Max..o/p Min: i/p Max..o/p Min: i/p Max.'o/p
selected before clk. ns required arrival required arrival required
’ Ta clk, ns | Tb clk, ns | Ta clk, ns | Tb clk, ns | Ta clk, ns
Spartan 2E 3.509 6.613 4.139 6.613 4.139 6.609
Spartan 3E 2.6878 7.078 2.894 7.078 2.892 7.078
Virtex 2 2.011 4.659 2.096 4.659 2.096 4.599
Virtex 4 1.442 3.879 1.422 3.879 1.422 3.869
Virtex 5 1.211 2.699 1.211 2.699 1.211 2.670




An investigation of augment march C— algorithm using Io'T: heuristic approach

117

T able 5. Device utilization performance of MAT+, March C— and the proposed algorithm

Proposed
Bevice MAT+ March C— IM March C—
selected Parameter Avai- Ut11.1— Avai- Utﬂ.l_ Avai- Utﬂ.l_
Used zati- | Used zati- | Used zati-
lable lable lable
on, % on, % on, %
Number of slices 14 768 1 25 768 3 25 768 3
Number of slice
Spartan 2E | flip flops 22 1536 1 42 1536 2 42 1536 2
Number of 4
input LUTs 25 1536 1 41 1536 2 39 1536 2
Number of
bonded TOBs 11 124 8 11 124 8 11 124 8
Number of GCLKs| 1 8 12 2 8 25 2 8 25
Number of slices 14 768 1 25 768 3 25 768 3
Number of slice
Spartan 3B | flip flops 22 1536 1 42 1536 2 42 1536 2
Number of 4
input LUTSs 25 1536 1 41 1536 2 41 1536 2
Number of
bonded TOBs 11 98 11 11 178 6 11 178 6
Number of GCLKs| 1 4 25 2 4 50 2 4 50
Number of slices 14 256 5 25 256 9 25 256 9
Number of slice
Virtex 2 fip flops 22 512 4 42 512 8 42 512 8
Number of 4
input LUTs 25 512 4 41 512 8 41 512 8
Number of
bonded TOBs 11 88 12 11 88 12 11 88 12
Number of GCLKs 1 16 6 2 16 12 2 16 12
Number of slices 14 6144 0 25 6144 0 25 6144 0
Number of slice
Virtex 4 fip flops 22 |12 288 0 42 |12 288 0 42 112 288 0
Number of 4
input LUTs 25 |12 288 0 41 |12 288 0 41 |12 288 0
Number of
bonded TOBs 11 240 4 11 240 4 11 240 4
Number of GCLKs| 1 32 3 2 32 6 2 32 6
Number of slices 22 119 200 0 42 119 200 0 42 119 200 0
Number of slice
Virtex 5 fip flops 5 27 18 7 49 14 7 49 14
Number of 4
input LUTs 7 27 25 36 |19 200 0 36 |19 200 0
Number of
bonded TIOBs 11 220 5 11 220 5 11 220 5
Number of GCLKs| 1 32 3 2 32 6 2 32 6
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Number of slice flip flops, Number of 4 input LUTs, Number of bonded IOBs, and number
of GCLKs used and their utilization.Implemented on Spartan 2E, Spartan 3E, Virtex 2,
Virtex 4, and Virtex 5. Fig. shows the Device Utilization Comparisons Performance as
mentioned in Table [

There is no difference in March C— and proposed Improvised March C—. The imple-
mentation results outcomes are shown in Table |5, However, the LUTs and bounded IOBs
provide advantages over MAT+. The proposed algorithm adheres to the feature of its parent
algorithm March C—. The difference between March C— and the proposed Improved March
C— is discussed. As can be seen from Table [4] the Proposed IM March C— time required
for input and output signals arrival time before and after the clock is less as compared to

March C—.
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Conclusion and future scope

With the advancement in IoT and supportive edge computing technologies the role of linked
memory devices becomes crucial over time. The memory intensive applications demand the
suitable memory management strategies for real time and fast switching operation along
with fault tolerance. The presented work focuses on this role of memory used as a disk in
RAID 6 in conjunction with IoT framework of edge computing. The presented architecture
is composed of master accelerator (MA), gateway and smart devices (GSD) and a memory
management Unit (MMU). As the work is focused on MMU, cases were taken where disks
in RAID 6 were sized 32x8x1, 64x8x1 and 256x8x1 with injected random faults. The
MMU provides testing, repair solutions to the MA with the help of IoT framework. For
testing purpose an IM March C— algorithm was proposed which is based on the parent
algorithm March C—. The result shows better fault coverage, less tracing time (0.14 s) for
[oT framework module. The device utilization tested on Spartan 2E, Spartan 3E, Virtex 2,
Virtex 4, and Virtex 5.
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B aroit crarke npencraniena HoBast 3(pdEKTUBHAS CTPATErUs YIIPABICHUS TaAMITHIO s CTaH-
nmapra uHpacTpykTypbl UaTeprera Bermeit uepes MQTT ¢ mporokosom Raspberry Pi, koropast
ucnosibzyercsa 8 RAID 6 (pe3epBHBII MaccHB HE3ABUCUMBIX JIHCKOB) JIJIsT XpaHenus naHubix. RAID 6
O6eCHe‘{I/IBaeT JJIATEJIbHOE BpEeMd XPAaHCHUA JAHHBIX AJIA aPXUBUPOBAHUA, a TAKXKE BBICOKYIO yCTOﬁ-
YHUBOCTB K COOSM H yIPaBISeMBIM OTKa3aM. BepogTHOCTL ¢004 BoccTanosiaenud coctapiager 0.397 %
npu ucnoab3oBarnn RAID 6. B 270l cTarhe MBI TPEAIOKUIN CTPATETUO YIIPABIEHUS MTaMITHIO,
ocuoBanuyo Ha nnardopme loT, a1sg adbdekTuBHOrO TECTUPOBAHUA U BOCCTAaHOBJIEHUs. st sroit
1ean OBbL MCIOJIB30BAH HOBBIN TO/X0 K TECTUPOBAHUIO ITAMSITH, 8 UMEHHO MMIPOBU3UPOBAHHDIH
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anroputm March C— (IM-March C—) nna peamusammit 32x8x1, 64x8x1, 256x8x1 mna 3apa-
Hee OIpEJIeJIEHHBIX W 3apaHee BBEJICHHBIX CAyYalHBIX OIMUOKAX B ONPEIETEHHBIX MECTOIOJI0XKEHU-
ax B RAID 6. Ilpeacrasiennas pabora 6eu1a nmporectuposana va SPARTAN 2E, SPARTAN 3E,
VIRTEX 2, VIRTEX 4, VIRTEX 5. I3 pe3yJbTaToOB BUIHO, UTO MPEIIOKEHHBIN aJTOPUTM JIyd-
nte obpabarbiBaer cboum, Tpebyer menbiero spemenn tpaccuposku (0.14 ¢) u 6oee adbdexkTuBHO
KCIIOJIb3YyeT YyCTPOUCTBO.
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