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Исследуется применение методов машинного обучения для восстановления кон-
центрации угарного газа CO в воздухе по данным полупроводниковых датчиков
газа (metal-oxide gas sensor — MOX). Концентрация CO критически важна при кон-
троле качества воздуха, так как повышенные уровни могут нанести вред здоровью
людей и животных. Проведен анализ выходных данных датчиков и созданы но-
вые признаки, включая COℎ, учитывающий зависимость концентрации от времени
суток. Построены модели множественной линейной и полиномиальной регрессии,
а также нейронных сетей для восстановления концентраций CO. Исследовалось
влияние регуляризации на точность интерпретации данных газовых сенсоров. Ра-
бота демонстрирует возможность использования методов машинного обучения для
контроля качества воздуха.
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Введение

Основной механизм работы полупроводниковых газовых сенсоров основан на измене-
нии электропроводности полупроводниковой пленки вследствие абсорбции и десорбции
анализируемой газовой смеси на ее поверхности. Степень адсорбции зависит от концен-
трации газа, в результате этих эффектов изменяется электрическая проводимость сен-
сора. Таким образом, измерением сопротивления полупроводникового датчика возмож-
но восстановить концентрацию газа. Однако точная интерпретация выходных данных
газовых сенсоров затрудняется из-за неявной зависимости между показаниями датчи-
ка и концентрацией целевого газа. Кроме того, газовые сенсоры подвержены влиянию
различных условий окружающей среды и проявляют высокую перекрестную чувстви-
тельность к другим газам, что дополнительно усложняет их использование.

Для разработки моделей интерпретации данных, получаемых от полупроводнико-
вых газовых сенсоров, можно использовать эталонный газоанализатор на базе точного
спектрометра и проводить полевые испытания. В исследовании, описанном в [1], оце-
нена работа 24 идентичных коммерческих сенсорных платформ AQMesh при монито-
ринге таких газов, как: оксид азота (NO), диоксид азота (NO2), оксид углерода (CO)
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и озон (O3). Полученные результаты показали, что отклик каждого датчика на одни
и те же внешние условия уникален, а лабораторная калибровка не может корректи-
ровать работу датчиков в реальных условиях. В связи с этим необходимо проводить
индивидуальную калибровку каждого датчика в полевых условиях.

Для обработки выходных данных газовых сенсоров применено большое количество
различных алгоритмов. В одной из ранних работ [2] использовались нейронные се-
ти с прямой связью (FFNN) для прогнозирования концентраций угарного газа (CO).
В этой работе была достигнута относительная точность прогнозирования CO в 26 %
при использовании гиперболического тангенса в качестве активационной функции ней-
рона и тренировочной выборки порядка 2000 ч. Кроме того, проведен анализ точности
алгоритма в зависимости от размеров тренировочной выборки, который показал, что
достаточный размер тренировочного набора составляет порядка двух недель. В более
поздних работах [3, 4] доказано, что полевая калибровка с использованием методов
обучения с учителем более эффективна, чем рассматриваемые методы линейной и по-
лилинейной регрессии.

В статье [5] рассмотрены методы, позволяющие улучшить точность обработки дан-
ных газовых сенсоров при ограниченном количестве размеченных данных. Был исполь-
зован метод обучения с частичным привлечением учителя, который существенно улуч-
шил точность обработки данных при продолжительной работе газового сенсора. Метод
позволяет использовать неразмеченные данные для обучения, что особенно полезно
в случаях, когда доступ к размеченным данным ограничен. Результаты исследования
показали, что применение обучения с частичным привлечением учителя может быть
эффективным инструментом для повышения точности обработки данных газовых сен-
соров при ограниченных ресурсах.

Другим перспективным подходом к интерпретации данных газовых сенсоров явля-
ется использование рекуррентных нейронных сетей. В работе [6] рассмотрены два типа
рекуррентых нейронных сетей — TDNN (time delay neural network) и NARX (nonlinear
autoregressive exogenous model) и было проведено сравнение их результатов с нейронной
сетью с прямой связью. Оказалось, что динамические нейронные сети демонстрируют
более высокую точность, чем FFNN. В дальнейшем этот подход был развит в ансамбле-
вые методы. В работе [7] исследованы ансамблевые модели рекуррентных нейронных
сетей для мониторинга концентраций CO, O3 и NO2. Результаты исследования показа-
ли, что объединение четырех типов моделей (long short-term memory — LSTM, gated
recurrent unit — GRU, bidirectional LSTM — Bi-LSTM, bidirectional GRU — Bi-GRU)
дает лучший результат, чем каждая рекуррентная сеть по отдельности.

В последнее время кластерный подход становится все более популярным для реше-
ния проблемы дрейфа и воспроизводимости конкретного датчика. В работе [8] исследо-
вался кластерный подход на примере анализа концентраций NO2 и O𝑥 с использованием
медианного сигнала от шести аналогичных датчиков, что позволило отобрать четыре
различных метода (multiple linear regression — MLR, boosted regression trees — BRT,
Bayesian linear regression — BLR, Gaussian processes — GP). Кластеризация датчиков
частично решила проблему дрейфа и невоспроизводимости показаний отдельных дат-
чиков. В работе [9] исследовано четыре метода машинного обучения (MLR, regression
based on 𝑘-nearest neighbors — KNN, random forest — RF, support vector regression —
SVR) для калибровки датчиков O3 на основе оксидов металлов. Векторная регрессия
SVR оказалась наилучшим методом калибровки. Также проанализировано объединение
данных нескольких датчиков для различных моделей. Это показало, что использование
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от четырех до шести датчиков в методе SVR значительно улучшает среднеквадратич-
ную ошибку.

Стоит отметить работу [10], где рассмотрены различные методы прогнозирования
концентраций примесей внутри помещений. В рамках исследования авторы исполь-
зовали четыре метода (rolling average, RF, gradient boosting, LSTM) и выявили, что
концентрации сильно зависят от времени суток и дня недели. В ходе исследований
оказалось, что использование времени суток в часах, а также дня недели значительно
помогало в прогнозировании концентрации загрязняющих веществ внутри помещения
для любого из рассмотренных алгоритмов.

В настоящей работе исследуются известные методы машинного обучения для восста-
новления концентрации угарного газа CO в окружающем воздухе по выходным данным
полупроводникового газового сенсора. Измерение концентрации CO является критичес-
ки важным для контроля качества воздуха внутри помещений и в окружающей среде,
так как повышенная концентрация CO может вызвать серьезные проблемы со здо-
ровьем людей и животных. Для достижения этой цели выполнены анализ структуры
и корреляционный анализ выходных данных набора газовых датчиков CO. На основе
результатов анализа созданы новые признаки, учитывающие зависимость концентра-
ции газа CO от времени суток. Были построены различные модели множественной ли-
нейной и полиномиальной регрессии, а также несколько архитектур нейронных сетей
с прямой связью для восстановления реальных значений концентраций CO. Также на
этих моделях анализировалось влияние различных способов регуляризации на точность
интерпретации данных газовых сенсоров.

1. Постановка задачи и анализ набора данных

В этом разделе представлена общая постановка задачи регрессии и обсуждаются ос-
новные меры качества (метрики) в задачах регрессионного анализа. Описан исходный
набор данных и приводятся результаты первичного корреляционного анализа.

1.1. Регрессионная модель

Регрессионный анализ — один из методов статистического анализа, который позволяет
оценить связь между зависимой переменной и одной или несколькими независимыми
переменными. Регрессионная модель задется функцией 𝑓(𝑋𝑖, 𝛽), где 𝑖 — индекс строки
данных, 𝑋𝑖 — вектор независимых переменных, а 𝛽 — неизвестные параметры модели.
Предполагается, что зависимая переменная 𝑌𝑖 является суммой значений некоторой
модели с добавленной случайной ошибкой 𝜀𝑖:

𝑌𝑖 = 𝑓(𝑋𝑖, 𝛽) + 𝜀𝑖. (1)

Параметры модели настраиваются таким образом, чтобы модель наилучшим обра-
зом приближала зависимые переменные 𝑌𝑖. Цель исследования — найти такую функ-
цию 𝑓 , которая будет наиболее точно соответствовать данным. Например, в случае
многомерной линейной регрессии (MLR) функция (1) предполагается равной

𝑓1(𝑋𝑖, 𝛽) = 𝛽0 + 𝛽1𝑋1𝑖 + · · ·+ 𝛽𝑝𝑋𝑝𝑖 =

𝑝∑︁
𝑗=0

𝛽𝑗𝑋𝑗𝑖, (2)
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где 𝑝 — количество независимых переменных (наблюдаемых признаков), а 𝑋0𝑖 = 1 для
каждой 𝑖-й строки данных. Для нахождения оптимальных параметров модели 𝛽 обыч-
но используется метод наименьших квадратов, цель которого — минимизация суммы
квадратов отклонений:

𝑄 =
∑︁
𝑖

(𝑌𝑖 − 𝑓(𝑋𝑖, 𝛽))
2 =

∑︁
𝑖

𝜀2𝑖 → min
𝛽

. (3)

Для случая многомерной линейной регрессии решение имеет вид 𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇Y,
где 𝑋 — матрица признаков, а Y — вектор зависимой величины. Для случая полиноми-
альной регрессии добавляются новые признаки в функцию 𝑓 . Например, для двумерной
полиномиальной регрессии второй степени функция имеет вид

𝑓2(𝑋𝑖, 𝛽) = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝛽3𝑋
2
1𝑖 + 𝛽4𝑋2𝑖𝑋1𝑖 + 𝛽5𝑋

2
2𝑖. (4)

1.2. Метрики

Выбор метрики является обязательным этапом при построении регрессионных моделей.
Метрика необходима для оценки качества построенных моделей и позволяет сравнивать
результат прогнозирования модели с истинными значениями. Одна из наиболее часто
встречающихся в регрессионном анализе метрик — среднеквадратичная ошибка

MSE =
1

𝑁

𝑁∑︁
𝑖=1

(𝑌𝑖 − 𝑌𝑖)
2, (5)

где 𝑁 — количество прогнозов, а 𝑌𝑖, 𝑌𝑖 — наблюдаемое и предсказанное значения кон-
центрации соответственно. Часто для анализа используют среднюю абсолютную про-
центную ошибку

MAPE =
100 %

𝑁

𝑁∑︁
𝑖=1

|𝑌𝑖 − 𝑌𝑖|
|𝑌𝑖|

. (6)

Также для нашей задачи мы ввели и использовали метрику GRE, которая опре-
деляется как процент некорректных прогнозов. Прогноз считается некорректным, ес-
ли прогнозируемая концентрация лежит вне диапазона ±25 % от истинного значения.
В противном случае прогноз считается верным.

1.3. Используемый набор данных

Для построения и тестирования моделей интерпретации данных взяты сигналы полу-
проводниковых газовых сенсоров, собранные с помощью мультисенсорного устройства,
разработанного компанией Pirelli Labs. Измерения проведены в центре города с интен-
сивным автомобильным движением в период с марта 2004 г. по апрель 2005 г. [2]. Набор
данных содержит 9358 строк измерений с периодичностью одно измерение в час, усред-
ненных по пяти различным датчикам, совместно с целевыми значениями газов. Кроме
измерений датчика CO в наборе присутствуют данные датчика неметановых углево-
дородов NMHC, датчика общих оксидов азота NO𝑥, датчиков NO2 и O3. Проводились
также измерения температуры воздуха 𝑇 и его относительной влажности RH. Целевые
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значения концентраций газов получены эталонным анализатором. После удаления пус-
тых данных осталось 7344 строк, состоящих из измеряемых сопротивлений датчиков,
температуры и влажности воздуха, а также целевой концентрации CO.

В ходе исследования моделировалась ситуация калибровки газового датчика. Он
непрерывно калибруется в полевых условиях в течение некоторого периода времени,
а далее используется по назначению без перекалибровки. С учетом этого при разделе-
нии данных в обучающую и тестовую выборки попадали данные с 10 марта 2004 г. по
24 июня 2004 г. и с 24 июня 2004 г. по 4 апреля 2005 г. соответственно (при размере
тренировочной выборки в 2000 первых строк данных). Анализатор позволял измерять
концентрацию целевого газа в пределах от 0.1 до 12 мг/м3 с дискретностью в 0.1 мг/м3.

1.4. Корреляционный анализ

Для выявления взаимного влияния различных газов на датчики использовалась кор-
реляция Пирсона. Коэффициент корреляции 𝑟 Пирсона характеризует наличие линей-
ной зависимости между величинами 𝑋1, 𝑋2 и рассчитывается по формуле 𝑟𝑋1𝑋2 =
cov𝑋1𝑋2/(𝜎𝑋1𝜎𝑋2), где cov — ковариация, а 𝜎 — среднеквадратичное отклонение. Значе-
ние коэффициента находится в диапазоне [−1, 1] и интерпретируется следующим обра-
зом: сильная отрицательная зависимость при 𝑟 ≈ −1, отсутсвие линейной зависимости
при 𝑟 ≈ 0 и сильная положительная зависимость при 𝑟 ≈ 1.

Корреляционная матрица для отфильтрованных данных представлена на рис. 1.
Значение коэффициента корреляции между сопротивлением датчика угарного газа 𝑅CO

и сопротивлением датчика неметановых углеводородов 𝑅NMHC составляет 0.89, что сви-
детельствует о наличии сильной линейной зависимости между ними. Это может быть
вызвано как значительной зависимостью между примесями неметановых углеводородов

CO(𝐺𝑇 ) 𝑅CO 𝑅NMHC 𝑅NO𝑥 𝑅NO2
𝑅O3

𝑇 RH
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Рис. 1. Корреляционная матрица Пирсона: CO(𝐺𝑇 )— целевая концентрация CO; 𝑅CO, 𝑅NMHC,
𝑅NO𝑥 , 𝑅NO2 , 𝑅O3 — сопротивления соответствующих датчиков; 𝑇 , RH — температура и влаж-
ность воздуха
Fig. 1. Pearson correlation matrix: CO(𝐺𝑇 ) — target CO concentration; 𝑅CO, 𝑅NMHC, 𝑅NO𝑥 , 𝑅NO2 ,
𝑅O3 — resistance of observed sensors; 𝑇 , RH — air temperature and humidity
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Рис. 2. Зависимость концентрации CO от часа наблюдения. Нижняя и верхняя границы “ящи-
ка” — первый и третий квартили, линия в середине “ящика” — медиана
Fig. 2. Dependence of CO concentration on the hour of observation. The lower and upper limits of
the “box” are the first and third quartiles, the line in the middle of the “box” ’ is the median

и угарного газа в самой атмосфере, так и плохой избирательностью (селективностью)
самих датчиков. Следует отметить, что коэффициент корреляции между сопротивлени-
ем датчика 𝑅NMHC и целевой концентрацией CO(𝐺𝑇 ) равен 0.92, что выше, чем между
сопротивлением датчика угарного газа 𝑅CO и целевой концентрацией CO(𝐺𝑇 ), равной
0.88. Как отмечено в работе [2], учет сопротивления датчика 𝑅NMHC позволяет повысить
точность прогнозирования концентрации угарного газа.

1.5. Создание новых признаков

Для улучшения точности предложенных моделей созданы новые признаки. Проанали-
зирована зависимость концентрации CO от часа измерения, для чего было изучено рас-
пределение концентрации CO по эталонному газоанализатору в течение дня. На рис. 2
представлена ящичная диаграмма, отображающая зависимость целевой концентрации
от часа наблюдения.

Исходя из диаграммы можно сделать вывод о сильной зависимости между време-
нем измерения и уровнем концентрации угарного газа. Наибольшие медианные зна-
чения концентрации CO наблюдаются утром с 8 до 9 ч и в вечернее время с 18 до
20 ч, составляя около 3 мг/м3. В дневное время медианные значения падают до уровня
в 2 мг/м3, а в ночное время наблюдается значительный спад примесей CO с медианны-
ми значениями около 0.5 мг/м3 с 4 до 5 ч утра. Значительные изменения медианных
значений концентраций угарного газа в течение суток могут быть вызваны временем
наибольшей активности людей. Максимальные медианные значения концентрации на-
блюдались в часы пик движения транспорта.

Таким образом, было решено помимо исходных значений сопротивлений датчиков,
температуры и влажности воздуха учитывать также час измерения концентрации. Для
этого вычислены средние значения концентраций COℎ для каждого часа суток путем
усреднения по всем данным эталонного газоанализатора. Полученный признак включен
в рассматриваемые модели с целью повышения их точности.

2. Полиномиальная регрессия

Рассмотрим различные модели на основе линейной и полиномиальной регрессии, ис-
пользуя методы 𝐿1- и 𝐿2-регуляризации для преодоления проблем мультиколлинеар-
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ности и переобучения. На основе 𝐿1-регуляризации проводится отбор признаков для
полиномиальной регрессии. Также исследуются особенности ложно предсказанных зна-
чений концентраций CO.

2.1. 𝐿1-, 𝐿2-регуляризация

Для моделей линейной и полиномиальной регрессии оптимальное решение для неиз-
вестных параметров 𝛽 может быть найдено путем минимизации суммы квадратов от-
клонений (3). Однако при наличии мультиколлинеарности возникают проблемы, когда
матрица 𝑋𝑇𝑋 является вырожденной или близкой к этому состоянию. Это происходит,
когда два или более признака сильно коррелируют между собой. В таких случаях об-
ратная матрица (𝑋𝑇𝑋)−1 может содержать экстремальные собственные значения. Для
решения этих проблем необходимо использовать регуляризацию.

Регуляризация Тихонова, также известная как 𝐿2-регуляризация, позволяет улуч-
шить качество модели путем добавления нового члена в критерий качества:

𝑄𝐿2 =
∑︁
𝑖

(𝑌𝑖 − 𝑓(𝑋𝑖, 𝛽))
2 + |Γ𝛽|2 → min

𝛽
,

где Γ = 𝜆𝐸, 𝜆 — неотрицательный гиперпараметр, а 𝐸 — единичная матрица. После
дифференцирования по 𝛽 новое решение 𝛽* имеет вид 𝛽* = (𝑋𝑇𝑋 + 𝜆2𝐸)−1𝑋𝑇Y. Хотя
это решение уменьшает дисперсию, оно становится смещенным. В линейных моделях
регуляризация Тихонова позволяет избежать проблем мультиколлинеарности и пере-
обучения.

𝐿1-регуляризация заключается в добавлении нового члена к критерию качества
в виде

𝑄𝐿1 =
∑︁
𝑖

(𝑌𝑖 − 𝑓(𝑋𝑖, 𝛽))
2 + 𝜆|𝛽| → min

𝛽
,

где 𝜆 — неотрицательный гиперпараметр. Эта регуляризация может занулять значения
некоторых параметров, что позволяет проводить отбор признаков.

2.2. Сравнение полиномиальных моделей

Базовой моделью линейной регрессии служит модель, состоящая из одного признака,
а именно сопротивления датчика 𝑅CO. Для обучения и тестирования моделей доступ-
ные данные были разделены на две выборки: тренировочную, состоящую из первых 2000
строк данных, и тестовую, содержащую оставшиеся 5344 строки данных. Кроме того,
исследовались модели линейной регрессии с такими признаками, как сопротивление
датчика неметановых углеводородов 𝑅NMHC, температура воздуха 𝑇 и созданный при-
знак среднего значения концентрации COℎ. Сводные результаты для линейных моделей
без регуляризации приведены в табл. 1. Как видно, при добавлении признаков 𝑇 , COℎ

и данных датчика неметановых углеводородов 𝑅NMHC повышается точность линейных
моделей без регуляризации. В таблице также представлены результаты моделей линей-
ной регрессии с 𝐿1-регуляризацией. Гиперпараметр регуляризации 𝜆 оптимизирован на
логарифмической сетке в диапазоне от 10−4 до 102 с использованием перекрестной ва-
лидации для временных рядов TimeSeriesSplit с параметром валидации 10. Как видно
из таблицы, регуляризация улучшает относительную точность MAPE и незначительно
уменьшает процент выбросов при прогнозировании GRE. Однако при этом происходит
незначительный рост ошибки MSE. При использовании 𝐿2-регуляризации изменения
менее значительные.
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Т а б л и ц а 1. Результаты линейной регрессии
Table 1. Results of linear regression

Модель
Без регуляризации 𝐿1-регуляризация

MAPE, % MSE, (мг/м3)2 GRE, % MAPE, % MSE, (мг/м3)2 GRE, %

𝑅CO 36.7 0.57 41.2 − − −
𝑅CO, 𝑇 40.4 0.66 50.2 − − −
𝑅CO, COℎ 36.3 0.52 39.9 − − −
𝑅CO, 𝑅NM 32.9 0.37 33.6 32.2 0.38 33.0

𝑅CO, 𝑅NM, 𝑇 31.2 0.30 28.3 30.1 0.32 27.9

𝑅CO, 𝑅NM, COℎ 32.9 0.37 32.6 32.1 0.37 31.8

𝑅CO, 𝑅NM, COℎ, 𝑇 31.1 0.30 26.4 29.8 0.31 26.2

Т а б л и ц а 2. Результаты полиномиальной регрессии
Table 2. Results of polynomial regression

Модель
Без регуляризации 𝐿1-регуляризация

MAPE, % MSE, (мг/м3)2 GRE, % MAPE, % MSE, (мг/м3)2 GRE, %

Pol2(𝑅CO, 𝑅NM) 26.8 0.30 28.1 26.8 0.30 28.0

Pol2(. . . ) + COℎ 26.0 0.29 24.9 26.0 0.29 24.8

Pol2(𝑅CO, 𝑅NM, 𝑇 ) 25.8 0.26 23.8 25.7 0.26 23.1

Pol2(. . . ) + COℎ 25.5 0.24 20.7 25.5 0.24 20.5

На следующем этапе строились различные полиномиальные модели второй и тре-
тьей степени. Наилучшие результаты показали многомерные полиномиальные модели
второй степени, результаты которых приведены в табл. 2. Добавление новых признаков
происходит согласно правилу (4), при этом среднее значение концентрации COℎ за час
не использовалось в создании полиномиальных признаков. В таблице также приведе-
ны результаты нескольких полиномиальных моделей с 𝐿1-регуляризацией. Настройка
гиперпараметра 𝜆 проводилась на той же сетке, что и в случае линейной регрессии.

Согласно результатам, представленным в табл. 2, при учете часа измерения путем
добавления нового признака COℎ в полиномиальной регрессии происходит улучшение
точности рассматриваемых моделей. Использование 𝐿1-регуляризации незначительно
снижает ошибку GRE. Наименее существенными признаками в случае 𝐿1-регуляриза-
ции являются квадрат температуры 𝑇 2 и квадрат сопротивления датчика неметановых
углеводородов 𝑅2

NMHC. Избавление от этих признаков в рассматриваемых моделях не
улучшает их точности, как не улучшает точности и учет влажности воздуха RH. Рас-
смотрение полиномиальных моделей третьей степени и выше значительно увеличивало
количество признаков, но не приводило к улучшению точности.

2.3. Анализ ошибочных предсказаний

Представим анализ некорректных прогнозов концентрации CO в модели полиномиаль-
ной регрессии второй степени Pol2(𝑅CO, 𝑅NM, 𝑇 )+COℎ при 𝐿1-регуляризации (результа-
ты выделены жирным шрифтом в табл. 2). На рис. 3, а показана точечная диаграмма,
отображающая предсказанные значения концентрации в зависимости от истинных зна-
чений на тестовых данных. Синяя прямая на графике соответствует значениям, при
которых предсказанные значения совпадают с истинными. Красные прямые выделя-
ют внутреннюю область, где ошибка предсказания составляет менее 25 % относительно
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Рис. 3. Точечная диаграмма CO (а). По вертикали отложены результаты предсказаний кон-
центрации, по горизонтали — истинные значения концентрации; ящичная диаграмма квад-
ратичных отклонений MSE (б ). По вертикальной оси — отклонение на тестовых данных, по
горизонтальной — целевое значение концентрации
Fig. 3. The CO scatter plot (а). The results of concentration predictions are plotted vertically, the
true values of concentration are plotted horizontally; the MSE squared deviation boxplot (б ). On
the vertical axis — the deviation on the test data, on the horizontal — the target value of the
concentration

Т а б л и ц а 3. Результаты для модели Pol2(𝑅CO, 𝑅NM, 𝑇 ) + COℎ с 𝐿1-регуляризацией
Table 3. Results for the Pol2(𝑅CO, 𝑅NM, 𝑇 ) + COℎ model with 𝐿1 regularization

Условие на тест Размер теста MAPE, % MSE, (мг/м3)2 GRE, %

Нет 5344 25.5 0.24 20.5

CO ≤ 0.3 118 361.5 0.58 88.9

CO > 0.3 5226 17.9 0.23 18.9

истинного значения. Для обучения модели использовались первые 2000 строк данных,
а оставшиеся 5344 строки — для тестирования.

Как видно из точечной диаграммы, значительная часть выбросов происходит при
низких значениях концентрации CO. Для подтверждения этого факта построена ящич-
ная диаграмма (рис. 3, б ), которая показывает зависимость квадратичных отклонений
MSE от истинных значений концентрации в диапазоне от 0.1 и до 2 мг/м3. Как можно
увидеть из диаграммы, при целевой концентрации от 0.1 и до 0.3 мг/м3 наблюдаются
значительные медианные значения квадратичных отклонений.

Таким образом, полиномиальная модель второй степени Pol2(𝑅CO, 𝑅NM, 𝑇 ) + COℎ

в случае 𝐿1-регуляризации плохо описывает низкие значения целевых концентраций
CO. При прогнозировании концентраций от 0.1 до 0.3 мг/м3 модель склонна завышать
значения в несколько раз. При этом на концентрациях газа выше 0.3 мг/м3 наблюдается
уменьшение как абсолютных, так и относительных отклонений. Сводные результаты
приведены в табл. 3. Ошибки показаны как на всей тестовой выборке, так и на тестовом
множестве с концентрацией CO ниже и выше 0.3 мг/м3.

3. Нейронные сети прямого распространения

В этом разделе представлены модели прогнозирования концентрации CO на основе ней-
ронных сетей прямого распространения. Были рассмотрены различные методы оптими-
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зации, функции потерь и подходы к настройке скорости обучения. Также произведены
сравнение различных функций активации нейронов и анализ количества необходимых
скрытых слоев и нейронов в них. Рассмотрены различные методы регуляризации, ко-
торые могут быть использованы при обучении нейронных сетей.

3.1. Функция потерь

При обучении нейронной сети необходимо выбрать функцию потерь, которая будет яв-
ляться мерой расхождения между истинными значениями концентрации CO и оценкой,
полученной нейронной сетью. Задача оптимизации и обучения направлена на миними-
зацию этой функции. В качестве базовых функций потерь часто используются такие,
как MSE (5) и MAPE (6), а также MAE:

MAE =
1

𝑁

𝑁∑︁
𝑖=1

|𝑌𝑖 − 𝑌𝑖|,

где 𝑌𝑖, 𝑌𝑖 — наблюдаемое и предсказанное значения.
Функция MSE хорошо работает в большинстве случаев, однако она может силь-

но реагировать на выбросы. При ее минимизации оптимизатор стремится как можно
лучше описать значения больших выбросов, при этом жертвуя точностью в “хороших”
точках. Ошибка MAPE менее требовательна к выбросам, но она не подходит для на-
шей задачи, так как относительные отклонения принимают экстремальные значения на
низких концентрациях. Выбор данной функции приведет к чрезмерной точности для
описания выбросов в области низких концентраций, при этом жертвуя точностью на
больших значениях. Функция ошибок MAE менее чувствительна к большим абсолют-
ным выбросам, чем MSE, и также не обладает выборочностью в предсказаниях низких
концентраций, как MAPE.

Существуют и другие функции потерь для задач регрессии, которые стоит рассмот-
реть. Средняя квадратичная логарифмическая ошибка

MSLE =
1

𝑁

𝑁∑︁
𝑖=1

(︁
log(𝑌𝑖 + 1)− log(𝑌𝑖 + 1)

)︁2

схожа с MAPE, однако имеет асимметричность для различных оценок: ее значение на
недооценке выше, чем на переоценке. Если выбрать эту функцию потерь, наша модель
будет склонна переоценивать значения концентрации.

Логарифм гиперболического косинуса

MLChE =
1

𝑁

𝑁∑︁
𝑖=1

log
(︁
cosh(𝑌𝑖 − 𝑌𝑖)

)︁
.

При малых значениях 𝑥 функция log(cosh(𝑥)) ≈ 𝑥2/2, а при больших 𝑥 ведет себя
как |𝑥| − log(2). Данная функция схожа с MSE, но менее чувствительна к существенно
неправильным оценкам.

Линейно-экспоненциальная функция потерь

LINEX =
1

𝑁

2

𝑎2

𝑁∑︁
𝑖=1

(︁
𝑒𝑎(𝑌𝑖−𝑌𝑖) − 𝑎(𝑌𝑖 − 𝑌𝑖)− 1

)︁
,

где 𝑎 — параметр, отвечающий за асимметрию функции. Это асимметричная функ-
ция с гладкой производной. Если 𝑎 > 0, то модель будет недооценивать концентрацию,
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Т а б л и ц а 4. Результаты нейронной сети для различных функций потерь (среднее значение
± стандартное отклонение)
Table 4. Neural network results for various loss functions (average value ± standard deviation)

Функция потерь 𝑎 MAPE, % MSE, (мг/м3)2 GRE, %

MSE Нет 24.7±0.2 0.27±0.003 20.6±1.1
MAE Нет 23.9±0.2 0.28±0.007 18.2±0.6
MAPE Нет 25.1±0.4 0.37±0.007 21.9±1.0
MSLE Нет 24.6±0.2 0.31±0.008 19.9±0.9
MLChE Нет 24.5±0.3 0.26±0.005 19.2±0.9
LINEX 0.1 24.6±0.2 0.27±0.004 19.7±1.2
MLEE 1.05 24.4±0.3 0.27±0.007 19.5±0.6

накладывая большую ошибку на превышающие значения, а если 𝑎 < 0, то переоце-
нивать. В случае, если 𝑎 > 0, при малых |𝑌𝑖 − 𝑌𝑖| фунцкия ведет себя как MSE. При
больших же значениях |𝑌𝑖 − 𝑌𝑖| поведение линейно в случае недооценки концентрации
и экспоненциально для переоценки.

Новая гладкая асимметричная функция потерь

MLEE =
1

𝑁

𝑁∑︁
𝑖=1

log
(︁
𝑒𝑎(𝑌𝑖−𝑌𝑖) + 𝑏𝑒−

𝑎
𝑏
(𝑌𝑖−𝑌𝑖) − 𝑏

)︁
,

где 𝑏 = 𝑎2/(2−𝑎2), 𝑎 ∈ (1,
√
2) — настраиваемый параметр, отвечающий за асимметрию.

При значениях 𝑎, близких к 1, функция практически не обладает асимметрией, с ростом
же параметра 𝑎 модель склонна к недооценке концентрации. При малых 𝑥 = 𝑌𝑖 − 𝑌𝑖

функция ведет себя как 𝑥2 при большой переоценке MLEE ≈ 𝑎|𝑥|, а при значитель-
ной недооценке MLEE ≈ log(𝑏) + 𝑎|𝑥|/𝑏. Преимуществом данной функции потерь перед
LINEX является отсутствие экспоненциального роста ошибки на недостаточных оцен-
ках концентрации.

Для сравнения различных функций потерь использована полносвязная нейронная
сеть прямого распространения с одним скрытым слоем. В качестве входных значе-
ний нейронной сети использовались признаки 𝑅CO, 𝑅NM, 𝑇 , COℎ. Количество нейронов
в скрытом слое было выбрано 10, гиперболический тангенс использовался как функ-
ция активации. Тренировочная выборка состояла из первых 2000 строк данных, а для
валидации из нее выделены последние 200 строк. Для тестового набора данных исполь-
зовались последние 5344 строки. В качестве алгоритма оптимизации выбран ADAM,
начальная скорость обучения равна 5·10−3. Количество эпох обучения составляло 1000,
а пакет данных (батч) включал 50 строк. Случайное задание начальных значений весов
приводило к разбросам значений итоговых метрик. Для борьбы с этим каждая модель
обучалась 10 раз, после чего вычислялись средние значения по каждой метрике, а также
стандартные отклонения от них. Полученные результаты на тестовом наборе данных
приведены в табл. 4. Из них можно сделать вывод, что наилучшей функцией потерь
для обучения является MAE, худшие результаты соответствуют функции MAPE.

3.2. Учет дневных изменений концентрации

Для использования информации о суточных изменениях данных рассмотрены новые
признаки, учитывающие средние значения сопротивления датчиков и температуры воз-
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духа. Усреднение проводилось по предыдущим 24 значениям. Так, например, по значе-
нию сопротивления датчика 𝑅CO создавались два новых признака — 𝑊𝑅CO и 𝐷𝑅CO:

𝑊𝑅CO[𝑗] =
1

24

23∑︁
𝑖=0

𝑅CO[𝑗 − 𝑖], 𝐷𝑅CO[𝑗] = 𝑅CO[𝑗]−𝑊𝑅CO[𝑗].

Новые признаки создавались начиная с 24 строки. Первые 23 строки далее не исполь-
зовались для построения моделей. Аналогичные признаки создавались для датчика
неметановых углеводородов 𝑅NM, а также температуры воздуха 𝑇 .

Для исследования пригодности новых признаков использовалась полносвязная ней-
ронная сеть прямого распространения с одним скрытым слоем и функцией потерь MAE.
Количество нейронов в скрытом слое было выбрано 10, в качестве функции активации
использовался гиперболический тангенс. Тренировочный набор состоял из 1977 строк,
для тестового набора данных брались последние 5344 строки. В качестве алгоритма
оптимизации выбран ADAM, начальная скорость обучения при этом равна 5·10−3. Ко-
личество эпох обучения составляло 1000, размер одного пакета данных (батча) 50 строк.
Усреднение проводилось по десяти реализациям обученных нейронных сетей.

Рассмотрены четыре различных варианта входных значений нейронной сети. В пер-
вом использовались признаки 𝑅CO, 𝑅NM и 𝑇 , во втором добавлялся признак COℎ, в тре-
тьем входными признаками были𝑊𝑅CO, 𝐷𝑅CO,𝑊𝑅NM, 𝐷𝑅NM, 𝐷𝑇 и𝑊𝑇 . В четвертом
варианте содержался также признак COℎ. Результаты представлены в табл. 5. Из таб-
лицы можно сделать вывод, что добавление нового признака COℎ в нейронные сети при-
водит к улучшению точности моделей по всем метрикам. Разделение же сопротивлений
и температуры на новые признаки приводит к существенному сокращению количества
выбросов и уменьшению метрики GRE.

3.3. 𝐿1- и 𝐿2-регуляризация

Для каждой из четырех моделей применена 𝐿1- и 𝐿2-регуляризация на веса, соединя-
ющие входной и скрытый слои. Основная цель использования регуляризации — умень-
шение размера вектора весов, что может привести к уменьшению вероятности переобу-
чения нейронной сети и повышению обобщающей способности модели.

Для этого из тренировочной выборки размером 1977 строк выделены последние
377 строк для валидации. Оптимальные гиперпараметры подобраны на валидационной
выборке, а обучение проводилось на первых 1600 строках с функцией потерь MAE.
Количество нейронов в скрытом слое выбрано равным 10, функция активации tanh(𝑥).
Оптимальное значение гиперпараметра регуляризации подобрано на логарифмической
сетке в диапазоне от 10−4 до 10−0.5. После нахождения лучшего параметра обучение

Т а б л и ц а 5. Результаты нейронных сетей для разных наборов входных признаков (среднее
значение ± стандартное отклонение)
Table 5. Results of neural networks for different sets of input features (average value ± standard
deviation)

Модель MAPE, % MSE, (мг/м3)2 GRE, %

1 25.8±0.3 0.30±0.009 24.6±1.0
2 24.0±0.2 0.28±0.006 18.3±0.4
3 24.7±0.7 0.28±0.011 19.8±0.8
4 24.0±0.6 0.27±0.01 17.7±1.4
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проводилось на всей тренировочной выборке размером 1977 строк, а для тестирования
использовались последние 5344 строки. Усреднение проводилось по десяти нейронным
сетям. Средние значения метрик и стандартные отклонения от них на тестовом наборе
данных представлены в табл. 6.

Анализ таблицы показывает, что добавление нового признака COℎ и разделение зна-
чений сопротивлений и температур на средние дневные значения и отклонения от них
улучшают точность моделей. Кроме того, регуляризация позволяет бороться с пере-
обучением и мультиколлинеарностью, что приводит к уменьшению ошибок при про-
гнозировании. Регуляризация 𝐿1 показывает улучшение результата для метрик MAPE
и GRE, регуляризация 𝐿2 снижает ошибку MSE на тестовых данных.

Установлено, что в нейронных сетях с регуляризацией наблюдается улучшение ста-
бильности обучения нейронных сетей. Выполнен анализ точности моделей в зависимо-
сти от значения гиперпараметра для 𝐿1-регуляризации. На рис. 4 приведены результаты
для двух моделей: с регуляризацией и без нее. В качестве входных признаков нейрон-
ной сети использовались 𝑊𝑅CO, 𝐷𝑅CO, 𝑊𝑅NM, 𝐷𝑅NM, 𝐷𝑇 , 𝑊𝑇 , а также COℎ. Для
обучения использовались 1977 строк данных, для теста — последние 5344 строки. Ре-
зультаты моделей приведены на тестовом наборе. В качестве алгоритма оптимизации

Т а б л и ц а 6. Результаты нейронных сетей c 𝐿1- и 𝐿2-регуляризацией (среднее значение ±
стандартное отклонение)
Table 6. Results of neural networks with 𝐿1- and 𝐿2-regularization (average value ± standard
deviation)

Модель
𝐿1-регуляризация 𝐿2-регуляризация

MAPE, % MSE, (мг/м3)2 GRE, % MAPE, % MSE, (мг/м3)2 GRE, %

1 25.1±0.2 0.29±0.001 20.9±0.3 25.5±0.1 0.28±0.008 22.0±0.6
2 24.0±0.2 0.27±0.002 16.8±0.5 24.1±0.2 0.27±0.003 16.9±0.4
3 23.9±0.8 0.29±0.011 16.9±1.7 24.2±0.3 0.27±0.006 17.2±0.7
4 23.4±0.1 0.28±0.002 15.5±0.2 23.7±0.1 0.26±0.005 15.8±0.4

а б

Коэффициент регуляризации

M
S
E
,
(м
г/
м
3
)2

Без регуляризации

𝐿1-регуляризация

Среднее без регуляризации

Среднее с 𝐿1-регуляризацией

Коэффициент регуляризации

G
R
E
,
%

Без регуляризации

𝐿1-регуляризация

Среднее без регуляризации

Среднее с 𝐿1-регуляризацией

Рис. 4. Результаты нейронных сетей с регуляризацией и без нее; по горизонтали значение
показателя степени с основанием 10 в регуляризации: а — ошибка MSE; б — ошибка GRE
Fig. 4. Results of neural networks with and without regularization; on the horizontal axis is the
value of the exponent with base 10 in the regularization: а — MSE error; б — GRE error
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выбран ADAM, начальная скорость обучения 5·10−3, количество эпох 1000, размер бат-
ча 50. Усреднение проводилось по десяти нейронным сетям. Кроме средних значений
указаны также границы, в которых изменялись данные метрики для каждого обучения.
Поскольку модель без регуляризации не зависит от параметра, на графике видны незна-
чительные изменения для средних значений на метриках GRE и MSE. Минимальные
и максимальные же значения метрик для модели без регуляризации от точки к точке
могут значительно изменяться, что обусловливается случайным заданием начальных
весов. Границы закрашенных областей соответствуют максимальным и минимальным
ошибкам на этих метриках. Видно, что при использовании регуляризации уменьшается
разброс между минимальными и максимальными значениями метрик, что указывает
на улучшение стабильности обучения.

3.4. Настройка гиперпараметров и архитектуры нейронной сети

Для алгоритма оптимизации ADAM скорость обучения 𝛼, экспоненциальные скорос-
ти затухания для первого и второго моментов 𝛽1 и 𝛽2, а также константа 𝜀 для чис-
ленной стабильности являются гиперпараметрами, требующими подбора оптимальных
значений [11]. Для настройки этих параметров использован метод поиска по сетке
GridSearchCV на нейронной сети с входными признаками𝑊𝑅CO, 𝐷𝑅CO,𝑊𝑅NM, 𝐷𝑅NM,
𝐷𝑇 , 𝑊𝑇 и COℎ. Нейронная сеть содержала один скрытый слой с десятью нейронами.
Были проанализированы функции активации tanh(𝑥), sigmoid(𝑥), relu(𝑥)
и exponential(𝑥). Оптимальные значения гиперпараметров подбирались для первых
3500 строк данных, а также для всех данных. Количество эпох составляло 100, 500
и 1000, а параметр кроссвалидации KFold был равен 10. Для настройки использова-
лась метрика MAPE. В результате найдены оптимальные значения гиперпараметров
и установлено, что наилучшей активационной функцией для данной задачи является
tanh(𝑥).

После настройки гиперпараметров и выбора функции активации построены кривые
тренировки для нейронной сети из десяти нейронов с одним скрытым слоем. Трениро-
вочная выборка состояла из первых 1200 строк данных, для валидационной выборки
использовались следующие 777 строк. Кривые тренировки изображены на рис. 5. Как

а б

Рис. 5. Кривые тренировки для нейронной сети с 𝐿1-регуляризацией: а — MSE; б — MAPE
Fig. 5. Training curves for a neural network with 𝐿1 regularization: а — MSE; б — MAPE
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Т а б л и ц а 7. Результаты нейронных сетей с 𝐿1-регуляризацией при различных архитектурах
(среднее значение ± стандартное отклонение)
Table 7. Results of neural networks with 𝐿1-regularization for various architectures (average value
± standard deviation)

Число
нейронов
в слое

1 скрытый слой 2 скрытых слоя
MAPE,

%
MSE,

(мг/м3)2
GRE,
%

MAPE,
%

MSE,
(мг/м3)2

GRE,
%

3 22.95±0.02 0.246±0.001 14.6±0.1 22.87±0.04 0.264±0.002 14.3±0.1
7 23.0±0.1 0.247±0.002 14.7±0.2 22.89±0.06 0.265±0.003 14.3±0.1
10 23.0±0.2 0.240±0.002 14.6±0.3 22.91±0.03 0.265±0.002 14.3±0.1
13 23.0±0.2 0.247±0.003 14.6±0.2 22.89±0.06 0.266±0.003 14.3±0.1

видно из графика, достаточное количество эпох обучения для нейронной сети с одним
скрытым слоем составляет порядка 600.

Для исследования различных архитектур нейронных сетей применен метод поиска
по сетке GridSearchCV, с помощью которого найдено оптимальное количество слоев
и нейронов в скрытых слоях. Нейронные сети обучались на тренировочной выборке из
первых 1977 строк, а тестовый набор данных состоял из последних 5344 строк. Вход-
ными признаками нейронной сети служили 𝑊𝑅CO, 𝐷𝑅CO, 𝑊𝑅NM, 𝐷𝑅NM, 𝐷𝑇 , 𝑊𝑇 ,
а также COℎ. В качестве функции активации использовался гиперболический тангенс,
а количество эпох было равно 1000. Усреднение результатов проводилось по десяти
нейронным сетям. Анализ результатов проведен для нейронных сетей с количеством
скрытых слоев от одного до пяти и количеством нейронов в каждом слое от трех до
15. Поиск наилучшей архитектуры выполнен для всех данных, в табл. 7 приведены
результаты на тестовом наборе данных. В результате обнаружено, что оптимальное
количество скрытых слоев составляет 2, а наилучшее количество нейронов в скрытом
слое находится в диапазоне от трех до семи.

3.5. Кривые обучения

Построены кривые обучения для архитектуры нейронной сети с двумя скрытыми сло-
ями по 5 нейронов в каждом и активационной функцией гиперболический тангенс.
Входными признаками нейронной сети служили 𝑊𝑅CO, 𝐷𝑅CO, 𝑊𝑅NM, 𝐷𝑅NM, 𝐷𝑇 ,
𝑊𝑇 , а также COℎ. Для построения кривых обучения использовались данные с конца
июня 2004 г. по апрель 2005 г. — последние 5344 строки данных. Тренировочная вы-
борка изменялась в диапазоне от одного до 80 дней и состояла из данных с середины
марта по конец июня 2004 г. Для того чтобы наилучшим образом моделировать ка-
либровку газовых сенсоров, данные выбирались в хронологическом порядке, т. е. сразу
после окончания тренировочных данных следовали тестовые. На рис. 6 представлены
кривые обучения для ошибок MSE и MAPE.

Как показано на рис. 6, при малом объеме обучающей выборки (от одного до несколь-
ких дней) результаты нейронных сетей на тестовом наборе демонстрируют большие
значения MSE и MAPE. При увеличении размера обучающей выборки до 35 суток зна-
чения почти не изменяются, тогда как при дальнейшем ее увеличении наблюдается
резкое уменьшение их значений с выходом на постоянное значение в области 45 дней.
Из этого можно сделать вывод, что для эффективного обучения модели и стабильного
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а б

Рис. 6. Кривые обучения для нейронной сети с двумя скрытыми слоями с 𝐿1-регуляризацией
и без нее: а — MSE; б — MAPE. По горизонтальной оси отложен размер тренировочной вы-
борки в сутках
Fig. 6. Learning curves for a neural network with two hidden layers with and witnout 𝐿1-
regularization: а — MSE; б — MAPE. The size of the training sample in days is plotted along
the horizontal axis

прогнозирования концентраций угарного газа на использованном наборе данных доста-
точно 40 дней непрерывных измерений. Отметим, что использование 𝐿1-регуляризации
в нейронной сети демонстрирует более стабильное обучение, чем без нее.

Заключение

Исследована возможность применения методов машинного обучения для восстановле-
ния концентрации угарного газа по выходным данным полупроводниковых газовых сен-
соров. Выполнены анализ структуры и корреляционный анализ выходных данных набо-
ра датчиков, на основе результатов которых созданы новые признаки, в частности COℎ,
учитывающий зависимость концентрации газа CO от времени суток. С использовани-
ем имеющихся и созданных признаков построены различные модели множественной
линейной и полиномиальной регрессии, а также несколько простых архитектур ней-
ронных сетей с прямой связью для восстановления реальных значений концентраций
угарного газа CO по данным датчиков. На этих моделях анализировалось влияние раз-
личных способов регуляризации на точность их обучения. Наилучший результат сре-
ди моделей на основе полиномиальной регрессии показала модель Pol2(𝑅CO, 𝑅NM, 𝑇 ) с
дополнительным признаком COℎ и 𝐿1-регуляризацией. К недостаткам использования
нового признака COℎ можно отнести снижение точности прогноза концентрации при
нестандартных внешних условиях, таких, например, как перекрытие улицы для проезда
транспорта и снижение уровня CO.

Из анализа графика на рис. 3 следует, что основной вклад в погрешность восстанов-
ления концентрации целевого газа вносят данные, соответствующие низким значениям
реальной концентрации CO. Так, разброс квадратичных отклонений на концентрациях
меньше 0.4 мг/м3 значительно больше, чем на более высоких концентрациях целевого
газа. Это можно объяснить низкой дискретностью референсного анализатора, которая
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в анализируемых данных составляла 0.1 мг/м3. Кроме того, значительные расхожде-
ния в предложенных моделях в области пониженных концентраций могут быть связаны
с большой погрешностью измерений эталонного анализатора. Погрешность измерения
в указанном диапазоне концентраций составляет порядка 0.3 мг/м3.

Выполнен анализ применения нейронных сетей прямого распространения для про-
гнозирования концентрации CO. Установлено, что наилучшей функцией потерь для
обучения является абсолютная ошибка MAE, а лучшей активационной функцией ней-
рона — гиперболический тангенс tanh(𝑥). Создание новых признаков из исходных с по-
мощью дневного усреднения значений сопротивлений датчиков и температуры, а так-
же отклонений от средних значений за день позволило уменьшить значения метрик
MAPE и GRE и сократить набор тренировочных данных, необходимых для достижения
минимальной погрешности восстановления концентрации газа. Наилучшая архитекту-
ра нейронной сети состояла из двух скрытых слоев по пять нейронов в каждом слое
с 𝐿1-регуляризацией ядра скрытого слоя. Подбор оптимального гиперпараметра регуля-
ризации, а также настройка оптимизатора ADAM с помощью метода GridSearchCV поз-
волили улучшить точность метрики MAPE на тестовых данных до значений 22.9±0.1 %,
а значение GRE — до 14.3±0.1 %.

Полученные результаты возможно сравнить с результатами, представленными в ста-
тье [2], в которой обучение производилось на том же наборе даных, что и в данной
работе. В качестве модели для восстановления концентрации газа CO использовалась
нейронная сеть с активационной функцией tanh(𝑥). При обучении на выборке из 2000
строк данных ошибка MAPE составила 26 %.

Благодарности. Работа выполнена при финансовой поддержке Министерства науки
и высшего образования РФ (проект � FSUS-2021-0015).
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Abstract

The study examines the application of machine learning methods for determining the concentra-
tion of carbon monoxide (CO) in the air based on data from metal-oxide (MOX) gas sensors. High
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levels of concentration are hazardous for human and animal health, making air quality control
critically important. The output data from the sensors were investigated, and new features were
created to account for the daily temporal variation of gas concentration’s. Multiple linear and
polynomial regression models, as well as neural networks, were developed to predict CO concentrati-
on. The impact of regularization on the accuracy of gas sensor data interpretation was also explored.
The analysis revealed that the primary source of error in CO concentration recovery was the data
with low concentration values. Creating new features through daily averaging of resistance sensor
values and temperature, as well as deviations from the mean values for the day, improved the results
of the MAPE and GRE metrics. It was found that the best loss function for training neural networks
is the absolute error (MAE), and the best activation function for a neuron is the hyperbolic tangent
function (tanh(𝑥)). The study demonstrates the potential use of machine learning methods for air
quality control.

Keywords: MOX gas sensor, carbon monoxide, fully connected neural network, regularization,
linear regression, polynomial regression.
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