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Цель работы — представить простой и естественный подход к восстановлению
функциональных зависимостей по данным с интервальной неопределенностью, ко-
торые не являются накрывающими. Решение задачи сводится к нахождению мини-
мума выпуклой негладкой функции и может быть эффективно найдено с помощью
методов негладкой оптимизации. Приведен численный пример, показывающий ра-
зительное отличие результата решения задачи восстановления линейной зависи-
мости по накрывающей и ненакрывающей выборкам. Обсуждаются особенности
практического применения новой методики.

Ключевые слова: интервал, интервальный анализ данных, задача восстанов-
ления зависимости, накрывающие измерения, ненакрывающие измерения, метод
прямой интервальной аппроксимации.

Цитирование: Шарый С.П., Звягин М.А. О восстановлении функциональных
зависимостей по ненакрывающим интервальным данным. Вычислительные техно-
логии. 2024; 29(4):71–94. DOI:10.25743/ICT.2024.29.4.006.

Введение

Одна из основных целей математического моделирования — построение функциональ-
ных зависимостей между различными величинами, участвующими в описании инте-
ресующих нас процессов и явлений. Соответствующая постановка задачи называется
задачей восстановления зависимостей (см., например, [1]), хотя часто встречаются
и другие ее названия — задача выравнивания данных или сглаживания данных, зада-
ча подгонки данных, задача построения эмпирических формул, задача идентификации
и др. В контексте теоретико-вероятностной статистики эта задача является предметом
регрессионного анализа, где ее называют задачей построения регрессии. В последние
десятилетия эта задача сделалась одной из центральных задач машинного обучения.
В целом задача восстановления зависимостей, пожалуй, принадлежит к наиболее по-
пулярным и востребованным задачам практики.

Но экспериментальные данные, как правило, всегда неточны, и эту неточность мож-
но описывать и обрабатывать по-разному. Классический теоретико-вероятностный под-
ход опирается на предположение о том, что погрешности в данных являются “случайны-
ми величинами”, в том смысле, как их понимает теория вероятностей, с более или менее
известными характеристиками их распределений. Такая постановка приводит к широко
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известному методу наименьших квадратов и другим популярным методам теоретико-
вероятностной статистики. В настоящей статье рассматривается другой подход, осно-
ванный на предположении, что погрешности ограниченны, причем нам более или ме-
нее известны границы их возможных значений. Это равносильно заданию интервалов
возможных значений для результатов измерений, что вызывает необходимость привле-
чения методов интервального анализа для обработки таких данных.

Наша работа посвящена развитию методов интервального анализа данных для од-
ного частного, но характерного случая, когда обрабатываемые интервалы не удовлетво-
ряют свойству накрытия истинных значений измеряемых величин. С момента своего
возникновения в 60-е годы прошлого века в интервальном анализе данных традиционно
рассматривались лишь накрывающие интервальные измерения, но в последнее время
было осознано, что ненакрывающие данные также должны быть предметом серьезного
изучения и анализа. Мы исследуем задачу восстанавления простейшей линейной зави-
симости на основе интервальных данных, которые не обязательно содержат истинные
значения измеренных величин.

Обозначения интервалов и других интервальных объектов, а также связанных с ни-
ми величин даются в согласии с неформальным международным стандартом [2]. В част-
ности, интервалы и интервальные объекты выделяются в работе буквами жирного
шрифта.

1. Накрывающие и ненакрывающие интервальные измерения

и выборки

Напомним одно из базовых понятий метрологии — науки об измерениях [3–5]:

Определение 1. Истинным значением измеряемой величины называется значе-
ние, идеально отражающее эту величину в рамках принятой модели (теории) рассмат-
риваемого объекта или явления.

Важно отметить, что измеряемая величина существует лишь в рамках принятой мо-
дели, т. е. имеет смысл только до тех пор, пока модель признается адекватной объекту
или явлению. Принципиальным положением классической метрологии является утвер-
ждение о существовании истинного значения. Но получение этого истинного значения
на практике часто невозможно, так как измерения могут искажаться неизбежными по-
мехами, измерительные приборы могут быть несовершенны и давать не вполне точные
результаты и т. п.

В последние десятилетия в западной науке наметилась явная тенденция к отходу
от использования понятия “истинного значения” на том основании, что оно труднодос-
тупно или вообще недоступно, не может быть грубо материально осязаемо и т. п. Как
следствие, вместо понятия “погрешность измерения” современные западные методики
(к примеру, [6]) предлагают говорить про “неопределенность измерения” саму по себе,
вне связи с какими-то объективными значениями величин и т. д. Реакция профессио-
нального сообщества метрологов России на эти новшества является сложной и неод-
нозначной. Можно даже говорить об определенном неприятии этих методологических
установок. Мы далее придерживаемся точки зрения классической метрологии, которая
выражена, например, в учебнике [3] и современных стандартах [4, 5].

В современной теории интервальных измерений различают измерения накрываю-
щие и ненакрывающие [7, 8]:
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Рис. 1. Накрывающее (а) и ненакрывающее (б ) измерения точечного истинного значения неко-
торой физической величины
Fig. 1. Enclosing (а) and non-enclosing (б ) measurements of the point true value of a physical
quantity at some point

Определение 2. Накрывающее измерение (накрывающий замер) — это интерваль-
ная оценка измеряемой величины, которая гарантированно содержит ее истинное зна-
чение. Измерение, относительно которого нельзя гарантировать, что оно содержит ис-
тинное значение измеряемой величины, называется ненакрывающим (рис. 1).

Таким образом, ненакрывающее измерение может содержать истинное значение,
а может и не содержать. Какая из этих возможностей реализуется, нам точно неиз-
вестно.

Измерения обычно проводят группами (сериями), а результатами таких серий явля-
ются выборки интервальных данных [8]. Свойства выборки решающим образом зависят
от свойств составляющих ее измерений.

Определение 3. Выборка интервальных результатов измерений называется накры-
вающей, если доминирующая часть (подавляющее большинство) входящих в нее интер-
валов — накрывающие. В противном случае, когда бо́льшая часть входящих в выборку
интервалов измерений (в пределе — все) не являются накрывающими, выборка назы-
вается ненакрывающей.

В этом определении фигурируют не вполне строгие выражения — “большинство”,
“доминирующая часть” и т. п., что вызвано существом задачи и желанием сделать опре-
деление практичным. Дело в том, что реальные измерения и наблюдения часто сопро-
вождаются так называемыми промахами или грубыми ошибками — такими результа-
тами, которые сильно искажены и никак не отражают свойства исследуемого объекта.
Они, естественно, почти всегда не удовлетворяют свойству накрытия истинного значе-
ния, но не допускать их присутствие в выборке нереалистично. Такие промахи стара-
ются выявить и отсеять в процессе предварительной обработки данных.

К промахам близки по смыслу выбросы в данных, которые являются аномальны-
ми измерениями, выбивающимися из общего характера выборки и которые требуют
дополнительного исследования.

Накрывающее измерение ценно тем, что дает “двустороннюю вилку” для возможных
значений интересующей нас величины, и эта оценка может служить отправной точкой,
основой для применения к обработке данных мощных методов интервального анализа.
Если же измерение — ненакрывающее, то содержание интервальных данных обедняет-
ся: вместо двусторонних “вилок” имеются просто “растекшиеся” точки. Арсенал мето-
дов, которые могут быть применены к таким данным, также обедняется и сужается.

Вынесенный на обложку книги [8] рис. 2 наглядно иллюстрирует интересующую нас
задачу восстановления линейной зависимости по интервальным данным. Многомерные
интервалы данных, по которым требуется построить искомую функцию, называют так-
же брусами неопределенности измерений или отрезками неопределенности измерений
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Рис. 2. Восстановление линейной зависимости по интервальным данным
Fig. 2. Constructing a linear functional dependency from interval data

в зависимости от их размерности [8]. Если условие прохождения графика восстанав-
ливаемой зависимости через брусы неопределенности измерений не работает, то оста-
ется единственный критерий, согласно которому можно определять, насколько график
“подходит” к данным, и это — расстояние от графика до брусов неопределенности, рас-
сматриваемых как целостные объекты.

Напомним, что интервальный анализ данных зародился в начале 60-х гг. прошло-
го века и его началом можно считать пионерную работу Л.В. Канторовича [9]. В ней
сформулированы основы нового подхода к обработке неточностей и неопределенностей,
которые предлагалось описывать в виде двусторонних оценок, т. е. фактически интерва-
лов. При этом молчаливо считалось, что интервальные результаты измерений являются
накрывающими и всегда (или почти всегда) содержат истинные значения измеряемой
величины. С годами постепенно пришло понимание того факта, что ненакрывающие
измерения и ненакрывающие выборки тоже существуют, они составляют заметную до-
лю в общем числе измерений с интервальными результатами. Более того, было осо-
знано, что ненакрывающие интервальные измерения и выборки могут быть полезны-
ми и должны серьезно рассматриваться наряду с накрывающими [7, 8]. Это вызвано,
в частности, тем фактом, что обеспечить свойство накрытия истинного значения — это
не вполне тривиальная задача (и даже не однозначная) и ее решение требует отдель-
ных усилий. С другой стороны, трактовка ненакрывающих интервальных данных как
промахов или выбросов неоправданно упрощает ситуацию, в некотором смысле даже
вульгаризует ее.

2. Теория: случай точных независимых переменных

Нам необходимо определить линейную функцию вида

𝑦 = 𝛽0 + 𝛽1𝑥1 + . . .+ 𝛽𝑚𝑥𝑚 (1)

по наборам измеренных значений независимых переменных 𝑥1, . . . , 𝑥𝑚 и зависимой
переменной 𝑦. Предполагаем, что имеется всего 𝑛 измерений, в результате которых
получены наборы значений

(𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑚, y 𝑖), 𝑖 = 1, . . . , 𝑛, (2)
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где 𝑥𝑖𝑗 — значение 𝑗-й независимой переменной 𝑥𝑗 в 𝑖-м измерении; y 𝑖 — интервал оцен-
ки значения функции в 𝑖-м измерении, 𝑗 = 1, 2, . . . ,𝑚. Иными словами, рассматриваем
ситуацию, когда 𝑥𝑖𝑗 — известные точно вещественные числа, а 𝑦𝑖 заданы неточно и для
них известны интервальные оценки значений y 𝑖 = [y

𝑖
, y 𝑖] (рис. 3). При этом интервалы

y 𝑖, вообще говоря, не обязательно являются накрывающими для истинных значений
измеряемых величин. В этих условиях необходимо найти вещественные параметры 𝛽0,
𝛽1, . . . , 𝛽𝑚 для выражения (1), чтобы оно “наилучшим образом” приближало (аппрок-
симировало и т. п.) измеренные данные (2).

Ниже нам понадобится много работать с вектором значений независимых перемен-
ных в 𝑖-м измерении, и будем обозначать

𝑥𝑖: =
(︀
𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑚

)︀
в соответствии с нотацией, идущей от Matlab’а и других систем компьютерной мате-
матики.

Как уже отмечалось, если не требуется, чтобы график восстанавливаемой функ-
ции каким-либо образом обязательно проходил через брусы непределенности измерений
(что соответствовало бы накрывающим измерениям), то остается лишь один критерий
соответствия конструируемой функции исходным данным. Это — расстояние от гра-
фика функции до данных, понимаемое как некоторая мера отклонения брусов неопре-
деленности (или отрезков неопределенности) от соответствующих им точек графика.
Фактически расстояния от отдельных брусов неопределенности измерений до графика
восстанавливаемой функции являются аналогами так называемых “остатков” в регрес-
сионном анализе [10].

В рассматриваемой ситуации это расстояние до графика, во-первых, нужно опреде-
лить для отдельного интервала неопределенности y 𝑖 и, во-вторых, нужно определить
его для всей выборки (2) по набору расстояний до каждого y 𝑖, 𝑖 = 1, 2, . . . , 𝑛. Второй
пункт этой программы может быть реализован, к примеру, способом, которым задается
расстояние (метрика) на прямом декартовом произведении метрических пространств.
Расстояние от графика до выборки в целом можно также построить с помощью какой-
либо нормы вектора отдельных расстояний, подходящей по смыслу задачи. Займемся
поэтому расстоянием от графика восстанавливаемой линейной функции до интервала
неопределенности измерения.

x

y

Рис. 3. Восстановление линейной зависимости по интервальным данным в случае точных зна-
чений независимых переменных
Fig. 3. Constructing a linear functional dependency from interval data for the case of exact values
of independent variables
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Рис. 4. Расстояние от графика восстанавливаемой функции до интервального результата из-
мерения (стрелка)
Fig. 4. Distance from the graph of the constructed function to an interval measurement result
(arrow)

Из выборки (2) возьмем значения аргументов 𝑖-го измерения, т. е. (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑚) =
𝑥𝑖:. Подставим их в уравнение восстанавливаемой линейной функции (1). Будет полу-
чено ее значение, которое обозначим

𝑦(𝑥𝑖:, 𝛽) = 𝛽0 + 𝛽1𝑥𝑖1 + . . .+ 𝛽𝑚𝑥𝑖𝑚,

где (𝛽0, 𝛽1, . . . , 𝛽𝑚) = 𝛽. Расстояние dist по вертикали от точки 𝑦(𝑥𝑖:, 𝛽) до отрезка
неопределенности (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑚, y 𝑖) (рис. 4) естественно определять так же, как это
делается в интервальном анализе [11], т. е. как расстояние от числа 𝑦(𝑥𝑖:, 𝛽), которое
является вырожденным интервалом [ 𝑦(𝑥𝑖:, 𝛽), 𝑦(𝑥𝑖:, 𝛽)], до интервала y 𝑖:

dist
(︀
𝑦(𝑥𝑖:, 𝛽), y 𝑖

)︀
= max

{︀⃒⃒
𝑦(𝑥𝑖:, 𝛽)− y

𝑖

⃒⃒
,
⃒⃒
𝑦(𝑥𝑖:, 𝛽)− y 𝑖

⃒⃒}︀
. (3)

Переходя ко всей выборке, получаем вектор(︁
dist

(︀
𝑦(𝑥1:, 𝛽), y1

)︀
, dist

(︀
𝑦(𝑥2:, 𝛽), y2

)︀
, . . . , dist

(︀
𝑦(𝑥𝑛:, 𝛽), y𝑛

)︀)︁⊤
,

образованный расстояниями от отрезков неопределенности измерений до графика. Взяв
какую-нибудь норму ‖ · ‖ этого вектора, получим меру отклонения всей выборки от
графика функции:

𝛷(𝛽) :=
⃦⃦⃦(︁

dist
(︀
𝑦(𝑥1:, 𝛽), y1

)︀
, dist

(︀
𝑦(𝑥2:, 𝛽), y2

)︀
, . . . , dist

(︀
𝑦(𝑥𝑛:, 𝛽), y𝑛

)︀)︁⊤⃦⃦⃦
.

Назовем 𝛷(𝛽) функцией отклонения данных от графика восстанавливаемой зави-
симости.

В зависимости от конкретного выбора векторной нормы получаются различные вер-
сии этой функции 𝛷, которые будем обозначать необходимыми модифицирующими ин-
дексами. В частности, для популярных норм, принимая во внимание неотрицательность
расстояния dist, имеем

𝛷1(𝛽) =
𝑛∑︁

𝑖=1

dist
(︀
𝑦(𝑥𝑖:, 𝛽), y 𝑖

)︀
— для 1-нормы,

𝛷2(𝛽) =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

(︀
dist

(︀
𝑦(𝑥𝑖:, 𝛽), y 𝑖

)︀)︀2
— для 2-нормы (евклидовой нормы),

𝛷∞(𝛽) = max
1≤𝑖≤𝑛

dist
(︀
𝑦(𝑥𝑖:, 𝛽), y 𝑖

)︀
— для чебышёвской нормы (максимум-нормы),
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где 𝛽 = (𝛽0, 𝛽1, . . . , 𝛽𝑚). Значения аргументов 𝛽0, 𝛽1, . . . , 𝛽𝑚, доставляющие минимум
функции 𝛷, являются искомой оценкой параметров восстанавливаемой функции (1).
Назовем описанный выше метод оценивания параметров прямой интервальной аппрок-
симацией данных, обозначая его для краткости аббревиатурой ПИА.

Введенным выше конструкциям можно придать другую форму, более удобную при
исследовании функции отклонения и ее конкретных реализаций 𝛷1, 𝛷2, 𝛷∞ и др.

Напомним, что для интервалов a и b операция внутреннего вычитания (называ-
емая также алгебраическим вычитанием [11]), обратная к интервальному сложению,
определяется как

a ⊖ b =
[︀
a − b,a − b

]︀
.

Результатом этой операции может быть как обычный классический интервал, так
и “неправильный интервал” из арифметики Каухера [11]. Модуль интервала, правиль-
ного или неправильного, понимают в интервальном анализе как максимум модулей его
концов. Тогда необходимое расстояние между интервалами (3), как известно, можно
представить в эквивалентном виде:

dist
(︀
𝑦(𝑥1:, 𝛽), y 𝑖

)︀
= |𝑦(𝑥1:, 𝛽)⊖ y 𝑖|.

Естественным покомпонентным образом операция “⊖” распространяется на интер-
вальные векторы. Если теперь воспользоваться понятием нормы интервальных векто-
ров [11], обобщающим модуль интервалов, то функцию отклонения 𝛷 можно переписать
в виде

𝛷(𝛽) = 𝛷
(︀
𝛽0, 𝛽1, . . . , 𝛽𝑚

)︀
= ‖𝑦(𝑥, 𝛽)⊖ y‖, (4)

где

𝑦(𝑥, 𝛽) =
(︀
𝑦(𝑥1:, 𝛽), 𝑦(𝑥2:, 𝛽), . . . , 𝑦(𝑥𝑛:, 𝛽)

)︀⊤
, y = (y1, y2, . . . , y𝑛)

⊤.

Для нахождения параметров линейной функции (1), наилучшим образом подходящей
к данным (2), необходимо минимизировать в выбранной норме значение
𝛷(𝛽) = ‖𝑦(𝑥, 𝛽) ⊖ y‖ как функцию от 𝛽 = (𝛽0, 𝛽1, . . . , 𝛽𝑚). Аргумент найденного ми-
нимума даст искомую оценку параметров.

Конкретное выражение для 𝛷 зависит от того, какую конкретно норму интерваль-
ных векторов берем в выражении (4). В качестве нормы, которая агрегирует отдельные
расстояния от графика до интервалов неопределенности, можно взять, например, одну
из следующих:

‖a‖1 =
𝑛∑︁

𝑖=1

|a 𝑖|, ‖a‖𝑝 =

(︃
𝑛∑︁

𝑖=1

|a 𝑖|𝑝
)︃1/𝑝

, ‖a‖∞ = max
1≤𝑖≤𝑛

|a 𝑖|.

Чтобы дать явные развернутые выражения для функции 𝛷(𝛽0, 𝛽1, . . . , 𝛽𝑚), соответству-
ющие этим нормам, необходим вспомогательный результат.

Предложение 1. Если a ∈ IR и 𝑏 ∈ R, то |a ⊖ 𝑏| = rada + |mida − 𝑏|.

Доказательство. Пусть 𝑏 = 𝑡+mida = 𝑡+
1

2
(a +a) для некоторого вещественного

числа 𝑡. Тогда

|a⊖𝑏|=max{|a−𝑏|, |a−𝑏|}=max

{︂⃒⃒⃒
a−a
2

−𝑡
⃒⃒⃒
,
⃒⃒⃒
a−a
2

−𝑡
⃒⃒⃒}︂

=max{|−rada−𝑡|, |rada−𝑡|}.
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Обозначим последнее выражение через 𝑔(𝑡). Оно является максимумом расстояний от
𝑡 до двух симметричных относительно нуля точек вещественной оси: −rada и rada .
Поэтому

𝑔(𝑡) =

{︂
| − rada − 𝑡|, если 𝑡 ≥ 0
|rada − 𝑡|, если 𝑡 ≤ 0

=

{︂
𝑡+ rada , если 𝑡 ≥ 0
−𝑡+ rada , если 𝑡 ≤ 0

= |𝑡|+ rada .

Следовательно, получаем |a ⊖ 𝑏| = rada + |mida − 𝑏|. ■
Теперь можно записать функцию отклонения 𝛷

(︀
𝛽0, . . . , 𝛽𝑚

)︀
в конкретных нормах

(нижний индекс указывает, какой норме соответствует 𝛷):

𝛷1

(︀
𝛽0, . . . , 𝛽𝑚

)︀
=

𝑛∑︁
𝑖=1

rad y 𝑖 +
𝑛∑︁

𝑖=1

⃒⃒⃒⃒
mid y 𝑖 −

(︂
𝛽0 +

𝑚∑︁
𝑗=1

𝛽𝑗𝑥𝑖𝑗

)︂⃒⃒⃒⃒
, (5)

𝛷𝑝

(︀
𝛽0, . . . , 𝛽𝑚

)︀
=

(︃
𝑛∑︁

𝑖=1

(︃
rad y 𝑖 +

⃒⃒⃒⃒
⃒mid y 𝑖 −

(︃
𝛽0 +

𝑚∑︁
𝑗=1

𝛽𝑗𝑥𝑖𝑗

)︃⃒⃒⃒⃒
⃒
)︃𝑝)︃1/𝑝

, (6)

𝛷∞
(︀
𝛽0, . . . , 𝛽𝑚

)︀
= max

1≤𝑖≤𝑛

{︃
rad y 𝑖 +

⃒⃒⃒⃒
⃒mid y 𝑖 −

(︃
𝛽0 +

𝑚∑︁
𝑗=1

𝛽𝑗𝑥𝑖𝑗

)︃⃒⃒⃒⃒
⃒
}︃
. (7)

Пример 1. Пусть 𝑚 = 1, т. е. восстанавливаем линейную зависимость вида 𝑦 =
𝛽0 + 𝛽1𝑥 от одной переменной 𝑥.

Решим задачу отыскания минимума функции 𝛷∞(𝛽0, 𝛽1) для 𝑛 = 2, т. е. для двух
измерений. В этом случае заданы интервалы неопределенности (𝑥11, y1) и (𝑥21, y2), так
что имеем

𝛷∞(𝛽0, 𝛽1) = max
{︀
rad y1 + |mid y1 − (𝛽0 + 𝛽1𝑥1)|, rad y2 + |mid y2 − (𝛽0 + 𝛽1𝑥2)|

}︀
.

Ясно, что минимум выражения достигается на решении системы линейных уравнений{︂
𝛽0 + 𝛽1𝑥1 = mid y1,
𝛽0 + 𝛽1𝑥2 = mid y2,

которое одновременно обнуляет выражения под модулями. Это решение имеет вид

𝛽0 =
𝑥2mid y1 − 𝑥1mid y2

𝑥2 − 𝑥1

, 𝛽1 =
mid y2 −mid y1

𝑥2 − 𝑥1

.

При rad y1 = rad y2 = 0 оно превращается в решение задачи о проведении прямой через
две точки, что вполне естественно. ■

Заметим, что для неинтервальных данных, когда rad y = 0 и mid y = 𝑦, введенные
выше функционалы 𝛷1, 𝛷𝑝 и 𝛷∞ получают следующий вид:

𝛷1(𝛽0, . . . , 𝛽𝑚) =
𝑛∑︁

𝑖=1

⃒⃒⃒⃒
𝑦𝑖 −

(︂
𝛽0 +

𝑚∑︁
𝑗=1

𝛽𝑗𝑥𝑖𝑗

)︂⃒⃒⃒⃒
,

𝛷𝑝(𝛽0, . . . , 𝛽𝑚) =

(︃
𝑛∑︁

𝑖=1

⃒⃒⃒⃒
𝑦𝑖 −

(︂
𝛽0 +

𝑚∑︁
𝑗=1

𝛽𝑗𝑥𝑖𝑗

)︂⃒⃒⃒⃒𝑝)︃1/𝑝

,

𝛷∞(𝛽0, . . . , 𝛽𝑚) = max
1≤𝑖≤𝑛

⃒⃒⃒⃒
⃒𝑦𝑖 −

(︂
𝛽0 +

𝑚∑︁
𝑗=1

𝛽𝑗𝑥𝑖𝑗

)︂⃒⃒⃒⃒
⃒.
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Поиск минимума этих выражений соответствует задачам о наилучшем приближении
точек гиперплоскостью для 1-нормы, 𝑝-нормы и чебышёвской нормы (∞-нормы) соот-
ветственно.

Отметим, что описанный выше метод ПИА удовлетворяет принципу соответствия,
сформулированному Н. Бором и переосмысленному на случай интервального анали-
за данных в книге [8]. При стягивании ширины интервалов неопределенности к нулю
получим в пределе метод восстановления зависимости по точечным данным, миними-
зирующий какую-то норму вектора остатков наблюдений. В частности, если в качестве
нормы ‖·‖ взята евклидова норма (2-норма), то в пределе получим классический метод
наименьших квадратов.

3. Свойства функции отклонения

Исследуем свойства функции отклонения 𝛷(𝛽0, 𝛽1, . . . , 𝛽𝑚) как в общем случае, так и для
отдельных ее реализаций (5)–(7). Будем существенно использовать результаты выпук-
лого анализа [12, 13].

Определение 4. Множество 𝑆 ⊆ R𝑛 называется выпуклым, если одновременно
с любыми двумя своими точками содержит отрезок прямой, который их соединяет.
Иными словами, множество 𝑆 ⊆ R𝑛 называется выпуклым, если для любых 𝑥, 𝑦 ∈ 𝑆
и любого 𝜆 ∈ [0, 1] точка 𝜆𝑥+ (1− 𝜆)𝑦 также лежит в 𝑆.

Определение 5. Пусть 𝑆 — выпуклое множество в R𝑛. Функция 𝑓 : 𝑆 → R назы-
вается выпуклой, если для любых 𝑥, 𝑦 ∈ 𝑆 и 𝜆 ∈ [0, 1] выполняется неравенство

𝑓(𝜆𝑥+ (1− 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1− 𝜆)𝑓(𝑦).

Из математического анализа известны признаки выпуклости функции, основанные
на исследовании знака второй производной и т. п. К сожалению, мы не можем восполь-
зоваться ими, так как рассматриваемые функции отклонения не являются дифферен-
цируемыми всюду на своей области определения.

Предложение 2. Функция 𝛷(𝛽0, 𝛽1, . . . , 𝛽𝑚), определяемая посредством (4), явля-
ется выпуклой для любой векторной нормы ‖ · ‖.

Доказательство. Пусть 𝑋𝑗 ∈ R𝑛, 𝑗 = 1, 2, . . . ,𝑚, — векторы с компонентами 𝑥𝑖𝑗,
так что 𝑋𝑗 = (𝑥𝑖𝑗)

𝑛
𝑖=1, и пусть 0 ≤ 𝜆 ≤ 1. Тогда, опираясь на свойства норм векторов,

можем утверждать справедливость следующей цепочки соотношений:

𝛷
(︀
𝜆𝛼0 + (1− 𝜆)𝛽0, 𝜆𝛼1 + (1− 𝜆)𝛽1, . . . , 𝜆𝛼𝑚 + (1− 𝜆)𝛽𝑚

)︀
=

=

⃦⃦⃦⃦
⃦𝜆𝛼0 + (1− 𝜆)𝛽0 +

𝑚∑︁
𝑗=1

(︀
𝜆𝛼𝑗 + (1− 𝜆)𝛽𝑗

)︀
𝑋𝑗 ⊖ y

⃦⃦⃦⃦
⃦ =

=

⃦⃦⃦⃦
⃦𝜆𝛼0 + (1− 𝜆)𝛽0 +

𝑚∑︁
𝑗=1

(︀
𝜆𝛼𝑗 + (1− 𝜆)𝛽𝑗

)︀
𝑋𝑗 ⊖

(︀
𝜆y + (1− 𝜆)y

)︀⃦⃦⃦⃦⃦ =

=

⃦⃦⃦⃦
⃦𝜆
(︃
𝛼0 +

𝑚∑︁
𝑗=1

𝛼𝑗𝑋𝑗

)︃
+ (1− 𝜆)

(︃
𝛽0 +

𝑚∑︁
𝑗=1

𝛽𝑗𝑋𝑗

)︃
⊖
(︀
𝜆y + (1− 𝜆)y

)︀⃦⃦⃦⃦⃦ =

=

⃦⃦⃦⃦
⃦𝜆
(︃
𝛼0 +

𝑚∑︁
𝑗=1

𝛼𝑗𝑋𝑗

)︃
⊖ 𝜆y + (1− 𝜆)

(︃
𝛽0 +

𝑚∑︁
𝑗=1

𝛽𝑗𝑋𝑗

)︃
⊖ (1− 𝜆)y

⃦⃦⃦⃦
⃦ ≤
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≤ 𝜆

⃦⃦⃦⃦
⃦
(︃
𝛼0 +

𝑚∑︁
𝑗=1

𝛼𝑗𝑋𝑗

)︃
⊖ y

⃦⃦⃦⃦
⃦+ (1− 𝜆)

⃦⃦⃦⃦
⃦
(︃
𝛽0 +

𝑚∑︁
𝑗=1

𝛽𝑗𝑋𝑗

)︃
⊖ y

⃦⃦⃦⃦
⃦ =

= 𝜆𝛷(𝛼0, 𝛼1, . . . , 𝛼𝑚) + (1− 𝜆)𝛷(𝛽0, 𝛽1, . . . , 𝛽𝑚).

Здесь переход от второй строки к третьей возможен потому, что из-за неотрицатель-
ности коэффициентов 𝜆 и (1− 𝜆) вместо соотношения субдистрибутивности выполнена
дистрибутивность 𝜆y + (1− 𝜆)y = y .

В целом сравнивая начало и конец цепочки, можем видеть, что полученное неравен-
ство на значения функции 𝛷, справедливое для любых аргументов, как раз и означает
выпуклость этой функции. ■

Нам понадобится
Определение 6. Для функции 𝑓 : R𝑛 → R eе надграфиком называется множество

epi 𝑓 =
{︀
(𝑥, 𝑦) ∈ R𝑛+1 | 𝑥 ∈ R𝑛, 𝑦 ∈ R, 𝑦 ≥ 𝑓(𝑥)

}︀
, т. е. множество точек в R𝑛+1, лежащих

на графике функции 𝑓 и выше его.
Напомним, что полупространством в линейном пространстве R𝑛 называют одну

из двух частей, на которые оно разделяется гиперплоскостью, т. е. плоскостью кораз-
мерности 1. Если разделяющая гиперплоскость принадлежит полупространству, то оно
называется замкнутым. Гиперплоскость в R𝑛 задается, как известно, линейным алгеб-
раическим уравнением вида

𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑏

с какими-то коэффициентами 𝑎1, 𝑎2, . . . , 𝑎𝑛 и свободным членом 𝑏. Поэтому замкнутое
полупространство — это множество точек из R𝑛, удовлетворяющих нестрогому линей-
ному алгебраическому неравенству

𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 ≤ 𝑏 (8)

или же аналогичному нестрогому неравенству противоположного смысла.
Определение 7. Выпуклым полиэдральным множеством в R𝑛 называется пересе-

чение конечного набора замкнутых полупространств или, что равносильно, множество
решений конечной системы нестрогих линейных алгебраических неравенств вида (8).

Определение 8. Функция 𝑓 : R𝑛 → R называется выпуклой полиэдральной функ-

цией, если ее надграфик — выпуклое полиэдральное множество в R𝑛+1.
Понятие выпуклой полиэдральной функции является дальнейшей конкретизацией

понятия выпуклой функции. Фактически это функции, графики которых составлены
из кусков гиперплоскостей (рис. 5). Покажем, что введенные выше функции 𝛷1 и 𝛷∞
не просто выпуклые, но дополнительно удовлетворяют этому усиленному условию.

Предложение 3. Функции 𝛷1(𝛽0, . . . , 𝛽𝑚) и 𝛷∞(𝛽0, . . . , 𝛽𝑚) являются выпуклыми
и полиэдральными.

Доказательство. Оно основано на том, что сумма выпуклых функций и поточеч-
ный максимум выпуклых функций также являются выпуклыми (см., к примеру, [12,
13]). Это же самое справедливо, как нетрудно понять, для свойства полиэдрально-
сти. По этой причине достаточно доказать выпуклость и полиэдральность для отдель-
ных “строительных блоков”, из которых сконструированы выражения (5) и (7) для
𝛷1(𝛽0, . . . , 𝛽𝑚) и 𝛷∞(𝛽0, . . . , 𝛽𝑚), т. е. для выражений

rad y 𝑖 +

⃒⃒⃒⃒
⃒mid y 𝑖 −

(︃
𝛽0 +

𝑚∑︁
𝑗=1

𝛽𝑗𝑥𝑖𝑗

)︃⃒⃒⃒⃒
⃒.
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Гладкая

Полиэдральная

Рис. 5. Выпуклые функции — гладкая и полиэдральная
Fig. 5. Convex functions — smooth and polyhedral

Если (𝛽′
0, . . . , 𝛽

′
𝑚) и (𝛽′′

0 , . . . , 𝛽
′′
𝑚) — два каких-то набора параметров, 0 ≤ 𝜆 ≤ 1, то

в силу неравенства треугольника⃒⃒⃒⃒
⃒mid y 𝑖 −

(︂(︀
𝜆𝛽′

0 + (1− 𝜆)𝛽′′
0

)︀
+

𝑚∑︁
𝑗=1

(︀
𝜆𝛽′

𝑗 + (1− 𝜆)𝛽′′
𝑗

)︀
𝑥𝑖𝑗

)︂⃒⃒⃒⃒
⃒ ≤

≤

⃒⃒⃒⃒
⃒𝜆mid y 𝑖 −

(︂
𝜆𝛽′

0 +
𝑚∑︁
𝑗=1

𝜆𝛽′
𝑗𝑥𝑖𝑗

)︂⃒⃒⃒⃒
⃒+
⃒⃒⃒⃒
⃒(1− 𝜆)mid y 𝑖 −

(︂
(1− 𝜆)𝛽′′

0 +
𝑚∑︁
𝑗=1

(1− 𝜆)𝛽′′
𝑗 𝑥𝑖𝑗

)︂⃒⃒⃒⃒
⃒ =

= 𝜆

⃒⃒⃒⃒
⃒mid y 𝑖 −

(︂
𝛽′
0 +

𝑚∑︁
𝑗=1

𝛽′
𝑗𝑥𝑖𝑗

)︂⃒⃒⃒⃒
⃒+ (1− 𝜆)

⃒⃒⃒⃒
⃒mid y 𝑖 −

(︂
𝛽′′
0 +

𝑚∑︁
𝑗=1

𝛽′′
𝑗 𝑥𝑖𝑗

)︂⃒⃒⃒⃒
⃒,

откуда следует выпуклость. Полиэдральность вытекает из представления для модуля
|𝑎| = max{𝑎,−𝑎}. ■

4. Теория: случай неточных независимых переменных

Разумеется, неточность и неопределенность могут присутствовать не только в значени-
ях функции 𝑦, но и в значениях независимых переменных 𝑥1, 𝑥2, . . . , 𝑥𝑚. Для них в этом
случае по результатам 𝑖-го измерения задаются соответствующие интервалы неопреде-
ленности x 𝑖1, x 𝑖2, . . . , x 𝑖𝑚, образующие в совокупности интервальный вектор x 𝑖:, так
что

x 𝑖: = (x 𝑖1, x 𝑖2, . . . , x 𝑖𝑚).

При точном задании аргумента 𝑥𝑖: мы получали конкретную точку (𝑥𝑖:, 𝑦(𝑥𝑖:, 𝛽)) на гра-
фике функции и считали расстояние от нее до интервала данных y 𝑖. Теперь же значения
аргументов образуют целый брус x 𝑖:, и для этой новой ситуации нужно определить спо-
соб расчета “остатков” согласно терминологии регрессионного анализа, т. е. расстояний
от графика восстанавливаемой функциональной зависимости до бруса неопределеннос-
ти данных. Возможны различные подходы к этому определению.

Один из простых и естественных способов — посчитать расстояние для каждого
фиксированного аргумента 𝑥 ∈ x и выбрать максимум полученных расстояний. Это
согласуется с общим “чебышёвским” (минимаксным) смыслом наших конструкций, так
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как расстояние от точки до интервала — это тоже максимум расстояний от точки до
представителей интервала. Пусть, как и ранее,

𝑦(𝑥𝑖:, 𝛽) = 𝑦(𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑚) = 𝛽0 + 𝛽1𝑥𝑖1 + . . .+ 𝛽𝑚𝑥𝑖𝑚.

Тогда 𝑖-м остатком, т. е. расстоянием от бруса неопределенности 𝑖-го измерения до гра-
фика восстанавливаемой линейной функции положим значение

max
𝑥𝑖:∈x 𝑖:

|𝑦(𝑥𝑖:, 𝛽)⊖ y | = max
𝑥𝑖:∈x 𝑖:

{︀
|y − 𝑦(𝑥𝑖:, 𝛽)|, |y − 𝑦(𝑥𝑖:, 𝛽)|

}︀
. (9)

Минимизация определенного таким способом расстояния соответствует поиску миниму-
ма максимального отклонения точек бруса от аппроксимирующей плоскости “в верти-
кальном направлении” (рис. 6). Ясно, что возможны также другие способы определения
расстояния от брусов неопределенности данных до графика восстанавливаемой зависи-
мости (“остатков”), причем в каких-то прикладных задачах они могут оказаться даже
предпочтительнее выбранного нами.

Используя предложение 1, получим

max
𝑥𝑖:∈x 𝑖:

|𝑦(𝑥𝑖:, 𝛽)⊖ y 𝑖| = max
𝑥𝑖:∈x 𝑖:

{︃
rad y 𝑖 +

⃒⃒⃒⃒
⃒mid y 𝑖 −

(︃
𝛽0 +

𝑚∑︁
𝑗=1

𝛽𝑗𝑥𝑖𝑗

)︃⃒⃒⃒⃒
⃒
}︃

=

= max
𝑥𝑖:∈x 𝑖:

{︃
rad y 𝑖 +max

{︃
mid y 𝑖 −

(︃
𝛽0 +

𝑚∑︁
𝑗=1

𝛽𝑗𝑥𝑖𝑗

)︃
,−mid y 𝑖 +

(︃
𝛽0 +

𝑚∑︁
𝑗=1

𝛽𝑗𝑥𝑖𝑗

)︃}︃}︃
=

= max

{︃
max
𝑥𝑖:∈x 𝑖:

{︃
y 𝑖 −

(︃
𝛽0 +

𝑚∑︁
𝑗=1

𝛽𝑗𝑥𝑖𝑗

)︃}︃
, max
𝑥𝑖:∈x 𝑖:

{︃
−y

𝑖
+

(︃
𝛽0 +

𝑚∑︁
𝑗=1

𝛽𝑗𝑥𝑖𝑗

)︃}︃}︃
. (10)

Стоящие внутри внешних фигурных скобок два максимума по 𝑥𝑖: ∈ x 𝑖: — это задачи на-
хождения максимумов линейных функций по брусу x 𝑖:, т. е. задачи линейного програм-
мирования. Они могут быть относительно просто решены стандарными средствами,
например с помощью готовых программ для решения задач линейного программиро-
вания.

x

y

?

Рис. 6. Расстояние от графика восстанавливаемой функции до интервального результата из-
мерения (стрелки)
Fig. 6. Distance from the graph of the constructed function to an interval measurement result
(arrows)
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С другой стороны, из свойств задачи линейного программирования следует, что
фигурирующие в выражении (9) максимумы достигаются в угловых точках бруса x 𝑖:.
В случае малых размерностей 𝑚 можно найти эти максимумы с помощью полного
перебора вершин интервального бруса x 𝑖:. В частности, при 𝑚 = 1 имеем

max
𝑥𝑖1∈x 𝑖1

|𝑦(𝑥𝑖1, 𝛽)⊖y 𝑖|=rad y 𝑖+max

{︃⃒⃒⃒⃒
⃒mid y 𝑖−

(︃
𝛽0+𝛽1x 𝑖1

)︃⃒⃒⃒⃒
⃒,
⃒⃒⃒⃒
⃒mid y 𝑖−

(︃
𝛽0+𝛽1x 𝑖1

)︃⃒⃒⃒⃒
⃒
}︃
. (11)

При небольших 𝑚 также можно выписать аналогичные общие формулы, выражающие
расстояние от прямой до бруса через максимум из 2𝑚𝑛 чисел, где 𝑚 — размерность
пространства входных данных, а 𝑛 — длина выборки.

В целом метод прямой интервальной аппроксимации (ПИА) для рассмотренного
случая заключается в минимизации нормы вектора отклонений (“остатков”), т. е. неко-
торой функции 𝛷(𝛽), агрегирующей отдельные расстояния (9) от брусов данных до
прямой, и аргумент найденного минимума дает оценку параметров восстанавливаемой
линейной функции (1). Ниже, для случая интервального задания независимых перемен-
ных рассмотрим один и, по-видимому, наиболее естественный вариант ее конструкции,
когда берется чебышёвская норма (максимум-норма) вектора расстояний:

𝛷∞(𝛽) = max
1≤𝑖≤𝑛

max
𝑥𝑖:∈x 𝑖:

|𝑦(𝑥𝑖:, 𝛽)⊖ y 𝑖|.

Развернутое представление 𝛷∞ усложняется в сравнении с (7), но принципиально прак-
тически не изменяется: теперь оно является максимумом по всем угловым точкам бру-
са x 𝑖: от выражений вида (7). Например, если воспользуемся (11), то можно выписать
представление 𝛷∞ для 𝑚 = 1, т. е. для случая восстановления линейных функций одной
переменной:

𝛷∞(𝛽0, 𝛽1) = max
1≤𝑖≤𝑛

{︃
rad y 𝑖 +

⃒⃒⃒⃒
⃒mid y 𝑖 −

(︃
𝛽0 + 𝛽1x 𝑖1

)︃⃒⃒⃒⃒
⃒ , rad y 𝑖 +

⃒⃒⃒⃒
⃒mid y 𝑖 −

(︃
𝛽0 + 𝛽1x 𝑖1

)︃⃒⃒⃒⃒
⃒
}︃
.

Из этих представлений функции 𝛷∞ для интервальных x 𝑖: можно сделать вывод о том,
что она выпуклая и полиэдральная, так как сконструирована из выражений того же
вида, что и для точечных 𝑥𝑖: с помощью операции взятия максимума по конечному
множеству.

Далее для определения параметров 𝛽0, 𝛽1, . . . , 𝛽𝑚 необходимо найти безусловный
минимум функции 𝛷∞ по аргументам 𝛽0, 𝛽1, . . . , 𝛽𝑚. Если применять для этого оп-
тимизационные методы первого порядка, использующие кроме значений функции еще
ее субградиенты (напомним, что 𝛷∞ — негладкая), то для нахождения субградиента
(см. [12]) необходимо определять аргумент, на котором достигается

max
𝑥𝑖:∈x 𝑖:

⃒⃒⃒⃒
⃒mid y 𝑖 −

(︃
𝛽0 +

𝑚∑︁
𝑗=1

𝛽𝑗𝑥𝑖𝑗

)︃⃒⃒⃒⃒
⃒ .

Этот аргумент может быть своим для каждого отдельного вектора (𝛽0, 𝛽1, . . . , 𝛽𝑚). На-
помним, что для выпуклых функций субградиенты совпадают с градиентами в тех
точках, где эти градиенты существуют. Для выпуклой полиэдральной функции, кото-
рая составлена из конечного числа “кусков линейных функций”, градиенты заведомо
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существуют на некотором конечном множестве областей 𝐷𝑖, 𝐷𝑖 ⊂ R𝑚+1, 𝑖 = 1, 2, . . . , 𝐼
(где 𝐼 — какое-то натуральное число), таких что⋃︁

𝑖∈𝐼

𝐷𝑖 = R𝑚+1.

Представленная в этом разделе версия метода ПИА также удовлетворяет принци-
пу соответствия для методов обработки интервальных данных, который сформулиро-
ван в книге [8]. При стягивании брусов неопределенности в точки получим в пределе
метод восстановления зависимости по точечным данным, минимизирующий чебышёв-
скую норму вектора остатков наблюдений, т. е. популярное чебышёвское сглаживание
данных.

5. Реализация

Для реализации представленного выше метода прямой интервальной аппроксимации
требуется численное решение задачи безусловной выпуклой оптимизации с негладкой
целевой функцией. Это хорошо развитое направление вычислительной оптимизации,
в котором предложено немало эффективных методов и значительная часть из них опи-
рается на использование градиентов или субградиентов целевой функции.

Для вычисления минимума функции 𝛷∞ — чебышёвской нормы вектора отклонений
от выборки интервальных данных — авторами реализована программа sapprindat для
систем компьютерной математики Octave и Matlab, которая в настоящее время сво-
бодно доступна на веб-сайте “Интервальный анализ и его приложения” [14]. В качестве
“движка” в этой программе использован код ralgb5, созданный П.И. Стецюком (Инсти-
тут кибернетики НАН Украины, Киев) и реализующий так называемый 𝑟-алгоритм —
метод субградиентного спуска с растяжениями пространства [15, 16]. Отметим, что тот
же самый движок использован в популярной программе tolsolvty [17], предназначен-
ной для нахождения максимума распознающего функционала допускового множества
решений для интервальных линейных систем. Она реализует сильную версию метода
максимума совместности для оценивания параметров линейной функциональной зави-
симости по интервальным данным [18, 19].

В таблице приведен текст процедуры-функции на языке системы компьютерной ма-
тематики Octave, которая вычисляет значение целевой функции 𝛷∞, т. е. расстояние от
интервальной выборки до графика восстанавливаемой функции, а также ее субгради-
ент. Эта реализация существенно опирается на функцию glpk, стандартную свободно
распространяемую функцию, предназначенную для решения общей задачи линейного
программирования, которая входит в систему Octave и другие библиотеки, распростра-
няемые по лицензии GPL. С ее помощью вычисляются значения внутренних максиму-
мов в выражении (10), как это описано в предыдущем разделе работы. Предполагается,
что входные интервальные данные — это интервальная 𝑛×𝑚-матрица X и интерваль-
ный 𝑛-вектор y , которые задаются парами матриц и парами векторов нижних и верхних
концов. Более точно, в головной программе sapprindat создаются матрицы infX и supX

и векторы infy и supy тех же размеров, что X и b соответственно, такие что

infX = A, supX = A, infy = y , supy = y .
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Листинг процедуры вычисления расстояния от графика линейной функции
до интервальной выборки и его субградиента

Listing of the procedure for calculating the distance from the graph of a linear function
to an interval sample and its subgradient

bc = 0.5 * (infb + supb)

br = 0.5 * (supb - infb)

function [f,g] = calcfg(x)

%

% функция, которая вычисляет значение f минимизируемой

% чебышёвской нормы вектора отклонений и ее субградиент g

%

A_opt = zeros(length(bc), length(x));

%

% для каждого интервального наблюдения i с помощью стандартной функции glpk

% из системы Octave решаем задачу линейного программирования по отысканию

% матрицы A_opt, максимизирующей выражение |bc(i) - (A(i,:)x)|, где A ограничена

% условиями infA <= A <= supA

%

for i = 1:length(bc)

%

% подготовка условий для задачи линейного программирования

%

matrix_of_conditions =[ eye(length(x)); eye(length(x)) ];

vector_of_conditions = [ infA(i , :), supA(i, :) ]’;

ctype = "";

vartype = "";

for j = 1:length(x)

vartype = strcat(vartype , "C");

ctype = strcat("L", ctype, "U");

end

%

% находим максимум и минимум произведения A(i,:)*x,

% затем выбираем максимизирующее |bc(i) - (A(i,:)*x)|

%

sense = -1;

[a_max, f_max, status] = glpk (x, matrix_of_conditions,

vector_of_conditions, [], [], ctype, vartype, sense);

sense = 1;

[a_min, f_min, status] = glpk (x, matrix_of_conditions,

vector_of_conditions, [], [], ctype, vartype, sense);

if (bc(i) - f_min >= f_max - bc(i))

A_opt(i, :) = a_min;

else

A_opt(i, :) = a_max;

end

end

% вычисление функции calcfg

[f, index] = max(br + abs(bc - A_opt * x));

% вычисление субградиента для calcfg

g = A_opt(index,:)’ * sign(A_opt(index,:)*x - bc(index));

endfunction
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6. Вычислительные эксперименты

Пример 2. Рассмотрим восстановление линейной зависимости вида

𝑦 = 𝛽1𝑥1 + 𝛽0 (12)

по данным
𝑥 1 2 3

𝑦 [1, 2.5] [2, 3] [1.5, 2]
. (13)

Они изображены на рис. 7 в виде вертикальных отрезков неопределенности данных [8].
Применим сначала для решения задачи традиционные интервальные методы, которые
опираются на допущение, что интервалы значений функции — накрывающие.

Нетрудно видеть, что через отрезки неопределенности данных на рис. 7 можно про-
вести прямую линию с неположительным угловым коэффициентом. Иными словами,
множество параметров (𝛽0, 𝛽1) линейных функций (12), совместных с данными (13),
непусто. Оно называется информационным множеством задачи восстановления зави-
симости [8], и его можно нарисовать, например, с помощью пакета IntLinIncR2 [20].
Результат визуализации представлен на рис. 8.

С помощью метода максимума совместности [18, 19, 21] можно получить точечную
оценку параметров “наиболее подходящей” линейной функции, которая наилучшим об-
разом совместна с данными (13). Она находится как аргумент максимума специаль-
ного “распознающего функционала”, дающего количественную меру совместности, и на
практике для этой цели можно применить, к примеру, известную программу tolsolvty

для какой-нибудь системы компьютерной математики — Octave,Matlab и т. п. [17]. Ре-
зультатом расчетов является точка максимума (2.625,−0.25), так что искомая функция
задается выражением

𝑦 = −0.25𝑥+ 2.625 (14)
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Рис. 7. Восстановление линейной зависи-
мости по ненакрывающей интервальной
выборке (13)
Fig. 7. Constructing a linear functional
dependency from non-enclosing interval
sample (13)
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1

-0.5

-1

𝛽1

𝛽0

Рис. 8. Информационное множество задачи
восстановления зависимости в примере 2 и точ-
ка параметров, полученная методом ПИА
Fig. 8. Information set of the line fitting problem
in example 2 and the parameter point obtained by
the DIA method
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(зеленая линия на рис. 7), ее график проходит через все интервалы неопределенности.
Но метод ПИА с чебышёвской нормой выдает в качестве наилучшей, с его точки зрения,
линейную функцию

𝑦 = 0.25𝑥+ 1.625, (15)

которая резко отличается от (14) (красная линия на рис. 7). Задающие ее парамет-
ры (𝛽0, 𝛽1) = (1.625, 0.25), как можно видеть из рис. 8, не лежат в информационном
множестве. ■

Различие в результатах методов максимума совместности и прямой интервальной
аппроксимации кажется разительным и непонятным. Особенно шокирует факт грубого
игнорирования построенной линейной функцией (15) коридора совместных зависимос-
тей для задачи с данными (13).

В действительности все это вполне объясняется тем принципиальным фактом, что
при прямой интервальной аппроксимации данных совершенно игнорируется привыч-
ный смысл интервалов, который присущ традиционному интервальному анализу дан-
ных и подразумевает, что обрабатываемые интервалы являются вместилищами для
истинных значений величин. Теперь это просто какие-то брусы, “болванки” (или что-то
аналогичное) без какого-либо дополнительного смысла, между которыми наилучшим
образом нужно провести график восстанавливаемой зависимости, и никаких других
данных для решения задачи у нас нет.

Более того, метод прямой интервальной аппроксимации данных с чебышёвской мет-
рикой в приведенном выше примере честно построил прямую линию наилучшего при-
ближения, которая отстоит от каждого из отрезков неопределенности на расстояние
0.875, и это наименьшая возможная величина в данном случае (выполнены условия
чебышёвского альтернанса [22]). Но цена отказа от свойства накрытия выборки оказы-
вается очень чувствительной, что мы увидим ниже.

7. Сравнение с символьным анализом данных

Идея применения интервалов для представления данных измерений и наблюдений име-
ет давнюю историю, и часто она реализуется весьма различными способами. В частнос-
ти, в символьном анализе данных — научном направлении, которое активно развивается
на Западе с конца 90-х гг. прошлого века [23], интервалы рассматриваются не как дву-
сторонние оценки диапазонов возможных значений измеряемых величин, а просто как
какие-то размазанные значения, среди которых не обязательно присутствуют истинные.
Иными словами, в символьном анализе данных интервальные результаты измерений
и наблюдений являются ненакрывающими именно в том смысле, который мы обсужда-
ли выше в разд. 1. Таким образом, эти методы символьного анализа данных имеют то
же целевое назначение, что и представленный выше метод ПИА. Естественно сравнить
результаты их применения. Ниже мы слегка коснемся этого обширного вопроса, опи-
раясь на обзор [24], представляющий наиболее значимые методы символьного анализа
данных.

Основная идея методов символьного анализа данных в применении к интервалам
состоит в том, чтобы использовать методы традиционного регрессионного анализа для
восстановления зависимостей по характерным точкам этих интервалов данных или же
по каким-то их характеристикам (центрам, радиусам, нижним и верхним границам).
Далее на основе полученных результатов теми или иными способами строится предска-
зательная модель.
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“Метод центров”, предложенный в символьном анализе данных в 2000 г., заключал-
ся просто в применении метода наименьших квадратов к центрам интервалов данных.
В дальнейшем в рамках символьного анализа данных предложено немало других ме-
тодик, обзор которых можно увидеть, к примеру, в работе [24]. На рис. 9 наглядно
показаны результаты, которые дают для данных (13) так называемые метод мини-
мумов и максимумов (min-max method) и ограниченный метод центров и диапазонов
(constrained center and range method).

Важной конструкцией, возникающей в связи с задачей восстановления зависимос-
тей, является так называемый прогнозный коридор, который описывает возможную
неопределенность предсказания значений функциональной зависимости [8]. В разных
подходах к обработке данных этот коридор строится по-разному. В частности, в мето-
дах восстановления зависимостей по накрывающим интервальным данным прогнозный
коридор часто берется в виде коридора совместных зависимостей [8], если информа-
ционное множество задачи непусто. Иными словами, прогнозный коридор получается
объединением графиков всех функциональных зависимостей из заданного параметри-
ческого семейства, совместных (согласующихся и т. п.) с интервальными данными.

В методах символьного анализа данных ситуация с прогнозным коридором неод-
нозначная. Единого подхода к его построению, который был бы присущ всем этим
методам, не существует, и в каждом отдельном методе он строится по-своему. Напри-
мер, в методе минимумов и максимумов отдельно решаются две задачи восстановле-
ния зависимостей — по нижним и верхним границам исходных данных соответственно.
В результате их решения находятся наборы коэффициентов 𝛽

0
, . . . , 𝛽

𝑚
и 𝛽0, . . . , 𝛽𝑚, по

которым строятся зависимости вида

𝑦 = 𝛽
0
+ 𝛽

1
𝑥1 + . . .+ 𝛽

𝑚
𝑥𝑚,

𝑦 = 𝛽0 + 𝛽1𝑥1 + . . .+ 𝛽𝑚𝑥𝑚.

а б
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Рис. 9. Восстановление линейной зависимости различными методами символьного анализа
данных по выборке (13) и соответствующие прогнозные коридоры: а — метод минимумов
и максимумов; б — ограниченный метод центров и диапазонов
Fig. 9. Constructing a linear functional dependency by various methods of Symbolic Data Analysis
from the sample (13), and the corresponding forecast corridors: а — min-max method; б —
constrained center and range method
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Тогда в качестве интервала неопределенности предсказания (а для точечных данных
получаем сечение прогнозного коридора [8]) для входного x = [x , x ], т. е. выбирается
интервал неопределенности y = [y , y ], в котором

y = min
{︀
𝛽
0
+ 𝛽

1
x 1 + . . .+ 𝛽

𝑚
x𝑚, 𝛽0

+ 𝛽
1
x 1 + . . .+ 𝛽

𝑚
x𝑚

}︀
,

y = max
{︀
𝛽0 + 𝛽1x 1 + . . .+ 𝛽𝑚x𝑚, 𝛽0 + 𝛽1x 1 + . . .+ 𝛽𝑚x𝑚

}︀
.

В ограниченном методе центров и диапазонов ищутся два набора коэффициентов —
𝛽𝑐
0, . . . , 𝛽

𝑐
𝑚 и 𝛽𝑟

0 , . . . , 𝛽
𝑟
𝑚, решающих задачи восстановления зависимостей вида

mid y = 𝛽𝑐
0 + 𝛽𝑐

1mid x 1 + . . .+ 𝛽𝑐
𝑚mid x𝑚,

rad y = 𝛽𝑟
0 + 𝛽𝑟

1rad x 1 + . . .+ 𝛽𝑟
𝑚rad x𝑚

при дополнительном условии 𝛽𝑟
𝑗 ≥ 0, 𝑗 = 1, 2, . . . ,𝑚. Тогда в качестве интервала неопре-

деленности предсказания берется такой интервал y = [y , y ], что

y = (𝛽𝑐
0 + 𝛽𝑐

1mid x 1 + . . .+ 𝛽𝑐
𝑚mid x𝑚)− (𝛽𝑟

0 + 𝛽𝑟
1rad x 1 + . . .+ 𝛽𝑟

𝑚rad x𝑚),

y = (𝛽𝑐
0 + 𝛽𝑐

1mid x 1 + . . .+ 𝛽𝑐
𝑚mid x𝑚) + (𝛽𝑟

0 + 𝛽𝑟
1rad x 1 + . . .+ 𝛽𝑟

𝑚rad x𝑚).

В случае точечных входных данных получаем

y = 𝛽𝑐
0 + 𝛽𝑐

1𝑥1 + . . .+ 𝛽𝑐
𝑚𝑥𝑚 − 𝛽𝑟

0 ,

y = 𝛽𝑐
0 + 𝛽𝑐

1𝑥1 + . . .+ 𝛽𝑐
𝑚𝑥𝑚 + 𝛽𝑟

0 .

На рис. 9 видно, что прогнозный коридор в обоих случаях ограничен сверху и сни-
зу прямыми линиями, что делает его применение весьма ограниченным. В частности,
для метода минимумов и максимумов этот коридор вырождается в точку при значе-
ниях аргумента больше 4, а дальше становится бессмысленным, поскольку его нижняя
и верхняя границы меняются местами. Для ограниченного метода центров и диапазонов
прогнозный коридор вообще непомерно широк и по этой причине малоинформативен.

Как уже отмечалось, метод ПИА удовлетворяет “принципу соответствия”: он дает
корректные и осмысленные результаты оценивания при неограниченном уменьшении
ширины интервальных данных, т. е. стягивании интервалов данных в точки. Как след-
ствие, для метода прямой интервальной аппроксимации можно построить прогнозный
коридор в виде объединения графиков линейных функций, решающих всевозможные
точечные задачи восстановления зависимостей для точечных данных из обрабатывае-
мых интервалов [8]. Для построения такого множества пока не создано эффективных
численных алгоритмов, и поэтому мы воспользуемся перебором на достаточно мелкой
сетке в интервалах данных. Иными словми, чтобы построить приближенный вид про-
гнозного коридора, разобьем интервалы равномерной сеткой на достаточно представи-
тельные конечные множества точек и построим для них линейные функции, решаю-
щие задачи восстановления зависимостей. Результаты такого построения приведены на
рис. 10.

Заметим, что построенный таким образом прогнозный коридор лишен недостатков
прогнозных коридоров символьного анализа данных, которые представлены на рис. 9.
Он не вырождается в точку, и на интервале заданных значений аргументов он значи-
тельно у́же, чем прогнозный коридор ограниченного метода центров и диапазонов. К то-
му же прогнозный коридор прямой интервальной аппроксимации расширяется по мере
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Рис. 10. Прогнозный коридор при решении за-
дачи из примера 2 методом прямой интерваль-
ной аппроксимации
Fig. 10. Forecast corridor for the solution of
the problem from example 2 by direct interval
approximation method
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Рис. 11. Коридор совместных зависимостей
для примера 2 при накрывающих интервалах
данных
Fig. 11. Corridor of compatible functional
dependencies for example 2 with enclosing data
intervals

удаления от заданных значений аргументов, что вполне естественно: по мере удаления
от тех данных, по которым построена функция, увеличивается погрешность прогнозов.

Наконец, рассмотрим на рис. 11 коридор совместных зависимостей для задачи из
примера 2 и для области определения аргумента от 0 до 4. Он образован всевозможными
линейными функциями, графики которых проходят через отрезки неопределенности
данных из рис. 7 (которые считаются накрывающими). Этот коридор существенно у́же
прогнозного коридора на рис. 10, что зримо демонстрирует ценность свойства накрытия
интервальными данными истинных значений измеряемых величин.

По поводу прогнозного коридора на рис. 10 необходимо отметить, что он все-таки
дает довольно большую неопределенность предсказания, так как угловой коэффициент
прямых из этого коридора переходит через нуль и не имеет определенного знака. При-
меняя терминологию книги [8], можно сказать, что вариабельность оценок параметров
восстанавливаемой зависимости здесь велика. В некоторых практических задачах такие
оценки следует признать неинформативными. Но вот в коридоре совместных зависи-
мостей (см. рис. 11), построенном по накрывающим данным, все прямые имеют один
и тот же характер монотонности. Мы опять убеждаемся в полезности свойства накры-
тия истинных значений интервалами данных, которое позволяет строить более точные
оценки и прогнозы.

В заключение работы рассмотрим еще один характерный пример.

Пример 3. Рассмотрим восстановление линейной зависимости вида

𝑦 = 𝛽1𝑥+ 𝛽0

по данным

𝑥 1 2 3

𝑦 [1, 2.5] [2, 3] [3, 3.5]
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Рис. 12. Решение задачи восстановления зависимостей для примера 3 с помощью метода ПИА
и метода максимума совместности
Fig. 12. Solving the line fitting problem from example 3 using the DIA method and the maximum
compatibility method

Они изображены на рис. 12 в виде отрезков неопределенности. Применение как метода
максимума совместности, так и метода ПИА дает одинаковые результаты — линейную
функцию

𝑦 = 0.75𝑥+ 1,

график которой построен на том же рис. 12 синей линией.

Совершенно аналогичная картина — близость результатов, полученных методом
ПИА и методами восстановления зависимостей для накрывающих интервальных дан-
ных, наблюдается при обработке любых интервальных выборок, в которых отслежива-
ется общая четкая тенденция в данных. ■

Список литературы

[1] Вапник В.Н. Восстановление зависимостей по эмпирическим данным. М.: Наука;
1979: 448.

[2] Kearfott B., Nakao M., Neumaier A., Rump S., Shary S.P., van Hentenryck P.

Standardized notation in interval analysis. Computational Technologies. 2010; 15(1):7–13.

[3] Бурдун М.Д., Марков Б.Н. Основы метрологии. М.: Издательство стандартов;
1985: 256.

[4] РМГ 83-2007. Государственная система обеспечения единства измерений. Шкалы изме-
рений. Термины и определения. Рекомендации по межгосударственной стандартизации
В� 83-2007: 19. М.: Стандартинформ; 2008: 19.

[5] РМГ 29-2013. Метрология. Основные термины и определения. Рекомендации по межго-
сударственной стандартизации 29-2013. М.: Стандартинформ; 2014: 56.

[6] Evaluation of measurement data — guide to the expression of uncertainty in measurement.
JCGM, 2008. Available at: https://www.bipm.org/documents/20126/2071204/JCGM_100_

2008_E.pdf.

https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf


92 С.П. Шарый, М.А. Звягин

[7] Shary S.P. Enclosing vs. non-enclosing measurements in interval data processing.
A Presentation at International Online Seminar on Interval Methods in Control Engineering.
January 14, 2022. DOI:10.13140/RG.2.2.34844.62087.

[8] Баженов А.Н., Жилин С.И., Кумков С.И., Шарый С.П. Обработка и анализ
интервальных данных. Ижевск; М.: Издательство “ИКИ”; 2024: 355.

[9] Канторович Л.В. О некоторых новых подходах к вычислительным методам и обработке
наблюдений. Сибирский математический журнал. 1962; 3(5):701–709.

[10] Дрейпер Н., Смит Г. Прикладной регрессионный анализ. М.: “Диалектика”; 2017: 912.

[11] Шарый С.П. Конечномерный интервальный анализ. Новосибирск: XYZ; 2024: 671. Ад-
рес доступа: http://www.nsc.ru/interval/Library/InteBooks/SharyBook.pdf.

[12] Пшеничный Б.Н. Выпуклый анализ и экстремальные задачи. М.: Наука; 1980: 320.

[13] Рокафеллар Р. Выпуклый анализ. М.: Мир; 1973: 469.

[14] sapprindat. Адрес доступа: http://www.nsc.ru/interval/Programing/OctCodes/

sapprindat.m.

[15] Шор Н.З., Журбенко Н.Г. Метод минимизации, использующий операцию растяжения
пространства в направлении разности двух последовательных градиентов. Кибернетика.
1971; (3):51–59.

[16] Стецюк П.И. Субградиентные методы ralgb5 и ralgb4 для минимизации овражных вы-
пуклых функций. Вычислительные технологии. 2017; 22(2):127–149.

[17] tolsolvty. Адрес доступа: http://www.nsc.ru/interval/Programing/OctCodes/

tolsolvty.m.

[18] Шарый С.П. Сильная согласованность в задаче восстановления зависимостей при ин-
тервальной неопределенности данных. Вычислительные технологии. 2017; 22(2):150–172.

[19] Shary S.P.Weak and strong compatibility in data fitting problems under interval uncertainty.
Advances in Data Science and Adaptive Analysis. 2020; 12(1):2050002.

[20] Шарая И.А. IntLinIncR2. Адрес доступа: http://www.nsc.ru/interval/sharaya/irash.
html#prog.

[21] Шарый С.П. Метод максимума согласования для восстановления зависимостей по дан-
ным с интервальной неопределенностью. Известия Академии наук. Теория и системы
управления. 2017; (6):3–19.

[22] Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Изд-во “Ла-
боратория знаний”; 2020: 636.

[23] Billard L., Diday E. Symbolic data analysis. Conceptual statistics and data mining.
Chichester: John Wiley & Sons; 2007: 328.

[24] Kabir S., Wagner Ch., Ellerby Z. Towards handling uncertainty-at-source in AI — a review
and next steps for interval regression. IEEE Transactions on Artificial Intelligence. 2024;
5(1):3–22. DOI:10.1109/TAI.2023.3234930.

http://www.nsc.ru/interval/Library/InteBooks/SharyBook.pdf
http://www.nsc.ru/interval/Programing/OctCodes/sapprindat.m
http://www.nsc.ru/interval/Programing/OctCodes/sapprindat.m
http://www.nsc.ru/interval/Programing/OctCodes/
tolsolvty.m
http://www.nsc.ru/interval/ sharaya/irash.html#prog
http://www.nsc.ru/interval/ sharaya/irash.html#prog


О восстановлении функциональных зависимостей . . . 93

Вычислительные технологии, 2024, том 29, � 4, с. 71–94.© ФИЦ ИВТ, 2024 ISSN 1560-7534

Computational Technologies, 2024, vol. 29, no. 4, pp. 71–94. © FRC ICT, 2024 eISSN 2313-691X

COMPUTATIONAL TECHNOLOGIES

DOI:10.25743/ICT.2024.29.4.006
On constructing functional dependencies from non-enclosing interval data

S. P. Shary1,*, M.A. Zvyagin2

1Federal Research Center for Information and Computational Technologies, 630090, Novosibirsk, Russia
2Novosibirsk State University, 630090, Novosibirsk, Russia
*Corresponding author: Sergey P. Shary, e-mail: shary@ict.nsc.ru
Received July 07, 2022, revised March 25, 2024, accepted April 01, 2024.

Abstract

The purpose of the paper is to present a simple and natural approach to reconstructing linear
functional dependencies from non-enclosing data with interval uncertainty. It denotes interval data
that is not guaranteed to contain the true values of the measured quantities, and therefore must be
processed significantly differently than interval data that is certain to contain true values (enclosing).
From the very definition of non-enclosing interval data it follows that they should be considered,
rather, as integral objects without any internal structure, since it does not make sense for their
point elements to require satisfaction of two-sided interval constraints, etc.

For this reason, the construction of functional dependencies from non-enclosing interval data
should be performed on the basis of approaches that find the best approximation of the intervals
under consideration without resorting to their internal content. This can be done, for example, using
the approximation theory. In the present study, solving the line fitting problem is reduced to finding
the minimum deviation of the graph of the constructed function from the interval data boxes.

The properties of the deviation functional for the most popular vector norms, which can be
used to determine the distance between points, are investigated. It is shown that, under some
conditions on the norm, the deviation functional is a convex polyhedral function. Its minimum
can be efficiently found using existing non-smooth optimization methods. In particular, the paper
presents a free program implemented by the authors for computing this minimum.

In conclusion, the work provides numerical examples demonstrating the behavior of the new
technique in various situations, as well as its comparison with methods for solving the problem
of line fitting from enclosing interval data. Finally, correlations with methods of Symbolic Data
Analysis are discussed in detail.

Keywords: interval, interval data analysis, data fitting problem, enclosing measurements, non-
enclosing measurements, method of direct interval approximation.
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