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В работе строится решение задачи об определении параметров электромагнит-
ного поля в среде, состоящей из трех слоев (воздушного пространства между ин-
дуктором и жидкой пленкой, самой жидкой пленки и твердой фазы образца), при-
менительно к осесимметричной задаче о бестигельной зонной плавке кремниевого
материала. Этими параметрами являются: векторный потенциал магнитного поля,
его напряженность, плотность электрического тока, пондеромоторная сила и плот-
ность источников джоулева тепла. Для всех этих параметров получены явные фор-
мулы и по ним произведены модельные расчеты с учетом малости толщины пленки
и скин-слоев в расплаве и твердой фазе образца.
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Введение

Для получения монокристаллов кремния радиуса 5–10 см используется метод бести-
гельной зонной плавки в магнитном поле (БЗП в МП), который состоит в следующем
(рис. 1). Верхняя (заготовка) и нижняя (выращиваемый монокристалл) части цилин-
дрического вертикального образца медленно движутся вниз и вращаются в противо-
положных направлениях. Часть нижней границы заготовки покрыта жидкой пленкой
толщины порядка 0.2 мм (см. разд. 6), остальная часть граничит с плавающей зоной,
находящейся между заготовкой и монокристаллом. Пленка и плавающая зона поддер-
живаются в жидком состоянии неподвижным источником высокочастотного электро-
магнитного поля — индуктором и удерживаются между твердыми частями образца
силами поверхностного натяжения и магнитного давления. Верхние границы плаваю-
щей зоны и жидкой пленки являются фронтами плавления, так как через них проходит
поток массы из заготовки. Кроме того, расплав из пленки стекает в плавающую зону.
Нижняя часть плавающей зоны является фронтом кристаллизации: через нее расплав,
затвердевая, переходит в монокристалл. Индуктор представляет собой медную прово-
лочную катушку (соленоид), намотанную по спирали через контур его сечения плос-
костью 𝜙 = const, где (𝑟, 𝑧, 𝜙) — цилиндрическая система координат, в которой 𝑟 —
полярный радиус, 𝑧 — осевая переменная (рис. 1), 𝜙 — полярный угол. Толщина прово-
локи считается малой, так что токи, проходящие по ней, можно заменить непрерывной
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Рис. 1. Схема процесса бестигельной зонной плавки в магнитном поле
Fig. 1. Scheme of the process of floating zone melting in magnetic field

системой кольцевых токов, каждый из которых проходит по окружности 𝑟 = const,
𝑧 = const, 𝜙 ∈ [0, 2𝜋]. Магнитное поле и токи в образце, наводимые индуктором, сосре-
доточены в тонком скин-слое, примыкающем к свободной границе расплава, и в части
заготовки, примыкающей к фронту плавления в жидкой пленке. Они приводят к выде-
лению джоулева тепла и создают пондеромоторную силу, направленную ортогонально
свободной границе и являющуюся одним из источников конвекции в расплаве.

В [1] численно решалась осесимметричная задача о БЗП в МП в полной постановке.
Найдены параметры электромагнитного поля, формы свободной границы плавающей
зоны, границы жидкой пленки, фронтов плавления и кристаллизации, поле скоростей
в плавающей зоне и поле температуры в образце. Течение в плавающей зоне было
нестационарным и носило колебательный характер, о чем свидетельствуют графики
минимума и максимума функции тока в зависимости от времени. В [2] рассчитано рас-
пределение примеси в монокристалле. Поле скоростей бралось из [1] и осреднялось по
времени, а затем решалась стационарная задача о распределении примеси в распла-
ве и растущем монокристалле. В [3] решалась задача о БЗП в МП и рассчитывалось
распределение примеси в монокристалле в трехмерной постановке с асимметричным
индуктором. В качестве начального приближения бралось осесимметричное решение,
полученное в [1]. В работах [4, 5] решались задачи, аналогичные решенным в [2, 3] со-
ответственно, но при наличии дополнительного низкочастотного индуктора, позволяю-
щего получить дополнительное управление процессом. В работах [6–8] рассчитывались
поля скоростей и температуры в плавающей зоне, форма которой задавалась близкой
к полученной в [1]. В отличие от работ [1–5], где джоулево тепловыделение и пондеромо-
торная сила входили только в граничные условия, в [6–8] они входили в уравнения для
температуры и завихренности, т. е. считались объемными. Среди недавних исследова-
ний можно выделить работу [9], в которой рассчитывается трехмерная модель процесса
зонной плавки с асимметричным индуктором с учетом охлаждающего потока газа. Вра-
щение образца отсутствует и ищется стационарное решение задачи. (Опыт двумерных
расчетов, проведенных в [8], показывает, что при отсутствии вращения решение быстро
выходит на стационарный режим.)
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В работах [1–5, 9] полные расчеты жидкой пленки не производились, а использо-
валась упрощенная ее модель. Так, в [1] толщина пленки не находилась, а свободная
поверхность пленки строилась исходя из некоторого теплового условия, в которое вхо-
дит поверхностная плотность источников джоулева тепла, рассчитанная по двухслой-
ной модели электромагнитного поля “воздух – расплав”, умноженная на эмпирический
коэффициент 𝜉 = 1.4. Поэтому для более точного описания процесса БЗП в МП акту-
альной является задача о расчете переменной толщины пленки, магнитно-гидродина-
мического течения в ней и поля температуры в пленке и заготовке. Для этого прежде
всего необходимо уметь определять параметры электромагнитного поля в трехслойной
среде “воздух –жидкая пленка – заготовка”, так как толщина пленки сравнима с тол-
щиной скин-слоя. Эта задача в осесимметричной постановке и решается в настоящей
работе. (Отметим, что при расчете течения в жидкой пленке на границе между пленкой
и плавающей зоной можно ставить однородные условия второго рода для функции тока,
завихренности и температуры [10] и неоднородное условие второго рода для функции,
описывающей свободную границу пленки.)

1. Вывод уравнений электромагнитного поля

Если 𝜎, 𝜏0, 𝑉0, 𝐿0 — характерные значения удельной проводимости, промежутка време-
ни, скорости и длины, а 𝑐0 — скорость света, то при выполнении условий

4𝜋

𝑐20𝜇0𝜎𝜏0
≪ 1,

4𝜋𝑉0

𝑐20𝜇0𝜎𝐿0

≪ 1,
𝑉 2
0

𝑐20
≪ 1 (1)

в уравнениях Максвелла можно пренебречь токами смещения 𝜕D/𝜕𝑡, где D — электри-
ческое смещение или электрическая индукция [11], 𝑡 — время, 𝜇0 = 4𝜋 · 10−7 Н/А2 —
магнитная постоянная вакуума. В задаче о БЗП в МП 𝜎 = min{𝜎𝑚, 𝜎𝑓} = 𝜎𝑓 =
5 · 104 Ом−1м−1 — удельная проводимость поликристалла (заготовки — feed rod [1]),
𝜎𝑚 = 106 Ом−1м−1 — удельная проводимость расплава (melt), 𝜏0 = 10−8 с — период
колебаний тока, 𝑉0 = 0.3 м/с — максимальная скорость расплава в зоне действия элек-
тромагнитного поля, 𝐿0 = 0.03 м. Так что условия (1) выполнены с большой точностью.
Кроме того, в силу малости магнитного числа Рейнольдса

Re𝑚 = 𝐿0𝑉0𝜎𝑚𝜇0 = 0.011

не будем в законе Ома учитывать движение среды, т. е. отбросим член 𝜎𝑚𝜇0(v×H), где
v — скорость,H — напряженность магнитного поля среды. Тогда уравнения Максвелла
примут вид

rotH = j, (2)

rotE = −𝜕H

𝜕𝑡
𝜇0, (3)

divH = 0, (4)

а закон Ома — вид
j = 𝜎E. (5)

Здесь E — напряженность электрического поля, j — плотность электрического тока.
Из (2), (5) следует

rotH = 𝜎E. (6)
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Из (4) следует, что можно ввести векторную функцию A, называемую векторным по-
тенциалом, такую, что [12, с. 282]

H = rotA, divA = 0. (7)

Из (3), (5) и первой формулы (7)

rot

(︂
E+ 𝜇0

𝜕A

𝜕𝑡

)︂
= 0,

откуда

E+ 𝜇0
𝜕A

𝜕𝑡
= −grad𝜑, (8)

где 𝜑 — функция, называемая скалярным потенциалом. Из (6)–(8)

𝜇0
𝜕A

𝜕𝑡
+

1

𝜎
rot rotA = −grad𝜑.

Так как
rot rotA = −∆A+ grad divA,

то

𝜇0
𝜕A

𝜕𝑡
− 1

𝜎
∆A = −grad𝜑.

Пусть (𝑟, 𝑧, 𝜙) — цилиндрическая система координат, где 𝑟 — полярный радиус, 𝑧 —
осевая переменная, 𝜙 — полярный угол. Согласно [13] в осесимметричной задаче о БЗП
в МП ненулевыми являются компоненты 𝐴𝜙, 𝐻𝑟, 𝐻𝑧, 𝑗𝜙, 𝐸𝜙, 𝜑. Поэтому (8) перейдет
в уравнение

𝐸𝜙 + 𝜇0
𝜕𝐴𝜙

𝜕𝑡
= −1

𝑟

𝜕𝜑

𝜕𝜙
. (9)

Внутри индукционной катушки изменение функции скалярного потенциала при 𝜙 от 0
до 2𝜋 равно приложенному напряжению 𝑉1 sin(𝜔0𝑡), где 𝜔0 = 1.76 ·107 рад/с — круговая
частота тока, поэтому [13]

𝜕𝜑

𝜕𝜙
= 𝑉1

sin(𝜔0𝑡)

2𝜋

всюду в индукционной катушке. Так как 𝐻𝑟 = 𝐻𝑧 = 𝐸𝜙 = 0 внутри катушки (она
считается бесконечно проводящей), равенство (9) дает

𝐴𝜙 =
𝑐1
𝑟
cos(𝜔0𝑡), 𝑐1 =

𝑉1

2𝜋𝜇0𝜔0

. (10)

Если амплитуда колебаний напряжения тока в индукторе 𝑉1 заранее неизвестна, то
константу 𝑐1 можно выбрать из условия, что мощность всего выделяющегося в образце
джоулева тепла, которую можно оценить аналитически, равна мощности индуктора.

Предположим, что все рассматриваемые функции совершают гармонические колеба-
ния во времени с круговой частотой 𝜔0. Тогда магнитное поле будет проникать в пленку
и в тонкий скин-слой в прилегающей к ней твердой части образца. Введем в рассмот-
рение комплексные амплитуды 𝐴𝜙, 𝐻̂𝑟, 𝐻̂𝑧, 𝑗̂𝜙, 𝐸̂𝜙, 𝜑, полагая

𝐴𝜙(𝑟, 𝑧, 𝑡) = Re[𝐴𝜙(𝑟, 𝑧)𝑒
𝑖𝜔0𝑡], 𝐻𝑟(𝑟, 𝑧, 𝑡) = Re[𝐻̂𝑟(𝑟, 𝑧)𝑒

𝑖𝜔0𝑡],

𝐻𝑧(𝑟, 𝑧, 𝑡) = Re[𝐻̂𝑧(𝑟, 𝑧)𝑒
𝑖𝜔0𝑡], 𝑗𝜙(𝑟, 𝑧, 𝑡) = Re[𝑗̂𝜙(𝑟, 𝑧)𝑒

𝑖𝜔0𝑡],

𝐸𝜙(𝑟, 𝑧, 𝑡) = Re[𝐸̂𝜙(𝑟, 𝑧)𝑒
𝑖𝜔0𝑡], 𝜑(𝑟, 𝑧, 𝜙, 𝑡) = Re[𝜑(𝑟, 𝑧, 𝜙)𝑒𝑖𝜔0𝑡]. (11)
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Для 𝐴𝜙 получим уравнение

𝑖𝜔0𝜇0𝐴𝜙 − 1

𝜎

[︃
𝜕

𝜕𝑟

(︃
1

𝑟

𝜕(𝑟𝐴𝜙)

𝜕𝑟

)︃
+

𝜕2𝐴𝜙

𝜕𝑧2

]︃
= −1

𝑟

𝜕𝜑

𝜕𝜙
. (12)

На линиях разрыва 𝜎 следует поставить условия

[𝐴𝜙] = 0,

[︃
𝜕𝐴𝜙

𝜕𝑛

]︃
= 0, (13)

где 𝑛 — нормаль к линии разрыва, квадратные скобки означают скачок заключенной
в них функции при переходе из одной среды в другую. Эти условия необходимы и до-
статочны для непрерывности вектора H при переходе через границу раздела двух сред.
(Для границы индуктора второе условие (13) не нужно.)

На оси симметрии должно выполняться условие симметрии

𝐴𝜙 = 0, при 𝑟 = 0.

Условие на бесконечности имеет вид

𝐴𝜙 → 0 при
√
𝑟2 + 𝑧2 → ∞. (14)

Из (8) следует, что функции 𝐴𝜙, 𝐸̂𝜙, 𝜑 связаны соотношением

𝑖𝜔0𝜇0𝐴𝜙 + 𝐸̂𝜙 +
1

𝑟

𝜕𝜑

𝜕𝜙
= 0. (15)

Функции 𝐻̂𝑟, 𝐻̂𝑧 выражаются через 𝐴𝜙 таким образом:

𝐻̂𝑟 =
𝜕𝐴𝜙

𝜕𝑧
, 𝐻̂𝑧 = −1

𝑟

𝜕(𝑟𝐴𝜙)

𝜕𝑟
.

Из закона Ома следует, что

𝑗̂𝜙 = 𝜎𝐸̂𝜙. (16)

Обозначим 𝐷𝑓 — область, занятую твердым кремнием с проводимостью 𝜎𝑓 , 𝐷𝑚 —
область, занятую жидкой пленкой с проводимостью 𝜎𝑚, 𝐷𝑏 — воздушное пространство
между образцом и индуктором с проводимостью, равной нулю, Γ𝑖𝑛𝑑 — границу индук-
тора. Введем обозначения для 𝐴𝜙 в областях с различной проводимостью:

𝐴𝜙 =

⎧⎪⎪⎨⎪⎪⎩
𝐹𝑓 (𝑟, 𝑧) при (𝑟, 𝑧) ∈ 𝐷𝑓 ,
𝐹𝑚(𝑟, 𝑧) при (𝑟, 𝑧) ∈ 𝐷𝑚,
𝐹𝑏(𝑟, 𝑧) при (𝑟, 𝑧) ∈ 𝐷𝑏,
𝐹𝑖𝑛𝑑(𝑟, 𝑧) при (𝑟, 𝑧) ∈ Γ𝑖𝑛𝑑.

(17)

Из (10), (11), (17) получим

𝐹𝑖𝑛𝑑 =
𝑐1
𝑟
, (𝑟, 𝑧) ∈ Γ𝑖𝑛𝑑.
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Отсюда и из первого условия (13) получим условие

𝐹𝑏|Γ𝑖𝑛𝑑
=

𝑐1
𝑟
, (18)

которое можно рассматривать как граничное для функции 𝐹𝑏. Отметим, что это условие
также приведено без вывода в работе [1].

Вне индуктора отсутствует внешнее напряжение, поэтому [13]

𝜕𝜑

𝜕𝜙
≡ 0, (𝑟, 𝑧) /∈ Γ𝑖𝑛𝑑. (19)

Кроме того, в 𝐷𝑏 𝜎 = 0, поэтому

𝜕

𝜕𝑟

(︂
1

𝑟

𝜕(𝑟𝐹𝑏)

𝜕𝑟

)︂
+

𝜕2𝐹𝑏

𝜕𝑧2
= 0, (𝑟, 𝑧) ∈ 𝐷𝑏. (20)

2. Случай двухслойной среды

Обозначим
Γ𝑚 = 𝐷𝑏 ∩𝐷𝑚

и предположим, что среда 𝐷𝑓 отсутствует, а среда 𝐷𝑚 неограниченно продолжается
вверх.

Пусть 𝑛 — внутренняя по отношению к 𝐷𝑚 нормаль к Γ𝑚, 𝑠 — длина дуги вдоль Γ𝑚,
причем единичный вектор касательной s получается поворотом единичной нормали
n на 90∘ по часовой стрелке. Тогда (𝑠, 𝑛) — положительно ориентированная система
координат.

Заметим, что толщина скин-слоя в пленке

𝜀𝑚 =
(︁𝜔0𝜇0𝜎𝑚

2

)︁−1/2

= 3.007 · 10−4 м (21)

является малым параметром по отношению к характерному размеру 𝑙 = 0.015 м. По-
этому главными членами в уравнении (12) внутри области 𝐷𝑚 будут

𝑖𝜔0𝜇0𝜎𝑚𝐹𝑚 − 𝜕2𝐹𝑚

𝜕𝑛2
= 0.

Общее решение этого уравнения имеет вид

𝐹𝑚(𝑠, 𝑛) = 𝑐1𝑚(𝑠)𝑒
𝑘𝑚𝑛 + 𝑐2𝑚(𝑠)𝑒

−𝑘𝑚𝑛, (22)

где

𝑘𝑚 =
1 + 𝑖

𝜀𝑚
. (23)

Функция 𝐹𝑏 удовлетворяет уравнению (20), граничному условию (18) и условию на
бесконечности (14) с учетом (17). Выведем граничное условие для 𝐹𝑏 на Γ𝑚. Для этого
воспользуемся условиями (13). Для определения 𝑐1𝑚(𝑠), 𝑐2𝑚(𝑠) имеем систему

𝑐1𝑚(𝑠) + 𝑐2𝑚(𝑠) = 𝐹𝑏(𝑠)|Γ𝑚 , 𝑘𝑚(𝑐1𝑚(𝑠)− 𝑐2𝑚(𝑠)) =
1

𝑟

𝜕(𝑟𝐹𝑏)

𝜕𝑛

⃒⃒⃒⃒
Γ𝑚

,
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решая которую, находим

𝑐1𝑚(𝑠) =
1

2

(︂
𝐹𝑏(𝑠)|Γ𝑚 +

𝜀𝑚
1 + 𝑖

1

𝑟

𝜕(𝑟𝐹𝑏)

𝜕𝑛

⃒⃒⃒⃒
Γ𝑚

)︂
, (24)

𝑐2𝑚(𝑠) =
1

2

(︂
𝐹𝑏(𝑠)|Γ𝑚 − 𝜀𝑚

1 + 𝑖

1

𝑟

𝜕(𝑟𝐹𝑏)

𝜕𝑛

⃒⃒⃒⃒
Γ𝑚

)︂
. (25)

Так как 𝑐1𝑚 = 0 в силу (14), искомым условием для 𝐹𝑏 на Γ𝑚 является

𝐹𝑏(𝑠)|Γ𝑚 +
𝜀𝑚
1 + 𝑖

1

𝑟

𝜕(𝑟𝐹𝑏)

𝜕𝑛

⃒⃒⃒⃒
Γ𝑚

= 0. (26)

После решения задачи для 𝐹𝑏 функция 𝐹𝑚 определяется в виде

𝐹𝑚(𝑠, 𝑛) =
1

2

(︂
𝐹𝑏(𝑠)|Γ𝑚 − 𝜀𝑚

1 + 𝑖

1

𝑟

𝜕(𝑟𝐹𝑏)

𝜕𝑛

⃒⃒⃒⃒
Γ𝑚

)︂
𝑒−(1+𝑖)𝑛/𝜀𝑚 . (27)

Если выразить 𝐹𝑏(𝑠)|Γ𝑚 из (26) и подставить в (27), то получим

𝐹𝑚(𝑠, 𝑛) = − 𝜀𝑚
1 + 𝑖

1

𝑟

𝜕(𝑟𝐹𝑏)

𝜕𝑛

⃒⃒⃒⃒
Γ𝑚

𝑒−(1+𝑖)𝑛/𝜀𝑚 ,

что согласуется с результатами работы [8].
Недостатком описанного подхода является то, что решение задачи для 𝐹𝑏 опре-

деляется в комплексных переменных. Поэтому на практике (см. [1, 8]) используется
следующее рассуждение. В (26) при 𝜀𝑚 → 0 функция 𝐹𝑏(𝑠)|Γ𝑚 → 0. Поэтому точное
условие (26) можно заменить на асимптотическое:

𝐹𝑏(𝑠)|Γ𝑚 = 0.

В этом случае функция 𝐹𝑏 будет определяться в действительных переменных.

3. Случай трехслойной среды

Пусть теперь присутствуют все три среды: воздушное пространство 𝐷𝑏, жидкая пленка
𝐷𝑚 и твердая фаза 𝐷𝑓 . Магнитное поле в 𝐷𝑚 описывается формулами (22)–(25). Так
как 𝐷𝑚 не содержит бесконечно удаленных точек, 𝑐1𝑚(𝑠) ̸= 0. Обозначим

Γ𝑓 = (𝐷𝑚 ∩𝐷𝑓 ) = (𝑠, 𝑛 : 𝑠 ∈ [0, 𝑠0], 𝑛 = 𝑛𝑓 (𝑠)) .

Предположим, что функция 𝑛𝑓 (𝑠) имеет порядок 𝜀𝑚 и является достаточно плавной,
так что нормаль n к Γ𝑚 с большой точностью ортогональна Γ𝑓 .

Пусть
𝑛̃ = 𝑛− 𝑛𝑓 (𝑠) ≥ 0 (28)

— расстояние от произвольной точки области 𝐷𝑓 до границы Γ𝑓 .
Функция 𝐹𝑓 (𝑠, 𝑛̃) удовлетворяет уравнению

𝑖𝜔0𝜇0𝜎𝑓𝐹𝑓 −
𝜕2𝐹𝑓

𝜕𝑛̃2
= 0,
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общее решение которого есть

𝐹𝑓 (𝑠, 𝑛̃) = 𝑐1𝑓 (𝑠)𝑒
𝑘𝑓 𝑛̃ + 𝑐2𝑓 (𝑠)𝑒

−𝑘𝑓 𝑛̃,

где

𝑘𝑓 =
1 + 𝑖

𝜀𝑓
, 𝜀𝑓 = (𝜔0𝜇0𝜎𝑓/2)

−1/2 = 1.3448 · 10−3 м

— толщина скин-слоя в твердой фазе.
Из условий (13) на Γ𝑓 для определения 𝑐1𝑓 (𝑠), 𝑐2𝑓 (𝑠) имеем систему

𝑐1𝑓 (𝑠) + 𝑐2𝑓 (𝑠) = 𝑐1𝑚(𝑠)𝑒
𝑘𝑚𝑛𝑓 (𝑠) + 𝑐2𝑚(𝑠)𝑒

−𝑘𝑚𝑛𝑓 (𝑠),

𝑘𝑓 (𝑐1𝑓 (𝑠)− 𝑐2𝑓 (𝑠)) = 𝑘𝑚
(︀
𝑐1𝑚(𝑠)𝑒

𝑘𝑚𝑛𝑓 (𝑠) − 𝑐2𝑚(𝑠)𝑒
−𝑘𝑚𝑛𝑓 (𝑠)

)︀
,

решая которую, находим (для простоты записи опустим переменную 𝑠)

𝑐1𝑓 =
1

2

(︂(︂
1 +

𝑘𝑚
𝑘𝑓

)︂
𝑐1𝑚𝑒

𝑘𝑚𝑛𝑓

)︂
+

(︂(︂
1− 𝑘𝑚

𝑘𝑓

)︂
𝑐2𝑚𝑒

−𝑘𝑚𝑛𝑓

)︂
, (29)

𝑐2𝑓 =
1

2

(︂(︂
1− 𝑘𝑚

𝑘𝑓

)︂
𝑐1𝑚𝑒

𝑘𝑚𝑛𝑓

)︂
+

(︂(︂
1 +

𝑘𝑚
𝑘𝑓

)︂
𝑐2𝑚𝑒

−𝑘𝑚𝑛𝑓

)︂
.

Из условия на бесконечности
𝑐1𝑓 = 0.

Отсюда и из (23)–(25), (29) получим граничное условие для 𝐹𝑏 на Γ𝑚[︂(︂
1 +

𝜀𝑓
𝜀𝑚

)︂
𝑒(1+𝑖)𝑛𝑓/𝜀𝑚 +

(︂
1− 𝜀𝑓

𝜀𝑚

)︂
𝑒−(1+𝑖)𝑛𝑓/𝜀𝑚

]︂
𝐹𝑏

⃒⃒⃒⃒
Γ𝑚

+

+

(︂
𝜀𝑚 + 𝜀𝑓
1 + 𝑖

𝑒(1+𝑖)𝑛𝑓/𝜀𝑚 − 𝜀𝑚 − 𝜀𝑓
1 + 𝑖

𝑒−(1+𝑖)𝑛𝑓/𝜀𝑚

)︂
1

𝑟

𝜕(𝑟𝐹𝑏)

𝜕𝑛

⃒⃒⃒⃒
Γ𝑚

= 0. (30)

Функцию 𝑐2𝑓 можно представить в виде

𝑐2𝑓 =
1

4

[︂(︂
1− 𝜀𝑓

𝜀𝑚

)︂
𝑒(1+𝑖)𝑛𝑓/𝜀𝑚 +

(︂
1 +

𝜀𝑓
𝜀𝑚

)︂
𝑒−(1+𝑖)𝑛𝑓/𝜀𝑚

]︂
𝐹𝑏

⃒⃒⃒⃒
Γ𝑚

+

+
1

4

(︂
𝜀𝑚 − 𝜀𝑓
1 + 𝑖

𝑒(1+𝑖)𝑛𝑓/𝜀𝑚 − 𝜀𝑚 + 𝜀𝑓
1 + 𝑖

𝑒−(1+𝑖)𝑛𝑓/𝜀𝑚

)︂
1

𝑟

𝜕(𝑟𝐹𝑏)

𝜕𝑛

⃒⃒⃒⃒
Γ𝑚

. (31)

Далее воспользуемся приемом, описанным в предыдущем разделе: выразим 𝐹𝑏 из (30)
и подставим в (31). Тогда получим

𝑐2𝑓 = − 1

2

𝜀𝑚
1 + 𝑖

(︂
(1 + 𝐿)2 − (1− 𝐿)2

(1 + 𝐿)𝑒(1+𝑖)𝑀 + (1− 𝐿)𝑒−(1+𝑖)𝑀

)︂
𝐻𝑠

⃒⃒⃒⃒
Γ𝑚

, (32)

где

𝐿 = 𝜀𝑓/𝜀𝑚 =
√
20, 𝑀 = 𝑛𝑓/𝜀𝑚 ≥ 0, (33)

𝐻𝑠|Γ𝑚 =
1

𝑟

𝜕(𝑟𝐹𝑏)

𝜕𝑛

⃒⃒⃒⃒
Γ𝑚

(34)

— касательная компонента вектора напряженности магнитного поля на Γ𝑚.
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Формулу (32) можно привести к виду

𝑐2𝑓 = −2𝐿𝜀𝑚
1 + 𝑖

[cos(𝑀)(𝐴+𝐵) + 𝑖 sin(𝑀)(𝐴−𝐵)]−1𝐻𝑠|Γ𝑚 ,

где
𝐴 = (1 + 𝐿)𝑒𝑀 , 𝐵 = (1− 𝐿)𝑒−𝑀 . (35)

Разделяя действительную и мнимую части, получим

𝑐2𝑓 = −𝐿𝜀𝑚(𝑐𝑅𝑓 + 𝑖𝑐𝐼𝑓 )𝐻𝑠|Γ𝑚 , (36)

где

𝑐𝑅𝑓 =
cos(𝑀)(𝐴+𝐵)− sin(𝑀)(𝐴−𝐵)

𝐴2 +𝐵2 + 2 cos(2𝑀)𝐴𝐵
, (37)

𝑐𝐼𝑓 = −cos(𝑀)(𝐴+𝐵) + sin(𝑀)(𝐴−𝐵)

𝐴2 +𝐵2 + 2 cos(2𝑀)𝐴𝐵
. (38)

Как и в разд. 2, условие (30) заменим на асимптотическое при 𝜀𝑚, 𝜀𝑓 → 0:

𝐹𝑏|Γ𝑚 = 0.

Тогда функция 𝐹𝑏 будет действительной.
Итак, комплексная амплитуда единственной ненулевой компоненты векторного по-

тенциала магнитного поля в области 𝐷𝑓 вычисляется по формуле

𝐹𝑓 (𝑠, 𝑛̃) = 𝑐2𝑓 (𝑠)𝑒
−(1+𝑖)𝑛̃/𝜀𝑓 , (39)

где 𝑐2𝑓 определяется формулами (36)–(38) с учетом (33)–(35), 𝑛̃ — формулой (28).

4. Вычисление пондеромоторной силы в жидкой пленке

Функция 𝐹𝑚(𝑠, 𝑛) рассчитывается по формулам (22), (23), коэффициенты 𝑐1𝑚(𝑠), 𝑐2𝑚(𝑠)
определяются в соответствии с (24), (25). При этом функция 𝐹𝑏|Γ𝑚 выражается через
𝐻𝑠|Γ𝑚 в соответствии с (30), (34).

Итак, имеем

𝑐1𝑚 =
𝜀𝑚
1 + 𝑖

(1− 𝐿)𝐻𝑠|Γ𝑚

1− 𝐿+ (1 + 𝐿)𝑒2(1+𝑖)𝑀
=

𝜀𝑚
2
(1− 𝐿)(𝑐𝑅1𝑚 + 𝑖𝑐𝐼1𝑚)𝐻𝑠|Γ𝑚 ,

𝑐𝑅1𝑚 =
1− 𝐿+ (1 + 𝐿)𝑒2𝑀(cos(2𝑀)− sin(2𝑀))

(1− 𝐿)2 + 2(1− 𝐿2)𝑒2𝑀 cos(2𝑀) + (1 + 𝐿)2𝑒4𝑀
,

𝑐𝐼1𝑚 = − 1− 𝐿+ (1 + 𝐿)𝑒2𝑀(cos(2𝑀) + sin(2𝑀))

(1− 𝐿)2 + 2(1− 𝐿2)𝑒2𝑀 cos(2𝑀) + (1 + 𝐿)2𝑒4𝑀
,

𝑐2𝑚 = − 𝜀𝑚
1 + 𝑖

(1 + 𝐿)𝐻𝑠|Γ𝑚

1 + 𝐿+ (1− 𝐿)𝑒−2(1+𝑖)𝑀
= −𝜀𝑚

2
(1 + 𝐿)(𝑐𝑅2𝑚 + 𝑖𝑐𝐼2𝑚)𝐻𝑠|Γ𝑚 ,

𝑐𝑅2𝑚 =
1 + 𝐿+ (1− 𝐿)𝑒−2𝑀(cos(2𝑀) + sin(2𝑀))

(1 + 𝐿)2 + 2(1− 𝐿2)𝑒−2𝑀 cos(2𝑀) + (1− 𝐿)2𝑒−4𝑀
,

𝑐𝐼2𝑚 = − 1 + 𝐿+ (1− 𝐿)𝑒−2𝑀(cos(2𝑀)− sin(2𝑀))

(1 + 𝐿)2 + 2(1− 𝐿2)𝑒−2𝑀 cos(2𝑀) + (1− 𝐿)2𝑒−4𝑀
.
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В соответствии с (15), (16), (19) комплексная амплитуда плотности тока в области
𝐷𝑚 определяется выражением

𝑗̂𝜙𝑚 = −𝑖𝜇0𝜔0𝜎𝑚𝐹𝑚(𝑠, 𝑛) =
𝜇0𝜔0𝜎𝑚𝜀𝑚

2
[(1− 𝐿)(𝑐𝐼1𝑚 − 𝑖𝑐𝑅1𝑚)𝑒

(1+𝑖)𝑛/𝜀𝑚+

+(1 + 𝐿)(−𝑐𝐼2𝑚 + 𝑖𝑐𝑅2𝑚)𝑒
−(1+𝑖)𝑛/𝜀𝑚 ]𝐻𝑠|Γ𝑚 .

В соответствии с (11)

𝑗𝜙𝑚 = Re(𝑗̂𝜙𝑚𝑒
𝑖𝜔0𝑡) =

𝜇0𝜔0𝜎𝑚𝜀𝑚
2

[︀
(1−𝐿)(𝑐𝐼1𝑚 cos(𝜔0𝑡+𝑛/𝜀𝑚)+𝑐𝑅1𝑚 sin(𝜔0𝑡+𝑛/𝜀𝑚))𝑒

𝑛/𝜀𝑚+

+(1 + 𝐿) (−𝑐𝐼2𝑚 cos(𝜔0𝑡− 𝑛/𝜀𝑚)− 𝑐𝑅2𝑚 sin(𝜔0𝑡− 𝑛/𝜀𝑚)) 𝑒
−𝑛/𝜀𝑚

]︀
𝐻𝑠|Γ𝑚 . (40)

Из (21)
𝜇0𝜔0𝜎𝑚𝜀𝑚

2
=

1

𝜀𝑚
. (41)

Найдем комплексную амплитуду 𝑠-й компоненты напряженности магнитного поля
в 𝐷𝑚.

𝐻̂𝑠𝑚 =
𝜕𝐹𝑚

𝜕𝑛
=

1 + 𝑖

𝜀𝑚

(︀
𝑐1𝑚𝑒

(1+𝑖)𝑛/𝜀𝑚 − 𝑐2𝑚𝑒
−(1+𝑖)𝑛/𝜀𝑚

)︀
= 𝑎1𝑚𝑒

(1+𝑖)𝑛/𝜀𝑚 + 𝑎2𝑚𝑒
−(1+𝑖)𝑛/𝜀𝑚 ,

𝑎1𝑚 =
(1− 𝐿)𝐻𝑠|Γ𝑚

1− 𝐿+ (1 + 𝐿)𝑒2(1+𝑖)𝑀
= (1− 𝐿)(𝑎𝑅1𝑚 + 𝑖𝑎𝐼1𝑚)𝐻𝑠|Γ𝑚 ,

𝑎𝑅1𝑚 =
1− 𝐿+ (1 + 𝐿)𝑒2𝑀 cos(2𝑀)

(1− 𝐿)2 + 2(1− 𝐿2)𝑒2𝑀 cos(2𝑀) + (1 + 𝐿)2𝑒4𝑀
,

𝑎𝐼1𝑚 = − (1 + 𝐿)𝑒2𝑀 sin(2𝑀)

(1− 𝐿)2 + 2(1− 𝐿2)𝑒2𝑀 cos(2𝑀) + (1 + 𝐿)2𝑒4𝑀
,

𝑎2𝑚 =
(1 + 𝐿)𝐻𝑠|Γ𝑚

1 + 𝐿+ (1− 𝐿)𝑒−2(1+𝑖)𝑀
= (1 + 𝐿)(𝑎𝑅2𝑚 + 𝑖𝑎𝐼2𝑚)𝐻𝑠|Γ𝑚 ,

𝑎𝑅2𝑚 =
1 + 𝐿+ (1− 𝐿)𝑒−2𝑀 cos(2𝑀)

(1 + 𝐿)2 + 2(1− 𝐿2)𝑒−2𝑀 cos(2𝑀) + (1− 𝐿)2𝑒−4𝑀
,

𝑎𝐼2𝑚 =
(1− 𝐿)𝑒−2𝑀 sin(2𝑀)

(1 + 𝐿)2 + 2(1− 𝐿2)𝑒−2𝑀 cos(2𝑀) + (1− 𝐿)2𝑒−4𝑀
.

Далее в соответствии с (11) находим

𝐻𝑠𝑚(𝑡, 𝑠, 𝑛) = Re(𝐻̂𝑠𝑚(𝑠, 𝑛)𝑒
𝑖𝜔0𝑡) =

=
[︀
(1− 𝐿)(𝑎𝑅1𝑚 cos(𝜔0𝑡+ 𝑛/𝜀𝑚)− 𝑎𝐼1𝑚 sin(𝜔0𝑡+ 𝑛/𝜀𝑚))𝑒

𝑛/𝜀𝑚+

+(1 + 𝐿)(𝑎𝑅2𝑚 cos(𝜔0𝑡− 𝑛/𝜀𝑚)− 𝑎𝐼2𝑚 sin(𝜔0𝑡− 𝑛/𝜀𝑚))𝑒
−𝑛/𝜀𝑚

]︀
𝐻𝑠|Γ𝑚 .

Нормальная составляющая пондеромоторной силы, действующей на частицы рас-
плава, определяется формулой

𝑓𝑛𝑚(𝑡, 𝑠, 𝑛) = 𝜇0𝑗𝜙𝑚𝐻𝑠𝑚.

Осредняя ее по периоду колебаний тока во времени, получим, что выражение для нор-
мальной составляющей пондеромоторной силы в жидкой пленке имеет вид
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𝑓𝑛𝑚(𝑠, 𝑛) =
𝜔0

2𝜋

2𝜋/𝜔0∫︁
0

𝑓𝑛𝑚(𝑡, 𝑠, 𝑛)𝑑𝑡 =
𝜇0

2𝜀𝑚

[︀
(1− 𝐿)2𝐶+𝑒2𝑛/𝜀𝑚 + (1 + 𝐿)2𝐶−𝑒−2𝑛/𝜀𝑚+

+(1− 𝐿2)(𝐶𝑐 cos(2𝑛/𝜀𝑚) + 𝐶𝑠 sin(2𝑛/𝜀𝑚)
]︀
𝐻2

𝑠 |Γ𝑚 , (42)

𝐶+ = 𝑎𝑅1𝑚𝑐𝐼1𝑚 − 𝑎𝐼1𝑚𝑐𝑅1𝑚 < 0, 𝐶− = −𝑎𝑅2𝑚𝑐𝐼2𝑚 + 𝑎𝐼2𝑚𝑐𝑅2𝑚 > 0,

𝐶𝑐 = 𝑎𝑅2𝑚𝑐𝐼1𝑚 − 𝑎𝐼2𝑚𝑐𝑅1𝑚 − 𝑎𝑅1𝑚𝑐𝐼2𝑚 + 𝑎𝐼1𝑚𝑐𝑅2𝑚 = 2(𝑎𝑅2𝑚𝑐𝐼1𝑚 − 𝑎𝑅1𝑚𝑐𝐼2𝑚),

𝐶𝑠 = −𝑎𝐼2𝑚𝑐𝐼1𝑚 + 𝑎𝑅2𝑚𝑐𝑅1𝑚 + 𝑎𝐼1𝑚𝑐𝐼2𝑚 − 𝑎𝑅1𝑚𝑐𝑅2𝑚 = 0. (43)

Заметим, что первое слагаемое в правой части (42) всегда меньше нуля, второе — всегда
больше нуля, знак третьего слагаемого заранее не известен, а четвертое слагаемое рав-
но нулю. Сумма всех четырех слагаемых в (42) всегда положительна, т. е. суммарная
нормальная пондеромоторная сила направлена внутрь жидкой пленки.

Можно показать, что касательная составляющая пондеромоторной силы, как
и в двухслойном случае, равна нулю.

5. Вычисление объемной плотности источников джоулева тепла

В соответствии с законом Джоуля –Ленца количество теплоты, выделяющееся в едини-
цу времени в среде с проводимостью 𝜎, по которой течет ток плотности 𝑗, определяется
по формуле

𝑞 = 𝑗2/𝜎. (44)

Определим сначала плотность джоулева тепловыделения в жидкой пленке. Поло-
жим 𝑗 = 𝑗𝜙𝑚(𝑡, 𝑠, 𝑛), 𝜎 = 𝜎𝑚, 𝑞 = 𝑞𝑚(𝑡, 𝑠, 𝑛). Найдя из (44) 𝑞𝑚 с учетом (40), (41)
и осредняя полученное выражение по периоду колебаний тока, получим

𝑞𝑚(𝑠, 𝑛) =
𝜔0

2𝜋

2𝜋/𝜔0∫︁
0

𝑞𝑚(𝑡, 𝑠, 𝑛)𝑑𝑡 =
1

2𝜎𝑚𝜀2𝑚
[(1− 𝐿)2(𝑐2𝐼1𝑚 + 𝑐2𝑅1𝑚)𝑒

2𝑛/𝜀𝑚+

+(1 + 𝐿)2(𝑐2𝐼2𝑚 + 𝑐2𝑅2𝑚)𝑒
−2𝑛/𝜀𝑚 + 2(1− 𝐿2)((−𝑐𝐼1𝑚𝑐𝐼2𝑚 − 𝑐𝑅1𝑚𝑐𝑅2𝑚) cos(2𝑛/𝜀𝑚)+

+(𝑐𝐼1𝑚𝑐𝑅2𝑚 − 𝑐𝑅1𝑚𝑐𝐼2𝑚) sin(2𝑛/𝜀𝑚))]𝐻
2
𝑠 |Γ𝑚 . (45)

Выведем теперь формулу, описывающую джоулево тепловыделение в твердой фазе
образца. Из (15), (16), (19), (36), (39) найдем, что комплексная амплитуда

𝑗̂𝜙𝑓 = 𝜔0𝜇0𝜎𝑓𝜀𝑓 (−𝑐𝐼𝑓 + 𝑖𝑐𝑅𝑓 )𝐻𝑠|Γ𝑚𝑒
−(1+𝑖)𝑛̃/𝜀𝑓 .

Здесь учтено, что 𝐿𝜀𝑚 = 𝜀𝑓 . Далее,

𝑗𝜙𝑓 = Re(𝑒𝑖𝜔0𝑡𝑗̂𝜙𝑓 ) = −𝜔0𝜇0𝜎𝑓𝜀𝑓 (𝑐𝐼𝑓 cos(𝜔0𝑡− 𝑛̃/𝜀𝑓 ) + 𝑐𝑅𝑓 sin(𝜔0𝑡− 𝑛̃/𝜀𝑓 ))𝐻𝑠|Γ𝑚𝑒
−𝑛̃/𝜀𝑓 .

По аналогии с (41) имеет место равенство

𝜔2
0𝜇

2
0𝜎

2
𝑓𝜀

2
𝑓 = 4/𝜀2𝑓 .

Поэтому

𝑞𝑓 =
𝑗2𝜙𝑓
𝜎𝑓

=
4

𝜎𝑓𝜀2𝑓
[𝑐2𝐼𝑓 cos

2(𝜔0𝑡− 𝑛̃/𝜀𝑓 ) + 𝑐2𝑅𝑓 sin
2(𝜔0𝑡− 𝑛̃/𝜀𝑓 ) + . . .]𝐻2

𝑠 |Γ𝑚𝑒
−2𝑛̃/𝜀𝑓 ,

где многоточием обозначен член, интеграл от которого равен нулю.
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Осредняя 𝑞𝑓 по периоду колебаний тока, окончательно получим

𝑞𝑓 =
𝜔0

2𝜋

2𝜋/𝜔0∫︁
0

𝑞𝑓𝑑𝑡 =
2

𝜎𝑓𝜀2𝑓
(𝑐2𝐼𝑓 + 𝑐2𝑅𝑓 )𝐻

2
𝑠 |Γ𝑚𝑒

−2𝑛̃/𝜀𝑓 . (46)

(𝑛̃ определяется в соответствии с (28)).

6. Результаты расчетов

В работе [1] свободная поверхность жидкой пленки рассчитывается с помощью некото-
рого теплового граничного условия, в которое входит мощность источников джоулева
тепла, рассчитываемая по двухслойной модели, умноженная на коэффициент 𝜉 = 1.4,
выбираемый из условия согласия с экспериментальными данными. Оценим толщину
пленки согласно трехслойной модели, при которой достигается этот коэффициент.

Пусть 𝑞(𝑠, 𝑛) — объемная плотность источников джоулева тепла в двухслойной мо-
дели. Тогда можно показать, что

¯̄𝑞(𝑠) =

∞∫︁
0

𝑞(𝑠, 𝑛)𝑑𝑛 =
𝐻2

𝑠 |Γ𝑚

2𝜀𝑚𝜎𝑚

.

В трехслойной модели поверхностная плотность источников джоулева тепла равна

¯̄𝑞𝑠𝑢𝑚(𝑠) = ¯̄𝑞𝑚(𝑠) + ¯̄𝑞𝑓 (𝑠),

где

¯̄𝑞𝑚(𝑠) =

𝑛𝑓∫︁
0

𝑞𝑚(𝑠, 𝑛)𝑑𝑛 =
𝐼𝑚

4𝜎𝑚𝜀𝑚
𝐻2

𝑠 |Γ𝑚 , ¯̄𝑞𝑓 (𝑠) =

∞∫︁
0

𝑞𝑓 (𝑠, 𝑛̃)𝑑𝑛̃ =
1

𝜎𝑓𝜀𝑓
(𝑐2𝐼𝑓 + 𝑐2𝑅𝑓 )𝐻

2
𝑠 |Γ𝑚 ,

𝐼𝑚 = (1− 𝐿)2(𝑐2𝐼1𝑚 + 𝑐2𝑅1𝑚)(𝑒
2𝑀 − 1) + (1 + 𝐿)2(𝑐2𝐼2𝑚 + 𝑐2𝑅2𝑚)(1− 𝑒−2𝑀)+

+2(1− 𝐿2)[(−𝑐𝐼1𝑚𝑐𝐼2𝑚 − 𝑐𝑅1𝑚𝑐𝑅2𝑚) sin(2𝑀) + (𝑐𝐼1𝑚𝑐𝑅2𝑚 − 𝑐𝑅1𝑚𝑐𝐼2𝑚)(1− cos(2𝑀))].

Далее,

𝜉𝑚 =
¯̄𝑞𝑚(𝑠)
¯̄𝑞(𝑠)

= 0.5𝐼𝑚, 𝜉𝑓 =
¯̄𝑞𝑓 (𝑠)
¯̄𝑞(𝑠)

= 2𝐿(𝑐2𝐼𝑓 + 𝑐2𝑅𝑓 ), 𝜉 = 𝜉𝑚 + 𝜉𝑓 .

На рис. 2 показаны зависимости 𝜉𝑚(𝑀), 𝜉(𝑀) и отрезки 𝜉 = 1.4,𝑀 ∈ [0, 4];𝑀 = 0.64,
𝜉 ∈ [0, 1.4]. Видно, что кривая 𝜉(𝑀) пересекается с прямой 𝜉 = 1.4 при 𝑀 = 0.64.
Следовательно, искомая толщина пленки

𝑛𝑓 = 0.64𝜀𝑚.

Заметим, что при𝑀 = 0 𝜉 = 𝜉𝑓 = 𝐿, что соответствует двухслойной модели с прово-
димостью 𝜎 = 𝜎𝑓 . При𝑀 → ∞ 𝜉 → 1, 𝜉𝑚 → 1, что в пределе соответствует двухслойной
модели с проводимостью 𝜎 = 𝜎𝑚.
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Рис. 2. Зависимости 𝜉(𝑀) (кривая 1), 𝜉𝑚(𝑀) (кривая 2) и отрезки 𝜉 = 1.4, 𝑀 ∈ [0, 4] (отре-
зок 3), 𝜉 ∈ [0, 1.4], 𝑀 = 0.64 (отрезок 4)
Fig. 2. Dependences 𝜉(𝑀) (curve 1), 𝜉𝑚(𝑀) (curve 2) and segments 𝜉 = 1.4,𝑀 ∈ [0, 4] (segment 3),
𝜉 ∈ [0, 1.4], 𝑀 = 0.64 (segment 4)

Ясно, что толщина пленки в процессе БЗП в МП является функцией касательной 𝑠.
Поэтому полученную величину 𝑛𝑓 следует понимать как некоторое ее характерное зна-
чение.

Для дальнейших модельных расчетов зададим следующую зависимость между сис-
темами координат (𝑠, 𝑛) и (𝑟, 𝑧):

𝑟 − 0.01 = 𝑠 ∈ [0, 𝑠0], 𝑠0 = 0.04, 𝑧 = 𝑛 ∈ [0,∞].

Кроме того, пусть

𝐻𝑠|Γ𝑚 =
𝛼0(𝑀)√
𝑠+ 0.01

. (47)

Предположим, что в жидкой пленке и твердой части образца над ней суммарная
мощность выделяющегося джоулева тепла равна 0.6𝑁0. где 𝑁0 = 104 Вт — мощность
индуктора [8]. Тогда

¯̄𝑞𝑠𝑢𝑚(𝑠)=𝜉(𝑀)¯̄𝑞(𝑠)=
𝜉(𝑀)𝛼2

0(𝑀)

2𝜀𝑚𝜎𝑚(𝑠+0.01)
,

𝑠0∫︁
0

2𝜋(𝑠+0.01)¯̄𝑞𝑠𝑢𝑚(𝑠)𝑑𝑠=
𝜉(𝑀)𝛼2

0(𝑀)2𝜋𝑠0
2𝜀𝑚𝜎𝑚

=0.6𝑁0,

откуда

𝛼0(𝑀) =

(︂
0.6𝑁0𝜀𝑚𝜎𝑚

𝜋𝑠0𝜉(𝑀)

)︂1/2

. (48)

Все расчеты проводились при 𝑠 = 0.02 м.
На рис. 3 представлены результаты расчета пондеромоторной силы в зависимости

от 𝑀1 = 𝑛/𝜀𝑚 в жидкой пленке при 𝑀 = 0.64 по формулам (42), (43), (47), (48). Кри-
вые 1–4 соответствуют 1–4-му членам в правой части (42). На рис. 4 показаны результа-
ты расчета мощности источников джоулева тепла в образце также в зависимости от 𝑀1

при 𝑀 = 0.64 по формулам (45)–(48). Кривые 1–4 соответствуют 1–4-му членам в пра-
вой части (45). Они определены только для жидкой пленки. Кривая 5 рассчитывается
по формуле (45) для жидкой пленки и по формуле (46) для твердой фазы образца. При
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Рис. 3. Зависимость пондеромоторной си-
лы от 𝑀1 = 𝑛/𝜀𝑚 в жидкой пленке при
𝑀 = 0.64. Кривая 1 — первый, кривая 2 —
второй, кривая 3 — третий члены в правой
части формулы (42), кривая 4 — их сумма
Fig. 3. Dependence of the ponderomotive
force on 𝑀1 = 𝑛/𝜀𝑚 in a liquid film for
𝑀 = 0.64. Curve 1 is the first term, curve 2 is
the second term, curve 3 is the third term on
the right-hand side of formula (42), curve 4

is their sum

Рис. 4. Зависимость плотности источников джо-
улева тепла от 𝑀1 при 𝑀 = 0.64: кривая 1 —
первый, кривая 2 — второй, кривая 3 — третий,
кривая 4 — четвертый члены в правой части фор-
мулы (45), кривая 5 — их сумма 𝑞𝑚 при 𝑀1 ≤ 𝑀
и величина 𝑞𝑓 , рассчитываемая по формуле (46)
в зависимости от (𝑀1 −𝑀), при 𝑀1 ≥ 𝑀
Fig. 4. Dependence of the density of Joule heat
sources on 𝑀1 for 𝑀 = 0.64: curve 1 is the first
term, curve 2 is the second term, curve 3 is the third
term, curve 4 is the fourth term on the right-hand
side of formula (45), curve 5 is their sum 𝑞𝑚 for
𝑀1 ≤ 𝑀 and the 𝑞𝑓 value calculated by formula (46)
in depending on (𝑀1 −𝑀) for 𝑀1 ≥ 𝑀

Рис. 5. Зависимость пондеромоторной си-
лы от 𝑀1 в жидкой пленке для различных
значений 𝑀 . Кривая 1 — для 𝑀 = 0.2,
кривая 2 — для 𝑀 = 0.4, кривая 3 — для
𝑀 = 0.6, кривая 4 — для 𝑀 = 0.8, кри-
вая 5 — для 𝑀 = 1
Fig. 5. Dependence of the ponderomotive
force on 𝑀1 in a liquid film for different
values of 𝑀 . Curve 1 is for 𝑀 = 0.2, curve 2
is for 𝑀 = 0.4, curve 3 is for 𝑀 = 0.6,
curve 4 is for 𝑀 = 0.8, curve 5 is for 𝑀 = 1

Рис. 6. Зависимость плотности источников джо-
улева тепла от 𝑀1 для различных значений 𝑀 .
Кривая 1 — для 𝑀 = 0.2, кривая 2 — для
𝑀 = 0.4, кривая 3 — для 𝑀 = 0.6, кривая 4 —
для 𝑀 = 0.8, кривая 5 — для 𝑀 = 1, кривая 6 —
для 𝑀 = 0, кривая 7 — для 𝑀 = 4
Fig. 6. Dependence of the density of Joule heat
sources on 𝑀1 for different values of 𝑀 . Curve 1

is for 𝑀 = 0.2, curve 2 is for 𝑀 = 0.4, curve 3 is
for 𝑀 = 0.6, curve 4 is for 𝑀 = 0.8, curve 5 is for
𝑀 = 1, curve 6 is for 𝑀 = 0, curve 7 is for 𝑀 = 4
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переходе из жидкой фазы в твердую высота кривой скачком уменьшается в 20 раз. Это
следует из формул (15), (16) и формулы (44). Так как функция 𝐴𝜙 непрерывна при пе-

реходе границы раздела, а 𝜕𝜑/𝜕𝜙 = 0, функция 𝐸̂𝜙 непрерывна, а функция 𝑗̂𝜙 скачком
уменьшается в 𝜎𝑚/𝜎𝑓 = 20 раз.

Высокие значения функции 𝑓 (порядка 106 Н/м3) и функции 𝑞 (порядка 6·109 Вт/м3)
объясняются очень малым объемом жидкой зоны (около 1.2·10−6 м3).

Так как толщина пленки может меняться, представляет интерес проследить зави-
симость от нее вышеописанных функций.

На рис. 5 показаны зависимости пондеромоторной силы 𝑓 от 𝑀1 в жидкой пленке
для значений 𝑀 ∈ [0.2, 0.4, 0.6, 0.8, 1] (кривые 1–5 соответственно), рассчитанные по
тем же формулам, что и ранее. Видно, что чем больше 𝑀 , тем сильнее указанные
зависимости отличаются от линейных и тем ближе подходят к нулевому значению на
оси ординат.

Наконец, на рис. 6 представлены зависимости мощности источников джоулева тепла
𝑞 от 𝑀1 в образце для того же набора значений 𝑀 , что и выше (кривые 1–5), а также
для 𝑀 = 0 (кривая 6), что соответствует двухслойной модели при 𝜎 = 𝜎𝑓 и для 𝑀 = 4
(кривая 7), что близко к двухслойной модели при 𝜎 = 𝜎𝑚. Высота кривых 1–5, как
и в ранее рассчитанном случае для 𝑀 = 0.64, терпит скачок, уменьшаясь в 20 раз при
переходе из жидкой фазы в твердую. Скачок высоты кривых 6, 7 не виден, так как
в первом случае кривая 𝑞𝑚 имеет нулевую длину, а во втором этот скачок находится за
пределами рисунка. Площадь под всеми кривыми при 𝑀1 ∈ [0,∞] одинакова.

Заключение

Рассмотрена задача о расчете параметров электромагнитного поля в трехслойной сре-
де, включающей воздушное пространство между жидкой пленкой и индуктором, саму
жидкую пленку и твердую фазу образца, применительно к задаче о бестигельной зон-
ной плавке кремниевого материала. Выведены формулы для расчета векторного потен-
циала магнитного поля, его напряженности, плотности электрического тока, а также
нормальной составляющей пондеромоторной силы в жидкой пленке (касательная, ее
составляющая, равна нулю, как и в известной двухслойной модели) и мощности ис-
точников джоулева тепла в жидкой пленке и твердой части образца. Вычислена ха-
рактерная толщина жидкой пленки из условия, взятого из сравнения расчетных и экс-
периментальных данных в работе других авторов, что суммарная мощность джоулева
тепловыделения в ней и твердой части образца в 1.4 раза больше, чем в двухслойной мо-
дели. Произведены модельные расчеты последних двух из перечисленных параметров
для найденной толщины пленки, составляющей 0.64 от толщины скин-слоя в расплаве,
а также для некоторого дискретного набора толщин пленки.
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Abstract

The research addresses finding of the electromagnetic part for the problem of calculating the
thickness and shape of a liquid film resulted from the floating zone melting of the silicon sample of
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large radius (5–10 cm) in a magnetic field. The applied approach relies on the analytical transformati-
ons of electromagnetic field equations and the method of complex amplitudes for description of
harmonic oscillations in time of the sought values. The explicit analytical formulas have been
obtained for calculating the vector potential of the magnetic field, its strength, electric current
density, ponderomotive force and density of Joule heat sources for the case of axisymmetric formula-
tion. The estimate of the film thickness is given and model calculations are performed for a simple
film geometry and the discrete set of thickness values of the film. The method for determining
the parameters of an electromagnetic field in a three-layer medium, namely, the air space between
the inductor and the liquid film, the film itself, and the solid phase of the silicon sample, has
been developed. The method allows performing calculations for a film thickness comparable to the
thickness of the skin layer in a liquid phase.
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skin layer.

Citation: Pivovarov Yu.V. Calculation of electromagnetic field parameters in a three-layer
medium for floating zone melting. Computational Technologies. 2024; 29(4):24–40.
DOI:10.25743/ICT.2024.29.4.003. (In Russ.)

References

1. Muhlbauer A., Muiznieks A., Virbulis J., Ludge A., Riemann H. Interface shape, heat
transfer and fluid flow in the floating zone growth of large silicon crystals with the needle-eye technique.
Journal of Crystal Growth. 1995; (151):66–79.

2. Muhlbauer A., Muiznieks A., Virbulis J. Analysis of the dopant segregation effects at the
floating zone growth of large silicon crystals. Journal of Crystal Growth. 1997; (180):372–380.

3. Ratnieks G., Muiznieks A., Buliguns L., Raming G., Muhlbauer A.A. 3D numerical analysis
of the influence of EM and Marangoni forces on melt hydrodynamics and mass transport during FZ
silicon crystal growth. Magnetohydrodynamics. 1999; 35(3):223–236.

4. Raming G., Muiznieks A., Muhlbauer A. Numerical investigation of the influence of EM fields
on fluid motion and resistivity distribution during floating-zone growth of large silicon single crystals.
Journal of Crystal Growth. 2001; (230):108–117.

5. Lacis K., Muiznieks A., Ratnieks G. 3D mathematical model system for melt hydrodynamics
in the silicon single crystal FZ-growth process with rotating magnetic field. Magnetohydrodynamics.
2005; 41(2):147–158.

6. Pivovarov Yu.V. Calculation of a flow of liquid with variable viscosity in a domain with curvilinear
boundary. Computational Technologies. 2005; 10(3):87–107. (In Russ.)

7. Pivovarov Yu.V. Numerical simulation of convection in the floating zone. Computational Technolo-
gies. 2006; 11(1):81–94. (In Russ.)

8. Pivovarov Yu.V.Modelirovanie konvektsii rasplava poluprovodnikovogo materiala pri zonnoy plavke
[Modelling of the convection of semiconductor-material melt under zone melting]. Dis. Kand. Fiz.-Mat.
Nauk. Novosibirsk: Institut Gidrodinamiki SO RAN; 2006: 135. (In Russ.)

9. Han X.-F., Liu X., Nakano S., Harada H., Miyamura Y., Kakimoto K. 3D global heat
transfer model on floating zone for silicon single crystal growth. Crystal Research and Technology.
2018; (53):1–5. DOI:10.1002/crat.201700246.

10. Ilyin A.V., Rivkind V.Ya. Priblizhennoe reshenie zadachi stekaniya plenochnoy zhidkosti s ugla.
Zadachi gidromekhaniki i teplomassoobmena so svobodnymi granitsami. Mezhvuzovskiy sbornik nau-
chnykh trudov [Approximate solution for film liquid runoff from a corner. Problems of hydromechanics
and heat and mass transfer with free boundaries. Interuniversity collection of scientific papers].
Novosibirsk: Novosibirskiy Gosudarstvennyy Universitet; 1987: 128. (In Russ.)

11. Yavorskiy B.M., Detlaf A.A. Spravochnik po fizike [Physics handbook]. Moscow: Nauka; 1981: 512.
(In Russ.)

12. Smythe W.R. Static and dynamic electricity. N.Y.: McGraw-Hill, 3rd Ed.; 1968: 845.
13. Lie K.H., Walker J.S., Riahi D.N. Free surface shape and AC electric current distribution for

float zone silicon growth with a radio frequency induction coil. Journal of Crystal Growth. 1990;
(100):450–458.


	Вывод уравнений электромагнитного поля
	Случай двухслойной среды
	Случай трехслойной среды
	Вычисление пондеромоторной силы в жидкой пленке
	Вычисление объемной плотности источников джоулева тепла
	Результаты расчетов

