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Our primary objective is to develop an innovative approach for the numerical so-
lution of the Fredholm linear integrodifferential equation. Our overarching goal is to
significantly enhance computational efficiency and minimize memory space utilization
which is very important in the case of large integration intervals. To begin this en-
deavor, we establish sufficient conditions that guarantee the existence and uniqueness
of the solution. Our novel method is grounded in the single equation approach, which

x

consists in using the variable transformation represented as v(x) = v(a) + / u(t)dt,

completed by the trapezoidal rule. This transformation plays a pivotal role inaconvert—
ing our equation into an algebraic system, thereby reducing the number of equations
and unknowns in the discrete system. Underlying these developments is a fundamental
requirement ensuring the existence and uniqueness of the solution. Leveraging this,
we formulate theorems that establish the convergence of the approximate solution,
ensuring consistency between analytical and numerical investigations. Ultimately, we
conduct a comparative analysis between our newly introduced technique and the older
method. This comparison serves to highlight the superior computational efficiency and
reduced storage space consumption offered by our innovative digital framework.
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Introduction

In recent times, there has been a fervent race among scientists to contribute to the body of
research revolving around the development and application of numerical methods for solving
integrodifferential equations. These equations hold a pivotal role across a multitude of fields,
including mechanics, physics [1}, 2], neural network [3] and many others [4]. Their significance
lies in their capacity to accurately model complex phenomena and processes, making them
indispensable in scientific and engineering endeavors.

One of the key motivations driving this surge in research is the pressing need for more
efficient computational techniques. As scientific problems become increasingly intricate, the
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computational resources required to solve them can become prohibitively demanding. Espe-
cially, in our equation, when the integration interval becomes very large [5H7|. Herein lies the
importance of numerical methods: they offer means to significantly reduce computational
time and resource utilization. One of the primary goals of these numerical methods is to
minimize the error approximation in the obtained solutions. Integro-differential equations
often defy closed-form analytical solutions, necessitating the use of numerical approxima-
tions. The accuracy of these approximations is crucial, especially in fields like medicine,
where the consequences of errors can be profound. By refining and innovating numerical
techniques, researchers aim to enhance the precision of their solutions, reducing the likeli-
hood of erroneous outcomes.

The applications of these equations extend far beyond the fields mentioned earlier. They
find significant utility in the field of medicine, where they are employed to model a wide array
of diseases, with some of the most notable examples being malaria and cancer chemother-
apy. In addition, these equations are harnessed to represent blood sugar levels and to model
the behavior of viruses, including the coronavirus, offering valuable insights into healthcare
and epidemiology [8}{13].

Moreover, recent scientific literature has witnessed a surge in publications focusing on
various numerical methods tailored for solving integrodifferential equations. Some of these
methods include the Legendre multi-wavelet method, operational matrix techniques, the
Jacobi iterative method, the collocation method, the Pell - Lucas series approach, the multi
step method, sinc collocation method [7], [14H19]. These innovative techniques are designed
to enhance the accuracy and efficiency of numerical solutions, making them invaluable tools
for researchers and practitioners alike.

In alignment with this context, our article endeavors to contribute to this evolving land-
scape by introducing a novel numerical approach. Our objective is to streamline and expedite
the resolution of linear integrodifferential equations, with a specific focus on exploring the ex-
istence and uniqueness of solutions for the Fredholm linear integrodifferential equation. This
particular equation represents a fusion of equations that have been previously studied in
a multitude of research works [20-25]. In essence, our research endeavors to address the
ever-expanding applications of integrodifferential equations across diverse fields and aims to
usher in more efficient numerical methods. By doing so, we not only seek to save valuable
time in solving complex problems but also contribute to the foundational understanding of
these equations in a broader scientific context.

In this article, our focus is directed towards obtaining a numerical solution for the fol-
lowing linear Fredholm integrodifferential equation.

Voel—aal, Mu(z)= /Kl(x,t)u(t)dt—l—/Kg(x,t)u’(t)dt—i—f(x), (1)

where, A is a real or complex parameter, f is a given function and K; for ¢ = 1, 2 are assumed
to satisfy the hypothesis mentioned later.

x

In our numerical methodology, we first employ the transformation v(z) = v(a)+ / v(t)dt

a
and subsequently, we apply the trapezoidal numerical integration method. This sequence
of steps forms the basis of our approach. The key advantage of this technique lies in its
remarkable ability to significantly reduce the substantial number of algebraic equations that
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typically arise when employing numerical integration. By constructing our solution using
this transformative method, we effectively cut the number of algebraic equations half, by
which a consequence of the simplifying effect of the transformation on the mathematical
equation. This reduction in equation complexity leads to substantial time savings during the
solution process.

However, it’s important to recognize that this efficiency gain may come at the expense
of a slight reduction in precision, as indicated in reference [26]. To address this precision
trade-off, we introduce an enhancement through the application of the principle of assem-
bly. The principle of assembly serves as a strategic refinement, allowing us to fine-tune our
approach. By implementing this principle, we reconfigure the problem, resulting in the de-
velopment of a new system that strikes an optimal balance between time efficiency and
precision. The culmination of this effort is presented in the form of a numerical example
towards the end of our manuscript. This numerical example serves as concrete evidence,
demonstrating that our novel methodology outperforms two previously established methods
in terms of both time efficiency and precision. It underscores the practical superiority of our
approach, showcasing its potential to significantly enhance the efficiency and reliability of
solving complex problems involving integrodifferential equations.

1. Problem statement

We establish the following hypotheses regarding the kernel functions, denoted as K;
fori=1,2:

aKZ (%,t) € CO([_aa a]QaR)v
oz
() IM; >0 Ki(x.t OK; ) <M
i > u‘xrﬁ?éa <| i(xa >|7 a_l‘(x’ )> = i+

This hypothesis provides additional insights into the solution. When we take the deriva-
tive of both sides of the equation, we arrive at:

O wpuyar+ [ D2 it + ). ()

!/
Vr € [—a,al, \'(z) = o
In the work presented in reference [26], it was established that a unique solution exists
for this equation under the condition |A\| > 2a(M; + M;). The authors then proceeded to
develop a numerical solution strategy based on the Nystrom method. This innovative method
effectively transformed the original equations and into a discrete linear algebraic
system, comprising a total of 2n + 2 equations.
On the other hand, in reference [27], a different perspective was adopted. In this case,
the authors made an assumption about the kernel functions K;, positing that they needed
to satisfy the following specific condition:

8@? (z,1) € C%([~a,a’,R).

This particular assumption played a pivotal role in their ability to convert the integrod-
ifferential equation into a set of integral equations. Regarding the establishment of the solu-
tion’s existence and uniqueness, a comprehensive explanation and clarification can be found
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in the reference |27]. Building upon this foundation, two distinct solutions were developed
using projection methods, specifically the collocation and Kantorovich methods.

In this paper, we adopt the same assumption as presented in [26] and employ the identical
numerical method. However, we approach the problem from a distinct angle, introducing
innovative ideas. Consequently, we do not find it necessary to provide a formal proof of the
solution’s existence and uniqueness, as it is inherently guaranteed as long as the condition
|A| > 2a(M; + M,) is satisfied.

2. Numerical solution

In the pursuit of a more efficient solution within a shorter time frame, all it takes is a
straightforward concept that facilitates the transformation of equation (|1)) into an equivalent
form. For that we process with a single equation approach: This concept is rooted in the

fundamental observation that for any function v belonging to the continuous set C°[—a, a],
x

we can express u(z) as u(—a) + /v(az) dx, where v(x) represents the derivative of u(z).

By applying this newly introduced formula for u to equation (|1)), we arrive at the following
expression for all z within the interval [—a, a:

t

Au(z) = /Kl(:r;,t) u(—a)+/v(y)dy dt+/K2(x,t)v(t)dt+f(x), (3)

—a

with u(—a) has the following formula

u(—a) = - 1 /aKl(—a,t)/tv(y)dydt—f—/aKg(a,t)v(t)dt+f(—a)
/\—/Kl(—a,t)dt o —a ~a

We put .
/ Ky (x, t)dt
c(a) = —
A /Kl(—a,t)dt
and )

9(z) = c(z) f(—a) + f().
Then the equation is equivalent to
a t

Vo € [—a,al, Au(x)= / lc(x) K (—a,t) + Ki(z, )] /v(y)dydt+
—|—/ [c(x)Ky(—a,t) + Ky(z, t)] v(t)dt + g(x). (4)

—a

We derivative the equation (4f), we get
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Vo € [—a,a]l, Av(x) :/a(c’(x)Kl(—a,t)—i-%(x,t))/tv(y)dydt—i—

—a —a

+/“ <c’(x)Kz(—a, t) + %(%ﬂ) v(t)dt + g'(z). (5)

—a

According to hypothesis (H;), the solution u to equation exists and is unique in the
Banach space C'[—a, a] if |A\| > 2a(M; + My). This uniqueness implies that v is the unique
solution to equation within the Banach space C°[—a, a].

Now, let’s delve into the numerical technique we employ to estimate the solution. In
both numerical approximations we have developed, we rely on the trapezoidal rule method,
well-known for its simplicity and suitability for handling equations of this kind. This method
is based on numerical integration. To facilitate this, we define a uniform subdivision of the
interval [—a, a] with points denoted as x; = —a + th, 0 < i <n, and h = 2a/n.

Furthermore, we draw upon the following numerical integration scheme, as referenced
in [28-30]:

Va2 1 o€ C-aal [ ola)ds Y wiolm) (6)
; =0
where, {w;}", are called weights and verified

3W>omQ]m<W

n>1

and we can compute it using the trapezoidal rule, Slmpson s rule or Gaussian quadrature. Ap-
plying the quadrature scheme @ on the equation ({5)), we get this algebraic system with n+ 1
equations

oK
Zz%wk ( z;) Ky (—a,x;) + a—xl(xz,x])> v +

7=0 k=0
0K
+ Z% ( 2:) Ko (—a, z;) + a—:(fci,%’)> vj + g'(22),

where, v; is an approximation of v(x;).
To calculate the approximation w; of u(z;), we use the same concept. Then, w; can be
obtained as follows

ui:uo—i—ijvj, 0<i<n,
§=0

where uy &~ u(—a), we put C' = — . So, ug is computed by

—/Kwﬂ@ﬁ

(ZZ”JWkKl —a,%; Uk+Z%K2 —a,x;)v; + f(— ))

j=0 k=0
Ultimately, the newly developed numerical scheme has the following structure, applicable
for all values of ¢ within the range of 0 < i < n:
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( nJ , 0K,
v = >0 Y wiwg | () Ky (—a,x5) + —— (24, 25) | v+
§=0 k=0 Ox
- / 0K, /
+ 2w | (@i Ka(=a, 25) + —-= (0, 25) | vy + g (23), (7)
j=0 xr
n J n i
u; =C (Z > wiwpKi(—a, z)v, + Y wiKa(—a, z;)v; + f(—a)> + 2 Wi
L 7=0 k=0 =0 20

The second objective of this paper is to enhance the numerical solution of the scheme
described in equation @ To achieve this improvement, we employ the quadrature scheme
specified in equation @ on equation . This application results in the derivation of a novel
algebraic system. Consequently, for all values of ¢ within the range of 0 < i < n:

(

Mu.

oK
A W;jW (d(asi)Kl(—a,xj) + a—xl(a:i,xj)) v+t

k=0

0K
o (¢ Kal-a.) 4 G 2w ) vy + /a0,

+

I

Ji
o

g

[
i
MQ

<
Il
=)
B
Il

wjwg (e(x;) Ky (—a, z;) + Ky (2, x5)) v+

— O

+

<
I
=)

wj (c(x;) Ko(—a, z;) + Ko(z, ;) v + g(;).

\

3. Numerical analysis

This section is dedicated to establishing the convergence of the solutions we have pro-
posed. Initially, we provide a theorem that serves as a demonstration of the existence and
uniqueness of solutions for the systems and . Subsequently, we offer a robust estimate
of the local error. Ultimately, we conclude by confirming that the approximate solution
indeed converges to our exact solution.

In light of this, we introduce certain definitions that will be instrumental in proving the
main theorems. Let kg denote the continuity modulus, defined as follows:

Vh>0,VveC[—a,a], ko(v,h) = sup |v(x)—v(y)l,

lz—y|<h
and the continuity module £ o of any functions defined in the square [a, b]?

Ve [_a7a]7 vV h> 07 v g e CO([_a7 (I]Q,R), /{1,0(97 h)(l’) - | SUI:T |g($ay1) - g(xay2)|
y1—y2|<h

For any vector V = (vg, vy, ...,v,)" in R"™ the norm of v is defined by
IV s = gma o]
It is impossible to proceed to the analysis of convergence without ensuring the existence

and uniqueness of the solution of systems and (8)), which is established in the following
theorems.

Theorem 1. When
|A| > max (W(HCHCI[_a’a] + V) (WM, + M), W|C|(W M, + My + 1)) ,
it follows that the system possesses a unique solution.
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Proof. Consider a vector V in R"*! and we define the functional as follows:

¢: R™ — R™ x R™
Vo= o(V) = (01(V), 02(V),

where
¢1 . Rn—f— 1 Rn+1 7

Vi (V) = H ‘n zj:ijk (c’(:z:i)Kl(—a, z;) + a—(xl,xj)) o +

. +1 +1
do: Ry RO

Vr—>¢2(V):C'< wiwe K (—a, z; vk—i—ijKg —a,z;)v; + f(— )—ka]vj.

§=0 k=0 §=0

N
<

Thus, we can express the system as (V,U) = ¢(V), where V = (v, v1,...,v,)" and
U = (ug,u1, ..., up)t.

Now, let’s proceed to demonstrate that both ¢; and ¢, are contractors. Consider V' and
V e R*! we have:

5 W ([l lcofaa + 1)(WM; + M) _
||¢1(V) - ¢1(V)||R"+1 = el ] |)\| ' 2 ”V - V”R?”rlv

[$2(V) = ¢2(V)llzner < WICHW My + Mo + 1|V = V|zas.

A

Given that

Al > max (W(||cl|oraa + 1) (WM + M), W|C|(W M, + My + 1)),
we can establish that ¢; functions as contractors for + = 1, 2. This in turn confirms that ¢
itself functions as a contractor.

By invoking the Banach fixed-point theorem [28, [29], we can assert that the system
described in equation possesses a unique solution. [ |

Theorem 2. When |A| > W(||c||c1]—a,q + 1) (WM, 4 My), it follows that the system
possesses a unique solution.

Proof. Let define ¢ : R**! — R**! x R*H! by

(V) = ((V), 92(V)),

such that,
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. +1 +1
¢y s R R

1 ) 0K,
Vi— qbl(V) = X wiwg | € (CL’Z‘)K1<—6L, (L’j) + a—(xi,xj) Vg +
=0 k=0 v
& , 0K
Y (e at-a) + S )+ )]
=0
¢2 . Rn—l—l — RTH_I,
1 n
Vi— (V) = 3 { ijwk (c(x)Ki(—a,x;) + Ky (2, x5)) v +
=0 k=0

b (e K 2y) + Ko 3)) 0 + ()

=0
Then, the system has this generic formula
(V,U) = o(V).
We have,
W(HC/”CO[fa,a] + 1)(WM1 + MQ)

[61(V) = @1 (V)[[rnsr < o |V = V|gass,
_ WW(||d]|coj—a.a + 1) My + M- _
V) = n(P s & NN L DRI

Given that || > W(W (||c||ct—a,a) + 1) M1 + (J|¢]|c1]—aq) + 1) M2), it follows that ¢; functions
as a contractor, establishing ¢ as a contractor as well. Consequently, through the application
of Banach’s fixed-point theorem [28, 29|, we can confidently assert that the system has
a unique solution. [ |

Within this section, our objective is to showcase that the novel methods introduced in this
manuscript converge towards the exact solution. To achieve this, we establish the following
discrete errors for n > 1:

erria = max v(z;) — i, (9)
and
erry, = max 0 < i < nlu(x;) — ;. (10)

Now, we define ¢;,, and &;,, are local errors defined in the following for all 0 <7 <n

o /"(c/@i)Kl(_a,tH%w) [ ot

- —a

0K
— Z WjiWg < ZT; K1< CL,Ij) + a—xl(l’l,l‘])) U(.Tk> +

7=0 k=0
a

+ / (c’(:ci)Kg(—a,t) + %(%,t)) v(t)dt —

0K
— Zw] ( Z; K2 a,l’j) + a_j(x%’xj)> U(xj>’
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Ein = /(c(xi)Kl(—a,t) —i—Kl(xi,t))/v(y)dydt—
— Zz%wk c(z)Ki(—a, xj) + Ky (24, 25)) v(ag) +
7=0 k=0

a

+ /(C(xz')KQ(—a, t) + Kox(x,t)) v(t)dt —

—a

— ij c(z;) Ko(—a, x;) + Ka(x;, xj)) v(z;).

Subsequently, we will proceed to demonstrate the convergence of err;, and erry, to-
wards 0. Our aim is to establish the convergence of the local errors ¢;, and &;, towards
0, as we will illustrate in the upcoming theorem.

Theorem 3. For n large enough, we consider €, = (€omn,E1n,--- ,snm)t and
En = (E0msE1my .-+, Enn) are vectors of R™. Then,

2
lenllnsr < vro(v, )+W Y (||c/||00[a,am<f<p, h)(—a) + max ro(0, K, h)(a:n) [0llco[—a.a)

p=1

and

2
& lanss < o(v, )+ Z(||c||m[_a,am<Kp,h)(—a) 5 B 1)) [l (1)

where, v = 2a(2a(1 + M)||c|lc1(—a,a + Mal/c]|c1—aq) and 0K, is a partial derivative of K,
respected to x.

Proof. It’s important to note that the quadrature formula originates from the utilization
and application of piecewise polynomial interpolation for any function g € C°[—a, a.

Let P, represent a piecewise polynomial interpolation of the first order. Consequently,
we have:

\Vlg € CO[_a7a]7 nlg Zg xz ez

where, {e;}! , is haat function

x—x;| .
ei(x) = 1+ uy if z € (21, Tiy1],
0, otherwise.
Therefore,
a n—1 Ti+1
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The expression for ¢;, has two components. We will bound each of them separately, and
then combine them.
For n large enough, we have

/b<cl($i)K1(_a,t)+%(xi7t)> /tv(y)dydt_

oK
_ZZ%%( () I3 (= @a%‘)Jra—l(%xj)) v(zp)| <
7=0 k=0 v
¢ j
< [eEri(aty+ i [ vy =S o) ar+
~ C(T; 1 CL, 8x I‘Z, v y y £ WEU\ T

—a —a

a

/ al(l @Kl J
+[ | @) K (=a, )+ == (it Z% ) Ki(=a, 7)) = —— (w1, 3;) > Jwillo(a)|dt <
a k=0
a @Kl j Th+1
< max [ @) Ki(~a, t>+%<xi,t>‘ it > [ o) = vla)1 - ex(w) ~vlansestw)lds]
n—1 Tj41
+3 / 10— &) (Ea(—a,1) — Ka(—a,2,)+
j
i (1) (K1 (—a,t) = Ki(=a,2501)) | Y wxllo(ze)|dt+
k=0
it oK K
1 1
+j20 / ’(1 — ¢;(t)) (E<_a7t) - W(—GJJ‘)) +
oK 8[(
+e;(t) ( axl( a.t) = ——(-a xﬁl) )|dt.
Then,

/ 0K / n J 0K
/(C/(:):i)Kl(—a,t)—i—a—xl(xi,t»/v(y)dydt—k;;ijkc’(xi)l(l(—a, xj)—l—a—xl(wi, z;)v(zg)| <
< 40’2(”0/”00[—11,&] + 1)M1’€0(U7 h)+

+2W (|||l cop—a,a fio(K1, ) (—a) + ko(0x K1, h) (@) [l cof—aa)- (12)
On the other side
<

/a (C,(Ii)KQ(_a,t)‘f‘%(l’i,t)) v(t)dt—zn;wj <c’(.ri)K2(—a,xj)+%(xijxj)> o(z;)

—a

Zj+1

Z / ( (1 —e;(t)(Ka(—a,t)v(t) — Ka(—a,z;)v(x;))+

Zj
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ey (1) (Ko —a, tyolt) — Ko(—a, w@(w)) n

n—1 Tj+1

+X [ 1= g0) (G2 a0 - G2 Canim) ) -
(0 (G2 a0 - 2 amioton ) | <
< 2&“6’”00[_a7a]M2l€0(U,h>+
+20 (1€ e o)) + o a0, 1)(a) ) lollon: (13)

We put v1 = 2a(2a(1 + ||cl|crj—aa) M1 + ||¢||co[—a,q0M2). Summing up the last equali-

ties and , we obtain

2
ol < mo(v h) £ 20 Y <HC'HCO[a,a]/€0(Kp7 h)(—a) + max xo(0, Kp,m(x,)) lollootoaal.

0<i<n
p=1

Now, let’s demonstrate the validity of the second equality . For sufficiently large
values of n, we have:

|€in] < /(c(a:i)Kl(—a,t)+K1(x,;,t))/v(y)dydt—Zijwkc(xi)Kl(—a,xj)—FKl(:ci,xj)v(xk) +

+ /(c(mi)Kg(—a, t) + Ko(zy,t))v(t)dt — ij(c(xi)[(g(—a,xj) + Ko(x;, xj))v(z;)| .

By the same process above,

|€i.n] §4a2(\|c||co[,a’a] + 1) Miko(v, h) +
+2W (lellcoj—aa oK1, h)(—a)+ro(K1, h)(:)) [[0]lcof—a,q+2all ¢l co—a,q Marko(v, h) +

+ 20 (elot-aapra(F, )(-0) + s Ko, @) ) el -na) <

2
< pra(w) + 200 3 (ellcop-aaol iy )(~a) + o (Ko 1) ) ollcors-

p=1
Theorem 4. As n becomes sufficiently large, the discrete error erry,, defined in @D
decreases progressively and approaches zero.

Proof. For 0 <1 <n,

oK
(Ao(zi) —vi| < ZZ jwjlwl | (z:) K1 (a, z;) + a—xl(%ﬂfj) (@) — vkl +
=0 k=0
0K
+ Z\Wﬂ (i) Ka(a, z;) + 8—;(:@-,%) v(z;) — vil + |€inl.

We have [A| > W (W (||¢[|coj—aa + 1) My + (|¢/ || co[—a,a) + 1)Ms), then
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W (Wl lleoi-an + DM+ (I€]loop-a + 1D M) + [lenlrns
A
Finally, lim erry, = 0. |

n—0o0
The following lemma is a direct consequence of the previous lemma. In fact we only need

to check that errsy,, converges to 0.

Lemma 1. If u; is the solution of the system , then the discrete errs,, defined by
converges to 0.

erryy, <

Proof. For n large enough and 0 < i < n, we have

T

) = ] < [u(=a) + [ o(u)dy — o~ 3wy,

—a

such that,
x;

/v(x)dx - ijvj < ko(v,h) +Werry,.

J=0

—a

and

IA||u(—a) — uo| = /Kl(—a,t)/v(y)dydt—i-/KQ(—a,t)'U(t)dt—

—a

n J

— Z Z ijkK1<—CL, SC]')'Uk + Z WjKQ(_aa xj)vj
=0

=0 k=0

From some calculations, we get
u(—a) — uo| < |Eopn| + W(W My + Ma)erry .

So,
|U(Il) — u,| S |é()7n| + W(WM1 + MQ + ].)67'7“1771 + KQ(U, h)

Lemma 2. If u; is the solution of the system , then lim errs, = 0.
n—oo
Proof. For n large enough

nJj
Nlu(z:) —wl <Y lwsllwrlle(z:) Ky (—a,25) + K (wi, @)|o(ex) — o+

j=0 k=0
+ > lwjlle(x:) Ka(=a, ;) + Ka(ai, 2;)|[v(z;) — vj| + |&inl, 0<i<m.
§=0
We have |)\| > W(W<||C||CO[—a,a] + 1)M1 + (HCHCO[—a,a} + 1)M2)7 then
W (W(||CHCO[,CL7Q] -+ 1)M1 + (“CHCO[fa,a] + 1)M2) + ||§n||Rn+1
A
Then, we get the result. |

u(;) — ug <
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4. Numerical test

We provide examples to illustrate the effectiveness of the methods we present in this manusc-
ript as well as to compare the new method described in this article with the old one presented
in a previous work. To ensure a fair comparison, we select the weights based on the trape-
zoidal rule, which are defined as:

h=(b—a)/n,
Wwo = wy, = h/2,
Wi =Wy ="+ =wy1 =h,

ri=a+ (i—1)h,i=0,1,...,n.
We use the following estimation
ErTy = ErT1y + €rTy .

B ult) 0
Vo € [—a,a], du(z) = / (22 + cos(t))? + e+ / 2,/z% + sin(t) + T /@)

—a —a

a

f(x)=>5a®sin(x)+arctan(z*+cos(a)) —arctan(z*+cos(a)) — v/sin(a) +x* +14++/sin(a) + x4 +1.
We have, for i =1, 2

max
|t],]z|<a

T

such that, M, = 4a® and M, = a3. Then, we choose A\ = 5a® + 1 which ensures the existence
and uniqueness of the solution with the exact solution u(x) = sin(z).

In the Tables[I] and [2, we present a comparison of the exact solution and approximations,
along with the computation time using Matlab. The first table explores various combinations
of a and h, allowing us to compare the results obtained with those from [26]. In the second
table, we keep a = —1 fixed and examine the errors between the exact and approximate
solutions across different values of n.

Now, we plot the graphs of the error to observe the difference between the exact solution
and the approximate solutions.

T able 1. The error between the exact solution and the approximate solutions with different
values of a

: Solution of Solution of
Approximate . . . . .
a h n . Time, s | approximate | Time, s | approximate | Time, s
solution [26]
system system
1 0.2 10 6.2687e—04 | 0.0251 | 5.0144e—04 | 0.0012 0.0061 0.0011
0.1 ] 20 1.6652e—04 | 0.0277 | 1.4632e—04 | 0.0093 0.0015 0.0012
5 0.2 | 50 0.0426 0.0329 0.0353 0.0013 0.0404 0.0192
0.1 | 100 0.0794 0.0600 0.0779 0.0033 0.0778 0.0047
10 0.2 | 100 0.0057 0.1129 0.0130 0.0010 0.0151 0.0027
0.1 | 200 0.0831 0.2282 0.0816 0.0094 0.0818 0.0696
50 0.2 | 500 0.0577 1.2273 0.0484 0.0429 0.0505 0.0563
0.1 | 1000 0.0250 7.3585 0.0266 0.2766 0.0221 0.3088
100 0.2 | 1000 0.0867 5.6457 0.1575 0.2257 0.1307 0.0923
0.1 | 2000 0.1061 32.6585 0.1194 1.2032 0.1066 1.8657
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T able 2. The error between the exact solution and the approximate solutions with fixed a

Approximate . Solution of appro- . Solution of appro- .
" solution [26] Time, s ximate system Time, s ximate system Time, s
10 6.2687e—04 | 0.036832 5.0144e—04 0.007448 0.0061 0.0011
50 2.7081e—05 | 0.042769 2.3304e—05 0.302464 2.4710e—04 0.0575
100 | 6.7875e—06 | 0.128543 5.8466e—06 0.345680 6.1794e—05 0.0382
500 | 2.7168e—07 | 1.177792 2.3395e—07 0.153302 2.4718e—06 0.0353
1000 | 6.7923e—08 | 8.689588 5.8487e—08 0.112934 6.1795e—07 0.1056
1.5 T T T T T T T T T 1.5 T
¢ Exact Solution
——H&— New Solution O Segni Solution
1«:%‘39% 9%
\Q o] 9
3 P 8
8 " \
05F ) / &
2 ? 13
8 ¢ \
) 4 8
0 \ o] \b
& / \
\ 4 %
{ o %
-051 ’ \
Q\Q g,‘«’ﬁ %
9 & 9
e~ ST 9 }g&fmg 1 b@r‘m
-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 0 5
Exact solution and the solution of the approximate systems (left) and (right), a = 5,
with h = 0.2

Conclusion

As previously mentioned, this article builds upon our earlier investigation of the integrod-
ifferential equation , where the derivative is under the integral sign. It’s worth noting
that we are dealing with an equation featuring two unknowns, necessitating a strategy
for simplification. Our primary focus here revolves around the approach to handle a single
equation rather than two, achieved through a variable modification technique proposed for
solving these equations.

Initially, we transformed the equation from its initial form to an alternate form .
Subsequently, we employed a similar method to the one presented in a previous work [17].
This involved applying the Nystrom method, resulting in an algebraic system comprising
n + 1 equations. This system, in turn, enabled us to approximate the derivative at each
discretization point within the interval [—a, a]. To obtain the approximate solution, we used

n
the formula u; = ug + > v;, with v; representing the solution to the algebraic system. For

the second method, we Zmoerely adjusted the formula for the approximate solution, leading to
the system represented by .

Subsequently, we introduced theorems establishing the convergence of the numerical so-
lutions. We conducted a review of three numerical tests to illustrate that the differences
between our previous work [26] and the present paper are minimal. In the numerical exam-
ples, we observed that when a is large, the improved method exhibits superior convergence
and reduced computational time compared to other methods. This underscores the efficiency
of the proposed approach.
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Annorarus

Haima rimasuas TeJIb — 3HAYUTEJIbHO MMOBBICUTH BLIYUCIUTEC/IHHYIO S(b(l)eKTI/IBHOCTb 1 MUHUMU3U-
POBaTH UCIIOJIB30BAHUE IIaMATH, YTO OYCHDL BaKHO B CJIydae DOJIBIIINAX HHTEPBAJIOB HHTEIPUPOBAHNA.
Craugana omnpegesdeM JOCTATOYHbIC YCJIOBUA, KOTOPBIC MaPaHTUPYIOT CYIIECTBOBAHNE 1 €JUHCTBEH-

HOCTL peElIeHHdd. Ham nmosbrit METOA OCHOBaH Ha IIOAXOJE C OAHUM ypaBHEHHEM, OH 3aKJIIOIaeTCHd
x

B HCIO/Ib30BAaHNU [peoOpa30BaHusd II€PEeMEHHOH, Ipe/cTaBIeHHoro Kak v(z) = v(a) + / v(t)dt,

a
JIOTIOJTHEHHOTO TIpaBujioM Tpaneruu. OHO UTPAeT KJIUEBYIO POJIb B TPeodPA30BAHNH HAIIETO YDPaB-

HEHUA B anre6pa1/1quKy}o CUcCTemMy, TeM CaMbIM yMEHBITadA KOJINYIECTBO ypaBHeHI/IfI N HEM3BECTHBIX
B JUCKpeTHOU cucteMe. B ocHOBe 3TuX pazpaboTok JekuT dhyHIaMeHTAJIbHOe TpeboBaHue, TapaH-
TUPYIOIIEe CYIECTBOBAHNE W eNWHCTBEHHOCTH pernerus. Vcmomp3ys 910, Mbl (POPMYIUPYEM TEO-
PEMBI, KOTOpBIE YCTAHABIUBAIOT CXOIUMOCTH NPUOJIMIKEHHOTO peIleHus, 0becievunBas CONIacOBaH-
HOCTb MEXKY aHAJUTUYICCKUMU 1 YUCJICHHBIMU UCCIECIOBAHUAMU. B KOHECYHOM MTOI'€ MbI IIPOBOANM
CPaBHUTEJIbHBIN aHAJIN3 MEXKJIy Halllell HOBOI BBEJIEHHOW TEXHUKOW U CTAPBIM METOIOM. DTO CpaB-
HEHUE CJIy2KUT OJjd TOTO, LITO6I)I TOAYEPKHYTH CYIIECTBCHHYIO BbIYUC/IUTC/IbHYTO SCbeeKTI/IBHOCTb
U COKPAINEHHOE UCIIOJIh30BAHNE TTAMSTH HA JUCKE, IIPeJJIaracMble Hallleil NHHOBAMOHHON 1nudpo-
BOI CTPYKTYPOil.

Karuesnvie caosa: narerpompuddeperiimaibable YpaBHEHUS, KBAIPATYPHBII METOJ, UUCIEHHOE
MHTEI'PUPOBAHUE.

Humuposanue: Cenbu C., Taup B., T'e6ban X. Meros omHOTO ypaBHEHUS [JIsT JIMHEHHBIX

uHTerpoauddepeHnuaIbHbIX  ypapHenuit Ppearosbma. BrerancanrtesnbHble  TexHOJOTHEH. 2024;
29(5):55-71. DOI:10.25743 /ICT.2024.29.5.006. (Ha aursiuiickom)
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