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В работе рассмотрен метод сглаживания для конечной задачи минимакса, которая

возникает при применении метода экспоненциального штрафа к его эквивалентной

нелинейной программе. В результате исходная задача может быть решена с помощью

безусловной минимизации гладкой функции. Для полноты приведен формальный вы-

вод для экспоненциальных функций штрафа и описаны некоторые важные приложе-

ния результирующих гладких функций. Предложенные результаты демонстрируют

простоту и эффективность данного подхода.

Introduction

Consider the finite min-max problem (P) defined as

min
x∈Rn

φ(x), (1)

where
φ(x) := max

1≤i≤m
{gi(x)}. (2)

In this work, we assume that all component functions gi(x) : R
n → R, i = 1, 2, . . . ,m are

continuously differentiable. Nevertheless, this is a typical non-smooth optimization problem
due to the nondifferentiability of the max function φ(x).

The problem defined in (1) is one frequently arisen in scientific and engineering computing
[1 – 3], due to its wide applications such as data fitting, game theory and economic equilibria.
Therefore, the study on its robust and efficient algorithms becomes a prolonged research subject.

One way to deal with this problem is to transform it into an equivalent nonlinear program-
ming problem (NLP)

min
w,x

w

s.t. gi(x) − w ≤ 0, i = 1, 2, . . . ,m,
(3)
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which is then solved by certain minimization algorithms [4 – 8]. In contrast, smoothing tech-
niques [9 – 11] try to find a smooth function to approximate the non-smooth max-type function.
The latter approach has apparent advantages over the former one because it is not only
applicable to solving the min-max problem (P) itself, but also applicable to a variety of
contexts, especially in the recent hot smoothing algorithms for the solution of complementarity,
variational inequality and MPEC (mathematical programming with equilibrium constraints)
problems.

The main purpose for this paper is to show that a smooth function with a uniform approxi-
mation property could be derived by means of an ordinary penalty method. This approach is
surprisingly simple, but is not appeared in the literature from our search. At the same time, this
paper is to show that a penalty function could be “derived”, not just understood with “naive”
sense. Such an approach could provide a new insight into penalty function methods. To this
end, we add a formal derivation for the exponential penalty functions before applying it to the
min-max problem.

The paper is organized as follows. Section 1 is devoted to deriving exponential penalty
functions for the inequality constrained optimization problem by Lagrangian perturbation. In
Section 2, we exploit the exponential penalty methods to solve the finite min-max problem (P)
and discuss some properties of resulted smooth functions. In Section 3, several important
applications of the smooth functions are described. In Section 4, we give a very simple algorithm
and report the numerical results for some test problems from the literature. Finally, brief
conclusions are drawn in Section 5.

1. Derivation of exponential penalty functions

The exponential penalty approach is one of the important optimization methods both in
theoretical and algorithmic developments as an instrument for converting constrained problems
into unconstrained ones. Nevertheless, it is rarely to make inquires about the origin of exponential
penalty functions and their relations to other means that play the same role, for example
the Lagrangian function. By deriving the exponential penalty functions through a Lagrangian
perturbation procedure in this section, we are intended to establish a formal link of exponential
penalty functions with Lagrangian function and give a new insight into exponential penalty
methods.

Consider a general inequality constrained optimization problem (GNLP)

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m,
(4)

where f(x) and gi(x), i = 1, 2, . . . ,m are assumed to be continuously differentiable functions
from R

n to R.
As a matter of fact, the above problem (GNLP) can be equivalently written as an uncons-

trained optimization problem in the following form:

min
x∈Rn

Ψ(x) := sup
λ≥0

L(x,λ) (5)

due to the following fact

sup
λ≥0

L(x,λ) =

{

f(x) x ∈ X,
+∞ x 6∈ X,
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where L(x,λ) is the ordinary Lagrangian

L(x,λ) := f(x) +
m

∑

i=1

λigi(x), ∀x ∈ R
n,λ ∈ R

m
+

and X :=
{

x ∈R
n
∣

∣gi(x) ≤ 0, i = 1, 2, . . . ,m
}

represents the feasible set of (GNLP). Although
the formulation of (5) is very attractive, unfortunately, the linear form of L(x,λ) in dual
variable λ prevents from doing this to get a continuous and analytical solution λ(x).

To circumvent this drawback, we introduce an entropy function ξ(λ) =
∑m

i=1 λi ln λi as a
perturbing term into the Lagrangian L(x,λ) to formulate a perturbed problem

sup
λ≥0

{

Lp(x,λ) := f(x) +
m

∑

i=1

λigi(x) − p−1ξ(λ)
}

. (6)

For this perturbation problem, we have the following theorem:
Theorem 1. The perturbation problem (6) yields a smooth function Ψp(x) that pointwisely
approximates to Ψ(x) in R

n as p→+∞, so that the original problem (GNLP) is transformed
into a smooth unconstrained optimization problem

min
x∈Rn

Ψp(x). (7)

Proof. As the entropy function ξ(λ) is strictly convex in the closed convex set R
m
+ and coercive,

i.e., for every sequence {λk} ∈ R
m
+ such that ‖λk‖ → +∞, it always holds

lim
k→∞

ξ(λk) = +∞

the problem (6) must have a unique solution λ(x, p) for any x ∈ R
n and the objective function

Lp(x,λ) attains a finite maximum at this point, thereby defines a function of variable x

Ψp(x) := L
(

x,λ(x, p)
)

= f(x) + p−1ξ∗
(

pg(x)
)

, (8)

where the last equality comes from the definition of conjugate function, ξ∗ is the convex

conjugate of ξ and g(x) =
(

g1(x), g2(x), . . . , gm(x)
)T

. Since ξ(λ) is a Legendre type convex
function, i.e., ξ ∈ L(Rm

+ ), it follows from [12] that ξ∗ ∈ L(int(dom ξ∗)) is also a Legendre type
convex function. Thus, considering Ψp(x) is a real-valued function on R

n, we can infer that
Ψp(x) is smooth on the whole space R

n.
Furthermore, ξ(λ) is low-bounded in R

m
+ and ξ(0) = 0, so there holds

0 ≤ sup
λ≥0

{

m
∑

i=1

λigi(x) − p−1ξ(λ)
}

≤ sup
λ≥0

{

m
∑

i=1

λigi(x)
}

+
m

pe
. (9)

In view of (5), this demonstrates

lim
p→+∞

Ψp(x) = Ψ(x), ∀x ∈ X.

However, for x 6∈ X, i.e., there at least exists an index j such that gj(x) > 0,

Ψp(x) = f(x) + p−1
∑

i6=j

sup
λi≥0

{

λi

(

pgi(x)
)

− λi ln λi

}

+

+p−1 sup
λj≥0

{

λj

(

pgj(x)
)

− λj ln λj

}

,
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where as p → +∞, the last term in the right hand of last equation approaches to +∞ due to
the boundedness of ξ(λ), and the second term to 0 in terms of (9). Hence, Ψp(x) approximates
pointwise to Ψ(x) as p → +∞.
This completes the proof. ¤

By a simple computation, ξ∗(λ∗) =
∑m

i=1 exp(λi
∗ − 1). So, following the equation (8), we

have the smooth function Ψp(x) in the following form:

Ψp(x) = f(x) + p−1

m
∑

i=1

exp
[

pgi(x) − 1
]

, (10)

which is just the familiar exponential penalty function. As the unique solution of perturbed
problem (6),

λi(x, p) = exp
[

pgi(x) − 1
]

, i = 1, 2, . . . ,m, (11)

which provides an estimate for the Lagrange multipliers of the original problem (GNLP). Other
exponential penalty functions, up to a constant difference with that given by (10), are often
encountered in the literature and could be similarly derived through slight changes of ξ(λ).

If Kullback — Leibler cross entropy ξ(λ,µ) :=
∑m

i=1 λi ln
λi

µi

is adopted as the perturbing

term, the exponential multiplier penalty function

Ψp(x,µ) = f(x) + p−1

m
∑

i=1

µi exp
[

pgi(x) − 1
]

(12)

can be derived in a very similar manner. The vector µ (≥ 0) of Lagrange multipliers has to be
updated as do the other methods of multipliers.

The above derivation shows that the traditional exponential penalty functions are conjugate
to some specific perturbed Lagrangian functions in nature, and incorporate some excellent
properties such as strict convexity, coercive and barrier role, which play a central role in the
convergence analysis of exponential penalty methods [13, 14].

2. Smoothing methods for the finite min-max problem (P)

Now we are going to the main scheme of this paper, using the exponential penalty functions to
solve the finite min-max problem (P). Here, we apply the exponential penalty function Ψp(x)
given by (10) to its equivalent formulation (NLP), whereby transform the constrained problem
into the following unconstrained one:

min
w,x

Ψp(w,x) = w + p−1

m
∑

i=1

exp
[

p
(

gi(x) − w
)

− 1
]

. (13)

Since Ψp(w,x) is a convex function of variable w for any x∈R
n, the optimality condition for

w to be a solution of (NLP) is

∂Ψp(w,x)
/

∂w = 1 −

m
∑

i=1

exp
[

p
(

gi(x) − w
)

− 1
]

= 0,
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which means the following relationship

w∗ = p−1 ln
m

∑

i=1

exp
[

pgi(x)
]

− p−1 (14)

holds between the optimal variables w∗ and x. Substituting it into Ψp(w,x) to eliminate the
variable w yields

φp(x) := Ψp(w
∗,x) = p−1 ln

m
∑

i=1

exp
[

pgi(x)
]

. (15)

Accordingly, the problem (13), hence the min-max problem (P), reduces to

min
x∈Rn

φp(x) (16)

due to the equivalence between (NLP) and (P). Thus, the original non-smooth problem (P) is
converted into an unconstrained minimization problem with a smooth objective function φp(x).
This greatly facilitates the numerical solution.

Concerning the difference between φ(x) and φp(x), we give the following properties [11]:

1) error bound: φ(x) ≤ φp(x) ≤ φ(x) + ln(m)/p ;

2) monotonicity: φp(x) ≥ φq(x), p ≤ q;

3) approximation: lim
p→+∞

φp(x) = φ(x);

4) convexity: φ(x) is convex if all gi(x), i = 1, 2, . . . ,m are convex.

The above property of uniform approximation ensures that an ε−optimal solution of the min-
max problem (P) can be found by solving the problem (16) as long as p ≥ ln(m)/ε. Meanwhile,
the following formula

λi(x) =
exp

[

pgi(x)
]

∑m

i=1 exp
[

pgi(x)
] , i = 1, 2, . . . ,m

provides an adaptive estimate for Lagrange multipliers of the problem (P) during iterations.
In addition, when applying the exponential multiplier penalty function Ψp(x,µ) defined in

(12) to the problem (NLP), we can obtain, by a similar procedure, another smooth function

φp(x,µ) = p−1 ln
m

∑

i=1

µi exp
[

pgi(x)
]

,

where
∑m

i=1 µi = 1, µi ≥ 0, i = 1, 2, . . . ,m.
Though the smooth functions φp(x) and φp(x,µ) could be derived by some other procedures

(see [9 – 11]), the derivation given in this paper is very elegant and does not resort to any
complex concept.

Compared with φp(x), the smooth function φp(x,µ) has an advantage of avoiding the ill-
conditioning caused when p → +∞, with extra cost of multiplier updates. To our experiences,
however, there exists a “zero” pitfall for using φp(x,µ), which may result in the instability even
premature termination of algorithms at a non-optimal solution. Therefore, use of this smooth
function needs very sophisticated care for algorithmic implementation.
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3. Some applications of smoothing function φp(x)

As aforementioned, the smoothing method has wide applications other than min-max problem.
In this section we describe some applications which are directly or indirectly related to the non-
smooth max function φ(x). By the word “indirectly”, we mean that there are certain problems
where the max function stems from some reformulations to meet theoretical or computational
requirements. In most of circumstances, the smooth functions φp(x) is more tractable than
φp(x,µ) as commented in the end of last section and its appealing features have made it
popular in many recent smoothing algorithms.

3.1. Linear programming

At first, we consider a linear programming problem in Karmarkar’s standard form (KLP):

min
x

{cᵀx : Ax = 0, eᵀx = 1, x ≥ 0},

where c ∈ R
n, e = (1, 1, . . . , 1)ᵀ ∈ R

n, and A ∈ R
m×n is a full row rank matrix with elements

aij, i = 1, 2, . . . ,m, j = 1, 2, . . . , n. It is easy to show that its dual problem (KLD) is

max
z,y

z

s.t. Aᵀy + z ≤ c,

which is in fact the following linear min-max problem

min
y

max
1≤j≤n

{

m
∑

i=1

aijyi − cj

}

and therefore could be solved by the following unconstrained minimization

min
y

p−1 ln
n

∑

j=1

exp
[

p
(

m
∑

i=1

aijyi − cj

)]

.

Both dual variable y(p) and primal variable x(p), as Lagrange multipliers of the dual problem,
recovered from the formula

xj(p) =
exp

[

p
(
∑m

i=1 aijyi − cj

)

]

∑n

j=1 exp
[

p
(
∑m

i=1 aijyi − cj

)

] , j = 1, 2, . . . , n

converge, respectively, to the optimal solutions of dual problem (KLD) and primal problem
(KLP), when the penalty factor p → +∞ (see [14]).

For the standard linear programming problem (LP):

min
x

{cᵀx : Ax = b, x ≥ 0}

and its dual problem (LD):

max
y,s

{bᵀy : Aᵀy + s = c, s ≥ 0},
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where b ∈ R
m, matrix A and vector c are the same as above. The K — K — T conditions for

both primal and dual problems are

Ax = b,
Aᵀy + s = c,
xs = 0,x ≥ 0, s ≥ 0,

(17)

where xs denotes the coordinate-wise product of vectors x and s. With resort to NCP function
min{a, b}, the above complementary conditions can be replaced equivalently by the following
equation

min{xi, si} = −max{−xi,−si} = 0, i = 1, 2, . . . , n,

which is further smoothened to

p−1 ln
[

exp(−pxi) + exp(−psi)
]

= 0, i = 1, 2, . . . , n

through the smooth function φp(x). The resulted smooth system of equations can be solved by
the classical Newton’s method. With such a reformulation, we have developed a primal-dual
non-interior point algorithm.

3.2. Nonlinear programming

Consider the inequality constrained nonlinear programming problem (ICP):

min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, 2, . . . ,m,
(18)

where fi(x) : R
n → R, i = 0, 1, . . . ,m are assumed to be continuously differentiable. The

presence of inequality constraints brings the main difficulty to its solution.
Contrast with general penalty methods that normally require to solve a sequence of unconst-

rained problems, the exact penalty methods need only one unconstrained minimization provided
that the penalty factor exceeds a threshold. This means a lot of savings for computational
efforts. However, smooth exact penalty functions either involve second derivatives or are very
complicated whereas two simple exact penalty functions, L1 and L∞ exact penalty functions,
are not differentiable.

For the L1 exact penalty method, (ICP) is transformed into the following non-smooth
unconstrained optimization problem:

min
x

f0(x) + α

m
∑

i=1

max
{

0, fi(x)
}

,

whose solution becomes exactly optimal for the original problem as long as the penalty parameter
α > max

1≤i≤m
λ∗

i , where λ∗
i , i = 1, 2, . . . ,m, denote the optimal Lagrange multipliers of original

problem (18). For the L∞ exact penalty method, (ICP) is converted to

min
x

f0(x) + α max
{

0, f1(x), · · · , fm(x)
}

and the penalty factor α >
∑m

i=1 λ∗
i is required in this case. Replacing the above max-valued

functions with their smooth substitutes through φp(x), we can get an approximate solution of
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(ICP) by solving the smooth optimization problem

min
x

f0(x) +
α

p

m
∑

i=1

ln
[

1 + exp
(

pfi(x)
)

]

(19)

or

min
x

f0(x) +
α

p
ln

{

1 +
m

∑

i=1

exp[pfi(x)]
}

. (20)

Thus, the smooth function φp(x) makes it possible to solve the nonlinear programming problem
with these non-differentiable exact penalty functions in practice. Following this line, we have
proposed a quasi-exact penalty function method for solving (ICP) in [15].

Another way to resolve the difficulty of inequality constraints is that all constraints of (ICP)
are replaced by a single constraint, through the maximum operator, to formulate an equivalent
problem

min
x

f0(x),

s.t. φ(x) := max
1≤i≤m

{fi(x)} ≤ 0
(21)

and then the non-smooth φ(x) is replaced by its uniform approximation φp(x). As such, the
problem (ICP) with multiple constraints can be approximately solved by solving the following
singly-constrained smooth one:

min
x

f0(x),

s.t. φp(x) ≤ 0.
(22)

In [16] such an approach is termed as the aggregate function method.

3.3. Complementarity problem

Consider the vertical nonlinear complementarity problem (VNCP):

x ≥ 0, F1(x) ≥ 0, · · · , Fm(x) ≥ 0, xj

m
∏

i=1

F j
i (x) = 0,

where Fi(x) : R
n → R, i = 1, 2, . . . ,m are vector-valued functions and F j

i (x) denotes the jth

component of Fi(x). Obviously, in a special case of m = 1, the problem (VNCP) reduces to a
general nonlinear complementarity problem (NCP):

x ≥ 0, F1(x) ≥ 0, xᵀF1(x) = 0.

It is easy to verify that the problem (VNCP) is equivalent to the following non-smooth
equations:

min{xj, F
j
1 (x), . . . , F j

m(x)} =

= −max{−xj,−F j
1 (x), . . . ,−F j

m(x)} = 0, j = 1, 2, . . . , n.

Once again, one can replace the maximum operator here by smoothing approximation φp(x)
and convert it into a smooth system of equations. A non-interior continuation method for
generalized linear complementarity problems is developed in [17].
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3.4. Box constrained variational inequality problem (BVIP)

This problem is to find an x ∈ [l,u] such that

(y − x)ᵀF (x) ≥ 0 ∀y ∈ [l,u],

where [l,u] is a box constraint in R
n with l ≤ u. It is easy to show that the problem (BVIP)

is equivalent to the system of equations:

x − mid{l,u,x − F (x)} = mid{x − l,x − u, F (x)} = 0,

where the mid operator mid{a, b, c} can be represented by

mid{a, b, c} = a + b + c − min{a, b, c} − max{a, b, c}.

Here the max and min operators could be replaced by smoothing approximations with φp(x)
in appropriate forms.

Sample applications given above are all hot topics of recent research. In fact, the smooth
function φp(x) has been extensively used in other areas such as multi-objective optimization,
bi-level programming, random programming, etc.

4. Algorithmic implementation and numerical results

It should be stressed that, with our methods, the solution of min-max problem (P) becomes
extremely simple because it is reduced to unconstrained minimization problem (16) with smooth
function φp(x) and φp(x,µ). Thus, any efficient unconstrained optimization algorithms (see
BFGS) can be applied to this solution. This will greatly facilitate practical usage for engineers.
The computations of given examples serves as an illustration for the simplicity, efficiency,
stability, high accuracy and easy implementation of our algorithm. In our computations, the
parameter p is deliberately set at a fixed constant for three reasons. At first, it is to show
that a high accurate solution can be found by a single minimization with a sufficiently large p.
Secondly, it is to demonstrate that the ill-conditioning of φp(x) with a quite large p is not as
severe as the theory claims. Third is to clarify a misunderstanding on exponential manipulations
involved in the function φp(x) and its gradient ∇φp(x). In fact, the computer overflow could
be completely eliminated from computing through the following conversions:

φp(x) = φ(x) + p−1 ln
m

∑

i=1

exp
[

p
(

gi(x) − φ(x)
)

]

,

∇φp(x) =
m

∑

i=1

λi∇gi(x),

where φ(x) denotes the maximum among all the component functions at current iteration and

λi =
exp

[

p
(

gi(x) − φ(x)
)

]

∑m

i=1 exp
[

p
(

gi(x) − φ(x)
)

] .
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At this point, it should be noted that our smoothing algorithms have a fundamental distinction
with nonlinear re-scaling algorithms proposed by Polyak [18], where the finite min-max problem
(P) is replaced by unconstrained minimization of

L(x,µ, p) = p−1

m
∑

i=1

µi

[

exp(pgi(x)) − 1
]

,

which is defined as Lagrangian function for an equivalent problem obtained by certain exponen-
tial transformations on original constraint functions. Although both kinds of algorithms have
mimic objective functions and same optimal solution x∗, the overflow of exponential operations
is hard to be avoided without our logarithmic operator in L(x,µ, p). Furthermore, the “zero”
pitfall on multiplier updates will also occur when using L(x,µ, p), leading to premature termina-
tion of algorithms. In the computation of all examples below, we only use the smooth function
φp(x) which has favorable properties and is the most tractable one from our experiences.

Based on the above fact, we establish a simple algorithm for solving the min-max problem
(P) as follows:

Algorithm 1

(S.0): Given any initial point x0 and set p = ln(m) · (1.0e+5).
(S.1): Apply BFGS algorithm to performing a unconstrained minimization of φp(x) and let

x̂ denote the minimizer.
The examples given below are all taken from some renowned authors’ work, where they

are calculated by some sophisticated algorithms. Preliminary numerical results of Algorithm 1
are reported in sequel, where x∗ denotes the optimal point of problem and x̂ is the minimizer
yielded by the above algorithm.

Example 1[19]

g1(x) = x2
1 + x4

2, g2(x) = (2 − x1)
2 + (2 − x2)

2, g3(x) = 2 exp[−x1 + x2],
x∗ = (1.13904, 0.89956), φ(x∗) = 1.95222, x0 = (1,−0.1),
x̂ = (1.139037261, 0.89955975), φp(x̂) = 1.95223071.
Example 2[19]

g1(x) = x4
1 + x2

2, g2(x) = (2 − x1)
2 + (2 − x2)

2, g3(x) = 2 exp[−x1 + x2],
x∗ = (1, 1), φ(x∗) = 2, x0 = (2, 2),
x̂ = (1.00000105, 0.99999750)T, φp(x̂) = 2.0.
Example 3[19]

g1(x) = 5x1 + x2, g2(x) = −5x1 + x2, g3(x) = x2
1 + x2

2 + 4x2,
x∗ = (0,−3), φ(x∗) = −3, x0 = (1, 1),
x̂ = (0.00000000,−3.00000000), φp(x̂) = −2.99999000.
Example 4[19]

g1(x) = x2
1 + x2

2, g2(x) = g1(x) + 10(−4x1 − x2 + 4), g3(x) = g1(x) + 10(−x1 − 2x2 + 6),
x∗ = (1.2, 2.4), φ(x∗) = 7.2, x0 = (−1, 5),
x̂ = (1.20000021, 2.40000042), φp(x̂) = 7.20000502.
Example 5[19]

g1(x) =
x1 + x2yi

1 + x3yi + x4y2
i + x5y3

i

− eyi (1 ≤ i ≤ 21),

g2(x) = −
( x1 + x2yi

1 + x3yi + x4y2
i + x5y3

i

− eyi
)

(22 ≤ i ≤ 42),

yi = −1 + 0.1(i − 1),
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x∗ = (0.999878, 0.253588,−0.746608, 0.245202,−0.037490),
φ(x∗) = 0, x0 = (0.5, 0, 0, 0, 0),
x̂ = (0.99987755, 0.25362535,−0.74656767, 0.24515748,
− 0.03747228), φp(x̂) = 0.00012714.
Example 6[19]

φ(x) = −x1 + 2(x2
1 + x2

2 − 1) + 1.75 max
1≤i≤m

{gi(x)},

g1(x) = x2
1 + x2

2 − 1, g2(x) = −(x2
1 + x2

2 − 1),
x∗ = (1, 0), φ(x∗) = −1, x0 = (−1,−1),
x̂ = (0.99999471, 0.00000000), φp(x̂) = −0, 99999000.
Example 7[2]

g1(x) = x2
1 + x2

2 + x1x2, g2(x) = −g1(x), g3(x) = sin(x1),
g4(x) = −g3(x), g5(x) = cos(x2), g6(x) = −g5(x),
x∗ = (0.453296,−0, 906592), φ(x∗) = 0.61643246, x0 = (3, 1),
x̂ = (0.45329553,−0.90659105), φp(x̂) = 0.61643610.
Example 8[2]

g1(x) = (1/2)[x1 + 10x1/(x1 + 0.1) + 2x2
2],

g2(x) = (1/2)[−x1 + 10x1/(x1 + 0.1) + 2x2
2],

g3(x) = (1/2)[x1 − 10x1/(x1 + 0.1) − 2x2
2],

x∗ = (0, 0), φ(x∗) = 0, x0 = (3, 1),
x̂ = (−0.00073970, 0.19207034), φp(x̂) = 0.00000631.
Example 9[2]

g1(x) =
[

x1 −
√

x2
1 + x2

2 cos
(
√

x2
1 + x2

2

)]2
+ 0.005(x2

1 + x2
2),

g2(x) =
[

x2 −
√

x2
1 + x2

2 sin
(
√

x2
1 + x2

2

)]2
+ 0.005(x2

1 + x2
2),

x∗ = (0, 0), φ(x∗) = 0, x0 = (1.41831,−4.79462),
x̂ = (0.00000152, 0.00000000), φp(x̂) = 0.00001000.
Example 10[8]

g1(x) = exp[x2
1/1000 + (x2 − 1)2],

g2(x) = exp[x2
1/1000 + (x2 + 1)2],

x∗ = (0, 0), φ(x∗) = e, x0 = (1.5, 0.05),
x̂ = (0.00000002, 0.00000000), φp(x̂) = 2.71829183.
Example 11[8]

g1(x) = g(x + 2e2), g2(x) = g(x − 2e2),
g(x) = exp[0.0001x2

1 + x2
2 + x2

3 + 2x2
4 + x2

5 + · · · + x2
10],

e2 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0),
x∗ = (0, . . . , 0), φ(x∗) = 54.591846, x0 = (100, 0.1, . . . , 0.1),
x̂ = (0.00000000,−0.00000000,−0.00000000,−0.00000000,
0.00000000, 0.00000000, 0.00000000,−0.00000000,
− 0.00000000, 0.00000000), φp(x̂) = 54.59816003.
Example 12[8]

gi(x) =
11

∑

j=1

1

j − 1 + i
exp[xi − sin(i − 1 + 2(j − 1))]2, (1 ≤ i ≤ 10),

x∗ = (0.012427, 0.290377,−0.33466,−0.126514, 0.233137,
− 0.276568,−0.166612, 0.229147,−0.185807,−0.170438,
0.240165), φ(x∗) = 3.703483, x0 = (1, 1, . . . , 1),
x̂ = (0.01244922, 0.29069248,−0.33460669,−0.12644597,
0.23281000,−0.27653988,−0.16658122, 0.22909022,−0.18291420,
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− 0.17044129, 0.24017750), φp(x̂) = 3.70348527.

Example 13[8]

t = x1 − (x4 + 1)4,
g1(x) = t2 + (x2 − t4)2 + 2x2

3 − 5t − 5(x2 − t4) − 21x3 + 7x4,
g2(x) = g1(x) + 10

[

t2 + (x2 − t4)2 + x2
3 + x2

4 + t − (x2 − t4) + x3 + x4 − 8
]

,
g3(x) = g1(x) + 10

[

t2 + 2(x2 − t4)2 + x2
3 + 2x2

4 − t − x4 − 10
]

,
g4(x) = g1(x) + 10

[

t2 + (x2 − t4)2 + x2
3 + 2t − (x2 − t4) − x4 − 5

]

,
x∗ = (0, 1, 2,−1), φ(x∗) = −44, x0 = (0, 0, 0, 0),
x̂ = (−0.00000004, 0.99999996, 1.99999986,−0.99999980),
φp(x̂) = −43.9999942.

Conclusion

In this paper we deals with a long-last research topic, the min-max problem. Due to its wide
applications, many algorithms have been proposed. From previous sections, however, it is clear
that the present algorithm is the simplest one compared with others and has other features
favorable in numerical computation. Contributions of this work may be summarized in several
aspects:

1. The derivation of exponential penalty function Ψp(x) and the exponential multiplier
penalty function Ψp(x,µ) through our Lagrangian perturbation approach helps with establishing
a formal link between two different kinds of important functions, Lagrangian and penalty
functions. This does not only give a new insight into the penalty function methods, but also
suggests a way to construct useful penalty functions.

2. The derivation of smooth functions φp(x) and φp(x,µ) for the finite min-max problem
(P) through directly applying ordinary exponential penalty functions to its equivalent problem
(NLP) is very simple and clean.

3. The algorithm based upon the smooth function φp(x) makes it very simple to solve the
non-differentiable min-max problem. It is superior to other algorithms, for instance nonlinear
re-scaling.

4. The description for some applications of smooth functions may have effect on widening
reader’s fields of vision.
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