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Работа посвящена приложениям теории совместно диссипативных операторов к

интервальному анализу и химической кинетике. Главным объектом исследования яв-

ляется нежелательный “эффект упаковывания”, широко проявляющийся при числен-

ном решении на ЭВМ эволюционных дифференциальных уравнений с интервальны-

ми параметрами. Основной результат работы — доказательство типичности эффекта

упаковывания в малом, что объясняет низкую эффективность традиционных поша-

говых методов численного решения интервальных дифференциальных задач.

Introduction

For solving systems of ordinary differential equations different classes of numerical methods
with guaranteed error estimation including interval methods are used. In solving a system by an
interval method the approximate solution at any considered moment of time t represents a set
(called interval) containing the exact solution at the moment t. The detailed account of interval
methods can be found in monographs by R. Moore [1] and S.A. Kalmykov, Yu. I. Shokin,
Z.Kh. Yuldashev [2].

As a rule, all kinds of rectangular parallelepipeds with sides parallel to coordinate axes [1, 2]
are used as intervals, less frequently — ellipsoids [3], balls of fixed norm [4, 5] etc.

One of shortcomings of stepwise interval methods is the following. The intervals determining
the solution of a system are often expanded in the course of time irrespective of the method and
step used. The simplest example of strong expansion of intervals during a short time, belonging
to R. Moore, is given in [1]. The phenomenon of interval expansion, called the wrapping effect,
essentially decreases the efficiency of interval methods. In the present work the notions of
the interval and the wrapping effect are formalized and the wrapping effect is studied for
autonomous systems on positively invariant convex compact.
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Formally, one can get rid of the interval expansion for any globally stable system (i. e. such
a system any solution of which is stable after Lyapunov). To demonstrate that, let us consider
a smooth autonomous system:

dx

dt
= f(x) (1)

on the positively invariant compact B ⊂ Rn. We construct a metric ρ on the set B, assuming
for any x ∈ B, y ∈ B:

ρ(x, y) = sup
t≥0

‖x(t) − y(t)‖,

where x(t), y(t) are solutions of the system (1) with the initial conditions x(0) = x, y(0) = y.
This metric is constricting for (1), i. e., for any pair x(t), y(t) of the solutions of (1) with the
initial conditions in B

ρ(x(t), y(t)) ≤ ρ(x(s), y(s)) at t ≥ s.

The metric ρ is topologically equivalent to norm if and only if the system (1) is globally stable
in B. If one considers as intervals all balls of the metric ρ, then in a definite sense the wrapping
effect is absent. That is, there is no interval expansion when constructing the exact interval
solution with any step h > 0. The exact interval solution of X(t) is defined in the following way:
X(0) = X0, where X0 is the initial interval with the center at the point x(0) = x0; X((n+1)h)
is the minimal interval with the center at the point x((n + 1)h) containing ThX(nh), where
Tt is the transformation of the phase flow of (1) during the time t ≥ 0. Indeed, the radius
X((n + 1)h) does not exceed the radius X(nh) at any n.

If the system is not globally stable, then metric is not topologically equivalent to the norm.
It means that small, in usual sense, intervals became large in the metric ρ. This circumstance
makes one refuse from consideration of similar metrics. Moreover, if the system (1) is absolutely
unstable (for example, a system with mixing), then there is no reasonable way to get rid of the
wrapping effect.

Unfortunately, the method that we describe to eliminae the wrapping effect for globally
stable system is non-constructive. That can be demonstrated as follows: for constructing the
constricting metric ρ one must know all exact solutions of the system (1). But then it is
unreasonable to solve the system numerically. We must have constructively verifiable conditions
of absence of the wrapping effect and a way of construction of corresponding intervals. This is
what we deal with in the present paper. The conditions of absence of the wrapping effect are
of local character and formulated in terms of Jacobi matrices of the system. Except that the
causes of frequent appearance of the wrapping effect will be pointed out.

The authors are grateful to Sergey Shary for fruitful discussions and valuable comments.

1. Interval spaces and the wrapping effect

1.1. Interval Spaces

Before starting to study the wrapping effect, it is necessary to define what we mean by intervals.
Generalizing some well-known constructions, we give the following definition.

Definition 1. We call the family J of convex compacts in Rn the interval space (and its
elements – intervals), if it satisfies the following conditions:

a) J is closed with respect to multiplication by non-negative scalars:

if W ∈ J, α ≥ 0, then αW = {αx | x ∈ W} ∈ J;
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b) J is closed with respect to intersection:

if W1 ∈ J, W2 ∈ J, then W1 ∩ W2 ∈ J;

c) J is closed according to Hausdorff (i. e. in the Hausdorff metric);
d) if W ∈ J, W 6= {0}, then 0 ∈ riW .
Remind [6] that the Hausdorff metric on the set of all compacts in Rn is introduced as

follows:
ρH(x, y) = max{max

x∈X
min
y∈Y

‖x − y‖, max
y∈Y

min
x∈X

‖x − y‖},

where x, y are the compacts in Rn, ‖.‖ is a fixed norm in Rn. All Hausdorff metrics in Rn are
equivalent.

Further on by limHi→∞ Wi we denote the Hausdorff limit of the sequence {Wi}
+∞
i=1 at i → ∞.

Below, we give several examples of interval spaces.
Example 1. J is the set of all convex compacts symmetric with respect to 0. It satisfies all

the properties from a) to d).
Example 2. J is the set of all symmetric with respect to 0 rectangular parallelepipeds

(including non-singular), i. e. sets of the form

{x = (x1, . . . , xn) ∈ R
n | |xk| ≤ ak (k = 1, . . . , n)},

where ak ≥ 0 (k = 1, . . . , n). It satisfies the properties a), b) and d).

Let now {Wi}
∞
i=1 ⊂ J, limHi→∞ Wi = W with a

(i)
k being ak, corresponding to Wi.

If ρH(Wi,W ) < ε, then W ⊂ Wi + Pε, Wi ⊂ W + Pε, where Pε = {x ∈ Rn | |xk| ≤ ε (k =
1, . . . , n)} (here a norm in the definition of the Hausdorff metric is the l∞-norm). Then for any
x ∈ W

|xk| ≤ a
(i)
k + ε (k = 1, . . . , n)

is true and for any x ∈ Wi

|xk| ≤ limi→∞a
(i)
k ;

lim
i→∞

a
(i)
k ≤ limi→∞a

(i)
k ,

i. e. there exist the limits
ãk = lim

i→∞
a

(i)
k (k = 1, . . . , n).

If x ∈ W , then
|xk| ≤ lim

i→∞
a

(i)
k (k = 1, . . . , n). (2)

Let bi =min1≤k(a
(i)
k /ãk). If for some x∈Rn the inequalities (2) are satisfied, then limi→∞ bi =1.

Obviously, x(i) = bix ∈ Wi, i. e. there exists such a subsequence of {x(i)}∞i=1 that x(i) ∈ Wi,
x=limi→∞ x(i). Hence W ={x ∈ Rn | |xk| ≤ ãk (k=1, . . . , n)}, i. e. W ∈ J and the property c)
is also satisfied.

In constructing interval methods of solving different problems it is, as a rule, the considered
interval space that is made use of [1, 2].

Example 3. Let ‖.‖ be a norm in Rn, Шr = {x ∈ Rn | ‖x‖ ≤ r}, where r ≥ 0. Let

J = {Шr| r ≥ 0},

i. e. J is the set of all closed balls (further on we omit the word “closed") of the norm. All the
properties from a) to d) are satisfied. These interval spaces are used, for example, in [4, 5].
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Example 4. The construction of example 3 can be generalized as follows. Let ‖.‖1, . . . , ‖.‖m

be the finite set of norms in Rn,

Ш(k)
rk

= {x ∈ R
n | ‖x‖k ≤ rk (k = 1, . . . ,m)}

where rk ≥ 0 (k = 1, . . . ,m) and

Wr1,...,rm
=

⋂

1≤k≤m

Ш(k)
rk

.

Let J = {Wr1,...,rm
| rk ≥ 0(k = 1, . . . ,m)}. Obviously, J possesses the properties a), b), and d).

Note that the same element of J can be associated with different sets of {rk}. To demonstrate

that, let m = 2, supx 6=0(‖x‖2/‖x‖1) = C. Then Ш
(1)
1 = W1,C′ , where C ′ is any number not less

than C. Also, even if one of rk is equal to 0, then

Wr1,...,rm
= {0}.

To each compact W ⊂ Rn can be juxtaposed the set

{rk(W )}m

k=1 | rk(W ) = max
x∈W

‖x‖k (k = 1, . . . ,m).

If W ∈ J then W = Wr1
∩ . . . ∩ Wrm

.
Let now the sequence {Wi}

∞
i=1 converge according to Hausdorff to the compact W , with

Wi ∈ J for all i. Similarly to example 2, from the inclusions

Wi ⊂ W + Ш(k)
ε , W ⊂ Wi + Ш(k)

ε

satisfied for each ε > 0 for all i > i0(ε) derive the existence of the limits:

r̃k = lim
i→∞

rk(Wi) (k = 1, . . . ,m)

and conclude that
W = Wr̃1,...,r̃m

,

i. e. W ∈ J, and the property c) is satisfied.
Example 5. Let Q be a compact convex body without symmetry center (for instance, a

triangle in R2), 0 ∈ int Q. Assume

J = {αQ | α ≥ 0}.

J possesses the properties from a) to d).
Remark 1. Example 5 can be generalized. For this purpose it is necessary to consider

compact convex bodies Q1, . . . , Qm, the interior of each of them contains 0, and to take as J a
family of all the sets of the form

⋂
1≤k≤m αkQk where αk ≥ 0 (k = 1, . . . ,m).

1.2. Dissipative Operators

In this section the properties of the operators dissipative with respect to compact are studied.
First, let remind some notations.
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The affine hull of the convex set W is denoted by Aff W , the relative interior W (the interior
of W in Aff W ) is denoted by riW , the relative boundary of W (the boundary of W in Aff W )
is denoted by r ∂W . For the boundary of the set X we use the notation ∂X, int X — for the
interior of X, co X — for the convex hull of X. By the sum of the sets of X and Y from Rn we
mean the set {x + y | x ∈ X, y ∈ Y }, by I — the unit operator.

Let us introduce a new notion.
Definition 2. The linear operator A in the space Rn is called dissipative with respect to

the family of sets {Wν} ⊂ Rn if every set Wν is positively invariant with respect to the system

dx

dt
= Ax. (3)

In other words, every Wν is invariant with respect to the semi-group of the operators
exp(At) (t ≥ 0).

Below we consider operators dissipative with respect to families of convex compacts. In
particular, the operator is dissipative with respect to the families of all balls of some norm (for
this, dissipativity with respect to only one ball is sufficient) if and only if ‖ exp(At)‖ ≤ 1 at all
t ≥ 0. Thus, in this case we come to the known definition of dissipativity with respect to the
norm [7].

The set of all operators dissipative with respect to {Wν} is denoted by K({Wν}).
Remark 2. If an operator is dissipative with respect to the family of compacts and the

interior of at least one of them is not empty, then it is dissipative with respect to some norm.
Indeed, any symmetric with respect to 0 compact convex body is a ball of some norm (see,

for example, [7]). Choose as a ball the following set:

S = co {W ∪ (−W )} (4)

where W is any set of the considered family of {Wν}, for which int W 6= ∅.
However, if W is a compact and the operator is dissipative with respect to the norm whose

ball is S (4), then it does not yet mean that the operator is dissipative with respect to W (see
also example 8).

Remark 3. From the invariance of a family of compacts with respect to the linear operator
follows the invariance of the Hausdorff closure (i. e. closure in the Hausdorff metric) of this
family. Therefore from dissipativity of the operator with respect to the family of compacts
follows the dissipativity with respect to Hausdorff closure of this family.

Let W be a convex compact in Rn with 0 ∈ ri W . In this case Aff W is a linear subspace,
and if the operator A is dissipative with respect to W , then Aff W is invariant with respect
to A. Introduce the following functional on the subspace L(W ) of the space L(Rn) (of linear
operators in Rn), consisting of the operators, with respect to which Aff W is invariant:

µW (A) = sup
x∈W

µW (Ax). (5)

Here µW is the Minkowski functional of the set W (defined, for example, [8]) in the subspace
Aff W .

It is easy to see that A ∈ K(W ) if and only if

µW (exp(At)) ≤ 1

for all t ≥ 0.
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In particular, the operator A ∈ L(W ) is strongly dissipative with respect to convex compact
W if exists such ε > 0 that µW (exp(At)) ≤ exp(−εt) at all t ≥ 0. In general, the operator A is
strongly dissipative with respect to convex compact W if and only if A + εI ∈ K(W ) for some
ε > 0.

If W is a ball of the norm ‖.‖, then strong dissipativity with respect to W means the
existence of such ε > 0 that ‖ exp(At)‖ ≤ exp(−εt) for all t ≥ 0. We come to the definition of
stable dissipativity with respect to the norm [11, 12, 19].

Introduce in L(Rn) the following functional:

γW (A) = lim
h→+0

µW (I + hA) − 1

h
.

In the case, when W is a ball of some norm (i. e. µW is a norm), arrive at the known definition
of the logarithmic Lozinsky norm [9, 10].

Lemma 1. The operator A ∈ L(Rn) is dissipative (strongly dissipative) with respect to W ,
if and only if the inequality γW (A) ≤ 0 (γW (A) < 0) is satisfied.

Proof. Sufficiency. The following inequality is obtained in [9]

‖ exp(At)‖ ≤ exp(γ(A)t)

where γ(A) is the Lozinsky norm of the operator A, corresponding to the norm ‖.‖. By literal
repetition of the reasoning from [9] (with a substitution of the norm by Minkowski functional),
one can obtain the inequality

µW (exp(At)) ≤ exp(γW (A)t)

for all t ≥ 0, from which immediately follows the sufficiency.
Necessity. Evidently,

µW (exp(At)) = µW (I + At) + o(t) (t → 0).

Therefore,

γW (A) = lim
h→+0

µW (eAh) − 1

h
.

Let ε ≥ 0. If µW (exp(At)) ≤ exp(−εt) at all t ≥ 0, then

γW (A) ≤ lim
h→+0

exp(−εh) − 1

h
= −ε,

which proves the necessity. The lemma is proved.
Assign a relatively open convex cone Qx(W ) to every point x ∈ r ∂W according to the rule:

y ∈ Qx(W ) if and only if there exists such ε > 0 that

x + εy ∈ ri W.

Lemma 2. For strong dissipativity of A with respect to convex compact W it is necessary
and sufficient that for every point x ∈ r ∂W the inclusion

Ax ∈ Qx(W )



22 A.N. Gorban, Yu. I. Shokin, V. I. Verbitskii

be true. For dissipativity of A with respect to W it is necessary and sufficient that for every
point of X ∈ r ∂W the inclusion

Ax ∈ Qx(W )

be true.
Proof. Note that the operator A is strongly dissipative with respect to W if and only if there

exists such t0 > 0 that µW (I+At0) < 1. Indeed, the existence of such t0 for a strongly dissipative
operator follows immediately from the negativeness of γW (A). Conversely, if µW (I + At0) < 1,
then there exists such ε > 0 that µW (I + (A + εI)t0) < 1. But then γW (A + εI) ≤ 0, the
operator (A + εI) is dissipative. It means that A is strongly dissipative.

If the operator A is strongly dissipative with respect to W , then, according to the above,
for each x ∈ r ∂W there exists such tx > 0 that (I + txA)x ∈ ri W . It means that the vector Ax
belongs to the cone Qx(W ).

Conversely, let the latter condition be satisfied. According to the hypothesis of the theorem
and convexity of W , for each x ∈ r ∂W there exists the only positive number s = s(x) such that
(I + sA)x ∈ r ∂W . Show that s0 = infx∈r ∂W s(x) > 0. Let it be not so. Then there exists such
a subsequence {xn}

+∞
n=1 that limn→∞ s(xn) = 0. Choose from {xn} a converging subsequence

{x′
n}. Let x̃ = limn→∞ x′

n. For every n ∈ N and for every ε > 0

[I + (s(x′
n) + ε)A]x′

n /∈ W.

Passing to the limit, obtain
(I + εA)x̃ /∈ ri W

which contradicts the hypothesis of the theorem.
Thus, s0 > 0. For any t0 ∈ (0; s0) is true µW (I + At0) < 1, i. e. the operator A is strongly

dissipative.
If A ∈ K(W ), then for any ε > 0 we have AX − εx ∈ Qx(W ) (for any x ∈ r ∂W ), i. e.

Ax ∈ Q̄x. Conversely, if Ax ∈ Q̄x, then Ax − εx ∈ Qx at any ε > 0, and A represents a limit
point of the family of dissipative operators, i. e. A ∈ K(W ). The lemma is proved.

Remark 4. Immediately from the Krein— Milman theorem [8] follows that it is sufficient
to require from the lemma conditions that inclusions be satisfied not for all points x ∈ r ∂W ,
but for extremal points of W only. In particular, if W is a polyhedron, then it is sufficient to
test its vertices only. Thus, to elucidate the question about dissipativity (strong dissipativity)
of the operator with respect to the polyhedron, one should test only the fulfillment of finite
number of linear inequalities.

Remark 5. In the proof lemma 2 we have used the obvious fact: the closure of the set
K(W ).

One more fact follows directly from lemma 2.
Lemma 3. The set K(W ) is a closed convex cone. The cone of all strongly dissipative with

respect to W operators coincides with ri K(W ) and with
⋃

ε>0(K(W )−εI). If {Wν} is a family
of convex compacts with 0 ∈ ri Wν for all ν, then K({Wν}) is a closed convex cone.

Remark 6. If int W = ∅, then int K(W ) = ∅. Indeed, if Aff W is invariant with respect to
the operator A1, then A+εA1 /∈ K(W ) at ε 6= 0. If int W 6= ∅, then int K(W ) is also non-empty
and coincides with ri K(W ).

Definition 4. The operator A ∈ K(W ) is called stable (or roughly) dissipative with respect
to W , if A ∈ int K(W ).

Definition 4 generalize the definition of the stable dissipativity with respect to the norm
[11, 19].
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Pass to the consideration of operators dissipative with respect to interval spaces. Let find
out for which interval spaces J the interior of the cone K(J) is not empty.

Let V be a set of all compact convex bodies in Rn. Fix some norm ‖.‖ in Rn and assume

d(W ) = min
x∈∂W

‖x‖.

Lemma 4. The function d(W ) is continuous according to Hausdorff on the set V .
Proof. First note that if X ∈ V, Y ∈ V , then ρH(∂X, ∂Y ) ≤ ρH(X,Y ). Indeed, let

ρH(X,Y ) ≤ ε. Then X ⊂ Y + Sε where Sε = {x ∈ Rn | ‖x‖ ≤ ε}. Let, further on, there exists
such y0 ∈ (∂Y ) ∩ X that y0 /∈ Sε + ∂X. Construct at the point y0 a tangent hyperplane L to
Y . Let l be the direction of the external normal to ∂Y at the point y0 orthogonal to L. Draw a
ray from the point y0 in the direction of l to the point x0 of crossing with ∂X. Construct such
a ball S of the norm ‖.‖ with the center at the point x that y0 ∈ ∂S. The radius of S is larger
than ε and S ∩ Y = {y0}. Thus, if one constructs a ball S ′ ⊂ S of the radius ε with the center
at x0, then

S ′ ∩ Y = 0.

But then x0 /∈ Y + Sε, i. e. X 6⊂ Y + Sε what is contrary to the assumption.
The existence of such y0 ⊂ ∂Y that y0 /∈ X ∪ (∂X + Sε) is also impossible, since then

y0 /∈ X +Sε, i. e. Y 6⊂ X +Sε. Consequently, ∂Y ⊂ Sε + ∂X, and that means d(X) ≤ d(Y )+ ε.
Similarly, d(Y ) ≤ d(X) + ε. It means that |d(X) − d(Y )| ≤ ε, and the function d(W ) is
continuous on V . The lemma is proved.

Lemma 5. For non-emptiness of intK(J) it is necessary and sufficient for all the elements
of the interval space J, except {0}, to possess non-empty interior.

Proof. Necessity. Follows immediately from remark 6.
Sufficiency. Show that under the conditions of the theorem the inclusion

−I ∈ int K(J) (6)

takes place.
To each point x (‖x‖ = 1) we assign the set Wx according to the rule:

Wx =
⋂

W3x, W∈J

W.

According to the conditions b) and c) from definition 1, Wx ∈ J. The set

W̃ =
⋃

‖x‖=1

Wx

is compact. Indeed, W̃ is contained in any element of J containing unit ball of the norm ‖.‖;
such an element exists due to non-emptiness of the interior of all intervals (except {0}) and
the property a) from definition 1. Note that Hausdorff closure of the family {Wx | ‖x‖ = 1}
represents a compact in the Hausdorff metric, contained in J (this follows from compactness
according to Hausdorff of the family of all compact subsets of the compact [6]). From the
property a) (definition 1) follows (by virtue of lemma 4) the existence of such ε > 0 that
d(Wx) ≥ ε for all such x that ‖x‖ = 1 (indeed, d(Wx) > 0, since 0 ∈ int Wx).

Thus, there exists such ε > 0 that for all x (‖x‖ = 1) the inclusion

Ax ∈ int Wx
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is true if ‖A‖ < ε.
In other words, Ax − x ∈ Qx(Wx) if ‖A‖ < ε, ‖x‖ = 1 (see lemma 1). The more so, as

Ax − x ∈ Qx(W ) for all W ∈ J (W 3 x, ‖A‖ < ε) at all such x that ‖x‖ = 1. But then
Ax − x ∈ Qαx(αW ) for all α > 0, ‖A‖ < ε. Hence, A − I ∈ K(J), i. e. (6) is satisfied. The
lemma is proved.

Thus, we have shown that under the conditions of lemma 5 K(J) is a convex solid cone.
Definition 5. The operator is stable dissipative with respect to the interval space J if it

belongs to int K(J).
For stable dissipative operators the remark 2 is true: if an operator is stable dissipative with

respect to the family of compacts and the interior of at least one of them is not empty, then it
is stable dissipative with respect to some norm.

1.3. The Wrapping Effect for Autonomous Systems

The results of the previous section can be applied to the study of the wrapping effect. First we
give the exact definition of what we understand by the wrapping effect.

Let in the vicinity of a compact convex body B ⊂ Rn be given a smooth autonomous system

dx

dt
= f(x) (7)

with B positively invariant with respect to (7), and let x(0) be determined inexactly, namely

x(0) ∈ x0 + W0,

where x0 ∈ B, W0 ∈ J, x0 + W0 ∈ B, J is some interval space (see definition 1).
Remark 7. Irrespective of particular numerical method (i. e. dealing with the exact solution

of the initial value problem for (7) with the initial conditions x(0) = x0) a stepwise interval
solution with step h > 0 can be described as follows.

Let Th be the transformation of the phase flow of (7) during the time t (shift over time t),
W0 ∈ J is the initial interval (its sense is an uncertainty in initial data). Assume

X0 = x0 + W0,

Xm+1 = T(m+1)hx0 + Wm+1,

Wm+1 =
⋂

W⊃Wm+1(h),W∈J

W,

Wm+1(h) = Th(Tmhx0 + Wm) − T(m+1)hx0.

The sequence {Xm}
+∞
m=0 is the exact stepwise interval solution of (7).

Definition 6. The absence of infinitesimal wrapping effect (IWE) means that for any h > 0
the sequence {Wm}

+∞
m=0 is enclosed: Wm ⊃ Wm+1 for all m, i. e. the obtained intervals do not

expand.
With IWE the intervals expand along any trajectory (7) for any small step, and that means

that when solving a system by a stepwise interval numerical method with any small step the
interval expansion takes place for any initial data irrespective of the applied method (since it
is true even for exact solutions).
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Generalizing the construction [10] for norms, introduce the following functional:

NW (x, y) = lim
h→+0

µW (x + hy) − µW (x)

h
.

Literally (with substitution of the norm for Minkowski functional) repeating the reasoning
from [10] (pp.127, 426), come to the following statements.

Statement 1. If x(t) with values in Rn is differentiable on connected subset T of the real
axis, and W is a convex compact (0 ∈ ri W ), then the function µW (x(t)) is almost everywhere
differentiable on T and the derivative (where it exists) coincides with the right-hand derivative,
equal to NW (x(t), ṡ(t)). The right-hand derivative of µW (x(t)) exists everywhere on T except
the right-hand end.

Statement 2.
γW (A) = sup

x∈W

NW (x,AX).

By f ′(x) further on we denote the mapping derivative of f .
The main part of further results on IWE can be obtained from the following theorem.
Theorem 1. Let in the region U ⊂ Rn be given a smooth autonomous system (7), B ⊂ U

be positively invariant with respect to (7) compact convex body. IWE is absent for compact B,
system (7) and interval space J if and only if

f ′(x) ∈ K(J) (8)

for all x ∈ B, i. e. for any x ∈ B the Jacobi matrix of system (7) in the point x is strongly
dissipative with respect to J.

Proof. Sufficiency. Let W ∈ J. Consider two solutions x1(t), x2(t) of system (7) with initial
conditions from B. Denote ∆(t) = x1(t)− x2(t). Using statements 1 and 2 and the theorem on
finite increment, estimate the derivative of µW (∆(t)):

d

dt
µW (∆(t)) = NW (∆(t), d∆(t)/dt) ≤

≤ sup
0≤Θ≤1

NW (∆(t), f ′(xc(t))∆(t)) ≤

≤ sup
0≤Θ≤1

γW (f ′(xc(t)))µW (∆(t)),

where xc(t) = x1(t) + Θ(x2(t) − x1(t)), 0 ≤ Θ ≤ 1 for all t ≥ 0. By (8) and statement 1 we
obtain

d

dt
µW (∆(t)) ≤ 0.

Since the latter inequality holds for all t ≥ 0 and for all W ∈ J, in system (7) on B IWE
with respect to J is absent.

Necessity. Let W ∈ J, x0 ∈ int B, t0 ≥ 0, y ∈ Aff B, y 6= 0. There exists such h0 > 0
that x0 + h0y ∈ B. Due to smoothness of system (7) there exist and are unique the solutions
x1(t), x2(t) of the initial value problem for (7) with the initial conditions x1(t0) = x0, x2(t0) =
x0 + h0y. Assume ∆(t) = x1(t) − x2(t). Then

d

dt
ln µW (∆(t))|t=t0 =
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= NW

(
∆(t0)

µW (∆(t0))
, f ′(xc)

∆(t0)

µW (∆(t0))

)
=

= NW

(
y

µW (y)
, f ′(xc)

y

µW (y)

)
,

where xc = x0 + Θh0y, 0 < Θ < 1.
By virtue of absence of IWE

d

dt
ln µW (∆(t)) ≤ 0

for all t ≥ 0. Since if x0 + h0y ∈ b, then:
(a) x0 + hy ∈ B for all h ∈ [0; h0],
(b) a set of those h ∈ [0; h0], for which

NW

(
y

µW (y)
, f ′(x)

y

µW (y)

)
≤ 0,

is dense on the segment [0; h0], and (c) due to its closeness coincides with this segment.
By virtue of the arbitrary choice of x0 for any x0 ∈ int B, t ≥ 0, y ∈ Aff B, y 6= 0 the

inequality

NW

(
y

µW (y)
, f ′(x)

y

µW (y)

)
≤ 0

is satisfied. It holds also for any x ∈ B, t ≥ 0, y ∈ Aff B, y 6= 0. Hence, from lemma 1 and
statement 2 immediately follows dissipativity of f ′(x) with respect to J for all x ∈ B. The
theorem is proved.

Definition 7. The family of linear operators {Aα} is called simultaneously dissipative, if
there exists a norm relative to which all the operators are dissipative.

Simultaneously dissipative operators were studied in detail in [11, 12, 17–22].
From theorem 1, example 3, and remark 2 we obtain the following theorem.
Theorem 2. For existence of interval space in which at least one interval possesses non-

empty interior and with respect to which in system (7) there is no IWE on B, it is necessary
and sufficient for the family {f ′(x) | x ∈ B} to be simultaneously dissipative.

Thus, the problem of existence of the interval space, with respect to which IWE is absent, is
reduced to the problem of simultaneous dissipativity of Jacobi matrices. As sought for space one
can choose a set of all balls of that norm relative to which all Jacobi matrices are dissipative.
This norm is constricting for (7) on B (i. e. the distance between two solutions with initial
conditions from B will not expand with time). Hence, all systems without IWE (with respect
to some interval space) on B are globally stable in B (see introduction).

Bellow by C1(B) we denote the Banach space of smooth mappings of B in Rn with the
norm

‖f‖C1(b) = max
x∈B

‖f(x)‖ +
n∑

k=1

max
x∈B

∥∥∥∥
∂f

∂xk

∥∥∥∥

where ‖.‖ is a fixed norm in Rn.
Further on, speaking about properties of autonomous systems, we mean the properties of

the vector fields generating them.
Immediately from lemma 3 and theorem 1 the following statement can be obtained.
Theorem 3. The set of systems on B without IWE with respect to J is closed convex cone

in C1(B).
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For this cone we use the notation FB(J).
Further on, speaking about the vicinity of an autonomous system in C1(B) we mean a part

of the vicinity, consisting only of those systems for which the set B is positively invariant.
Let us study under what conditions the interior of the cone FB(J) is non-empty.
Theorem 4. For non-emptiness of intFB(J) in C1(B) it is necessary and sufficient for all

elements of J, except {0}, to possess non-empty interior.
Proof. Necessity. Let exist such a set W ∈ J that int W = 0. Consider any system (7)

without IWE with respect to J on B. Since int B 6= 0, there exist two different concentrical
balls S1 and S2 of usual l2-norm, belonging to int B with S1 ⊂ S2. Construct such a function
g ∈ C∞(Rn) that g(x) = 1 for all x ∈ S1 and g(x) = 0 at all x /∈ S2. Since Aff W 6= Rn, one
can construct a linear operator A ∈ L(Rn) mapping Aff W into such a subspace E0 6= {0} that
(Aff W ) ∩ E0 = {0}.

Consider the system
dx

dy
= f(x) + εg(x)AX, (9)

where ε > 0 is arbitrary. The set B is positively invariant with respect to (9), since the vector
field generating (9) coincides with f in the vicinity of ∂B. On the other hand, there exist Jacobi
matrices (9) relative to which Aff W is not invariant, i. e. in (9) exist IWE with respect to J on
B. Since in any vicinity of f there is at least one vector field, generating (9), then

int FB(J) = 0.

Sufficiency. Consider the system dx/dt = −x. It is a system on B without IWE with respect
to J. Furthermore, if all elements of J, except {0}, possess non-empty interior, then by lemma
5 the matrix of the system is stable dissipative with respect to J (see definition 5).

Consider the system:
dx

dy
= −x + v(x), (10)

where ‖v‖C1(B) < ε with ε chosen so that

A − I ∈ K(J)

if ‖A‖ < ε (see the proof of lemma 5). Then all Jacobi matrices (10) are dissipative with respect
to J, and if v is chosen so that B is positively invariant with respect to (10), then in (10) IWE
is absent (by theorem 1). The theorem is proved.

Thus, int FB(J) 6= 0 if and only if int K(J) 6= 0.
It is easy to see that in the proof of sufficiency in theorem 4 one can instead of the system

dx/dy = −x consider any syste whose Jacobi matrices are stable dissipative with respect
to J.

Remark 8. By analogy with the space C1(B) one can construct the Banach spaces Ck(B) (k ∈
N) with the norm

‖f‖Ck(B) =
k∑

|α|=0

max
x∈B

‖(Dαf)(x)‖,

where α = (α1, . . . , αn) is a multiindex:

|α| = α1 + . . . + αn, Dαf =
∂|α|f

∂xα1

1 . . . ∂xαn
n
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and the metric space C∞(B) with the system of seminorms

{max
x∈B

‖(Dαf)(x)‖ | |α| ≤ m}+∞
m=0.

Small Ck-additions (1 ≤ k ≤ +∞) are small and in the C1-norm. Therefore, for Ck-smooth
systems under the conditions of theorem 4 the interior of FB(J) is non-empty and in Ck(B).
As shows the proof of theorem 4 (necessity), if conditions of the theorem are not satisfied, then
the interior of FB(J) in Ck(B) is empty.

Let clarify what autonomous system without IWE in specific interval spaces looks like.
Theorem 5. Any system without IWE with respect to J from example 1 has the form:

dx

dt
= ax + c,

where a ≤ 0, C ∈ Rn is a constant vector.
Proof. Let A ∈ K(J). All the segments symmetrical with respect to 0 belong to J. Every

such a segment has the form {y ∈ Rn|y = ax, |a| ≤ 1} for some x ∈ Rn. The cone Qx (see
lemma 2) for each segment consists of vectors of the form ax, where a < 0. Thus, every non-zero
vector x ∈ Rn is eigenvector of the operator A, corresponding to non-positive eigenvalue. Thus:

K(J) = {aI| a ≤ 0}. (11)

Let now a system without IWE have the form




dx1

dt
= f1(x1, . . . , xn);

· · ·
dxn

dt
= fn(x1, . . . , xn).

According to (11) and theorem 1

∂fi

∂xj

≡ 0 (i 6= j); (12)

∂f1

∂x1

≡
∂f2

∂x2

≡ . . . ≡
∂fn

∂xn

≤ 0. (13)

From (12) follows that fk depends only on xk (k = 1, . . . , n). It means that ∂fk/∂xk also
depends only on xk, i. e. by virtue of (13) ∂fk/∂xk = const (k = 1, . . . , n). Then

∂f1

∂x1

≡
∂f2

∂x2

≡ . . . ≡
∂fn

∂xn

≡ a ≤ 0

and the system has the form:
dx

dt
= ax + c,

where a ≤ 0, c = const. The theorem is proved.
Thus, whatever nonlinear (or even linear with non-scalar matrix) system we consider, if we

take as J the interval space of example 1 (or any wider space), IWE will be present in the
system. From theorem 5 also follows that any dissipative with respect to all norms operator
has the form aI, where a ≤ 0 (see also remark 3).
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Example 6. Consider J from example 2. J contains all symmetrical with respect to 0 seg-
ments of coordinate axes (thus, the conditions of theorem 4 are not satisfied, i. e. int FB(J) = 0).
Let A ∈ K(J). Reasoning like in proof of theorem 5, conclude that all coordinate axes are
eigenspaces of the operator A, corresponding to non-positive eigenvalues. In other words, the
matrix of the operator A is diagonal and non-positive. On the other hand, by virtue of lemma 2,
all such operators belong to K(J). Thus, systems without IWE with respect to J on B have
the form 




dx1

dt
= f1(x1);

· · ·
dxn

dt
= fn(xn),

where
∂fk

∂xk

≤ 0 (k = 1, . . . , n)

for all x ∈ B.

From the considered example follows that when using standard intervals (rectangular paral-
lelepipeds) IWE will be observed in almost all systems in Rn if n 6= 1.

The systems without IWE with respect to J from example 3 on B represent all systems for
which the norm ‖.‖ is constricting in B (see the text after theorem 2).

Remark 9. Note that testing of dissipativity (stable dissipativity) of the operator with
respect to the norm is equivalent to non-positiveness (negativeness) of the corresponding
Lozinsky norm. For some norms an explicit form of corresponding Lozinsky norm is known
(see, for example, [9] or [10, p. 463–465]). In particular, for the Euclidean norm the Lozinsky
norm of the operator A coincides with the largest eigenvalue of the operator (A∗ + A)/2. The
Lozinsky norm of the operator A represented by the matrix (aij)

n
i,j=1 with respect to l1− and

l∞-norms is given by the formulae, respectively:

max
1≤i≤n

(Re aii +
∑

j 6=i

|aji|);

max
1≤i≤n

(Re aii +
∑

j 6=i

|aij|).

In remark 9 it is assumed that the operator A acts in the space Cn. The definitions and
used here properties of dissipative operators in complex spaces are analogous to those in real
ones.

Example 7. Let J be the interval space from example 4. Then

K(J) =
⋂

1≤k≤m

K‖.‖k
,

where K‖.‖k
is the cone of all operators dissipative with respect to the norm K‖.‖k

. It follows from
the closure under intersection of the family of all positively invariant sets of an autonomous
system. Similarly,

int K(J) =
⋂

1≤k≤m

int K‖.‖k
.
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Let, for example, ‖.‖1 be l∞-norm, ‖.‖2 be l2-norm in R2. Then the conditions of stable
dissipativity of the operator A with the matrix (aij)

2
i,j=1 with respect to J according to remark

9 are of the form: 



4a11a22 > (a12 + a21)
2;

a11 + |a12| < 0;

|a21| + a22 < 0.

Thus, for the system of the form





dx1

dt
= f1(x1, x2);

dx2

dt
= f2(x1, x2)

(14)

if the inequalities 



4
∂f1

∂x1

·
∂f2

∂x2

>

(
∂f1

∂x2

+
∂f2

∂x1

)2

;

∂f1

∂x1

+

∣∣∣∣
∂f1

∂x2

∣∣∣∣ < 0;

∣∣∣∣
∂f2

∂x1

∣∣∣∣ +
∂f2

∂x2

< 0

are satisfied and the compact convex body B is positively invariant with respect to (14), then in
(14) IWE with respect to J (from example 4) is absent on B. For example, such is the following
system:





dx1

dt
= −2x1 + x2;

dx2

dt
= 2x1 − 3x2

if B is the square {(x1, x2) | |x1| ≤ 1, |x2| ≤ 1} or the circle {(x1, x2) | x2
1 = x2

2 ≤ 1}.
Example 8. Consider J from example 5. Let Q be rectangular triangle with vertices at the

points (−1; 2); (−1;−1); (1;−1).
From lemma 2 and theorem 1 follows that the cone FB(J) consists of the systems of the

form (14), with respect to which the compact B is positively invariant and for which





∂f1

∂x1

+
∂f1

∂x2

≤ 0;

∂f1

∂x1

− 2
∂f1

∂x2

≤ 0;

∂f2

∂x1

+

∣∣∣∣
∂f2

∂x2

∣∣∣∣ ≤ 0;

−3
∂f1

∂x1

+ 6
∂f1

∂x2

− 2
∂f2

∂x1

+ 4
∂f2

∂x2

≤ 0;

3
∂f1

∂x1

− 3
∂f1

∂x2

+ 2
∂f2

∂x1

− 2
∂f2

∂x2

≤ 0

(15)
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is true.

Substituting all the inequality signs in (15) by strict ones, obtain int FB(J). For example,
the system 




dx1

dt
= −x1;

dx2

dt
= −6x1 − 4x2

belongs to int FB(J) for B = Q.

Corresponding ball S (see remark 2) is the parallelogram with the vertices in the points
(−1; 2); (−1;−1); (1;−2); (1; 1). From remark 2 follows that

K(J) = K(Q) ⊂ K(S).

One can see that K(J) 6= K(S). For example, the operator given by the matrix

(
−4 −1

2 0

)

is dissipative with respect to S, but it is not dissipative with respect to J. In other words, in
the systems without IWE with respect to {αS | α ≥ 0} (i. e. constricting according to the norm
whose ball is J) there can be observed IWE with respect to J.

This example can be generalized as follows. Consider J from remark 2. In system (7) on B
IWE is absent with respect to J if the operators f ′(x) for all x ∈ B are dissipative with respect
to all sets Qk (k = 1, . . . ,m).

To sum up, one can say the following. When using sufficiently wide interval spaces, then in
accordance with theorem 4, IWE is observed in almost all systems. In particular, IWE takes
place almost for all systems when using standard intervals (see example 6). Expansion of the
interval space results in the appearance of new systems with IWE: thus, in using a set of all
symmetrical to 0 convex compacts IWE is absent only for linear systems with non-positive
scalar matrices. And the most impotent: the question about the existence of interval space,
with respect to which in the considered system IWE is absent, is reduced to the problem of
simultaneous dissipativity of the Jacobi matrices. Therefore, there is no interval space with
respect to which all (or even if in some sense almost all) globally stable systems would have no
IWE. One has to solve individually problems of the existence and constructing of corresponding
interval spaces for each particular system. These problems are solved constructively very rarely.

We have treated the wrapping effect in a very strong sense. The condition of boundedness of
the sequence of intervals {Wm}

+∞
m=0 at any step h > 0 (see remark 7) is weaker (and acceptable,

generally speaking, for constructing sufficiently narrow interval solutions). This condition can
be called the condition of absence of the asymptotic wrapping effect (AWE). It is the weakest
from acceptable conditions, since with AWE it is impossible to use stepwise interval methods
to obtain narrow interval solutions at large times. The study of AWE is still not completed.
It is evident only that for a linear autonomous system in considering the interval space from
example 3 AWE is equivalent to IWE. One can suggest a hypothesis: the problem of existence
and constructing of the interval space with respect to which AWE is absent in the autonomous
system is reduced to the question of simultaneous dissipativity of Jacobi matrices (and of
constructing a constricting norm).
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2. Conditions of Simultaneous Dissipativity of Operators

2.1. Some General Results

In the present section some conditions of simultaneous dissipativity of the operators will be
considered (see definition 7).

A definition of a simultaneous dissipativity can be generalized in such a way.
Definition 7′. A family of linear operators {Aα} is called simultaneously stable dissipative

if there exists a norm with respect to which all operators Aα are stable dissipative.
Lemma 6. Let the space Rn be expanded into direct sum of subspaces Ei (i = 1, . . . , k)

and each of them is invariant with respect to all operators of the family {Aα}. Further on, let
restriction of the family {Aα} on any Ei be simultaneously (simultaneously stable) dissipative.
Then {Aα} is simultaneously (simultaneously stable) dissipative.

Proof. Let ‖.‖i (i = 1, . . . , k) be the norms in Ei in which the restrictions of {Aα} on Ei

are simultaneously (simultaneously stable) dissipative. Define the norm in Rn in this way:

‖x‖ =
k∑

i=1

‖xi‖i,

where x =
∑k

i=1 xi with xi ∈ Ei (i = 1, . . . , k).
In this norm all operators Aα are simultaneously (simultaneously stable) dissipative. The

lemma is proved.
It is known [7] that for one operator the norm with respect to which it is dissipative exists

if and only if the spectrum of the operator lies in the closed left half-plane and the boundary
part is diagonalizable (i. e. Jordan boxes corresponding to pure imaginary, including zero ones,
eigenvalues are diagonal). The norm, with respect to which the operator is stable dissipative,
exists if and only if the spectrum of the operator lies in the open left half-plane.

Several stable dissipative (in their own norms) operators not necessarily are simultaneously
dissipative. To demonstrate that, consider operators represented by the matrices

A1 =

(
−1 3

0 −1

)
; A2 =

(
−1 0

3 −1

)
.

Each of them is stable dissipative in its norm (due to the location of the spectrum). But

A1 + A2 =

(
−2 3

3 −2

)
.

The spectrum of the operator (A1 + A2) contains the point λ = 1 which does not belong to the
closed left half-plane. Thus, the operator (A1 + A2) is not dissipative in any norm. By lemma
6 the operators A1 and A2 are not simultaneously dissipative.

The problem to find out necessary and sufficient conditions of simultaneous dissipativity
of an arbitrary (even finite) family of operators seems to be very difficult. Nevertheless, one
can obtain some sufficient conditions imposing different constraints on the operators. Obtain
the sufficient condition of simultaneous dissipativity of the family generating a solvable Lee
algebra. Remind [13] that a family of matrices generates solvable Lee algebra if and only if all
elements of this family are simultaneously reducible to triangular form (generally speaking in
complex basis).
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Theorem 6. Let the family {Aα} be compact and generate solvable Lee algebra, and the
spectrum of each operator Aα lies in the open left half-plane. Then {Aα} is simultaneously
stable dissipative.

Proof. First consider the case of complex space Cn. Consider matrices of the operators Aα

in the basis where they are of triangular form.
Let each matrix Aα have the form

Aα =




λ
(α)
1 0 0 · · · 0 0

µ
(α)
21 λ

(α)
2 0 · · · 0 0

...
...

...
. . .

...
...

µ
(α)
n1 µ

(α)
n2 µn3(α) · · · µ

(α)
n,(n−1) λ

(α)
n




.

Show the existence of such a set of positive numbers {ck}
n
k=1 that all Aα are stable dissipative

in the norm

‖z‖ = max
1≤k≤n

|zk|

ck

(16)

(here zk is the k-th coordinate of the vector z in the given basis), whose unit ball is the
polycylinder

|zk| ≤ ck (k = 1, . . . , n). (17)

If {ek}
n
k=1 is the considered basis, then, evidently, norm (16) coincide with the l∞-norm

with respect to the basis {ck/ek}
n
i,j=1 in the norm (16):

Re aii +
∑

j 6=i

cj

ci

|aij| < 0 (i = 1, . . . , n). (18)

For the matrices Aα the conditions (18) look like this:





Re λ
(α)
1 < 0;

Re λ
(α)
2 +

c1

c2

|µ
(α)
21 | < 0;

· · ·

Re λ
(α)
n +

c1

cn

|µ
(α)
n1 | + . . . +

cn−1

cn

|µ
(α)
n,(n−1)| < 0.

(19)

Suppose µ = supα,k 6=l |µ
(α)
kl |; λ = − supα,k Re λ

(α)
k . From the conditions of the theorem

follows that 0 < λ < +∞, 0 < µ < +∞. To fulfil (19) for all Aα, it is sufficient that the
inequalities

(c1 + . . . + ck−1)µ < ckλ (k = 1, . . . , n); c1 > 0 (20)

be satisfied.
Show the solvability of system (20). Let c1 = 1. Choose the others ck so that

c2 > µ/λ; c3 > (1 + c2)µ/λ; . . . ;



34 A.N. Gorban, Yu. I. Shokin, V. I. Verbitskii

cn > (1 + c2 + . . . + cn−1)µ/λ.

Then the inequalities (20) are satisfied, i. e. all operators Aα are stable dissipative in the norm
(14).

Let now operators Aα act in the space Rn. In usual way complexify Rn and the family Aα.
Then, as it has been described above, construct a cylinder (17). Intersection of (17) with the
initial space Rn produce a ball of the norm in which all Aα are stable dissipative. The theorem
is proved.

If instead of stable dissipative operators one considers dissipative operators, then the analog
of theorem 6 is not true, starting from real dimension 4. Let

A1 =

(
i 1

0 2i

)
; A2 =

(
2i 1

0 i

)
.

Each of the operators A1,2 is dissipative in its norm. The finite family is compact, the matrices
A1 and A2 generate solvable Lee algebra. Nevertheless

A1 + A2 =

(
3i 2

0 3i

)
.

The only eigenvalue of the operator (A1 + A2) is pure imaginary, with the matrix of this
operator representing (up to a constant factor) non-trivial Jordan box. That means it is not
dissipative in any norm, i. e. A1 and A2 are not simultaneously dissipative. To obtain a real
example, one has to make the matrices A1 and A2 real:

AR
1 =




0 −1 1 0

1 0 0 1

0 0 0 −2

0 0 2 0




; AR
2 =




0 −2 1 0

2 0 0 1

0 0 0 −1

0 0 1 0




.

To keep true the statement about simultaneous dissipativity for nonstable dissipative operators,
it is sufficient to strengthen the requirement of solvability up to nilpotency. Remind [13] that
for each linear operator A in the space E the operator adA in L(E) is defined:

(ad A)B = AB − BA.

The family {Aα} generates the nilpotent Lee algebra if and only if there exists such a
number m ∈ N that for any set of {Aαk

}m
k=1 (among the elements of which there may be the

same ones) and for all α:
m∏

k=1

(ad Aαk
)Aα = 0. (21)

Nilpotent Lee algebra is always solvable. Commutative Lee algebra is nilpotent (for it
m = 1) and solvable.

Theorem 7. Let the family {Ak} be finite and generate nilpotent Lee algebra, and for each
operator Ak exist a norm with respect to which it is dissipative. Then {Ak} is simultaneously
dissipative.
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Proof. Without loss of generality one can assume that among the operators Ak there are
no scalar ones (if A = aI, where Re a ≤ 0, then A is dissipative in any norm) and exists at least
one operator (denote it A1), among eigenvalues of which there are pure imaginary (otherwise
we are under the conditions of theorem 6).

First assume that Ak operates in Cn. We prove the theorem by induction on dimension of
space. In dimension 1 the statement of the theorem is trivial. Show that one can expand all
the space Cn into a direct sum of two non-trivial subspaces invariant with respect to all Ak.
Since in both of them the conditions of the theorem (for corresponding restrictions of {Ak})
are satisfied, then to complete the proof one has to use lemma 6.

Let λ be an imaginary eigenvalue of A1; E ′ be the corresponding to λ eigen-subspace (by
virtue of diagonalizability of boundary part of A1 it coincides with whole corresponding root
subspace); E ′′ be the sum of root subspaces corresponding to all the others eigenvalues of A1.
Evidently, Cn = E ′ ⊕ E ′′ (the sign ⊕ means direct sum); E ′ 6= Cn, otherwise the operator A1

is scalar. Show the invariance of E ′ and E ′′ with respect to all Ak.
Let x ∈ E ′. Then

A1x = λx.

On the other hand, in accordance with (21) there exists such m ∈ N that (ad A1)
mAk = 0

for all k and
(A1 − λI)mAkx = 0.

A more general fact is true: if Ax = 0 and (ad A)mB = 0, then AmBx = 0. For m = 0 the
fact is obvious. Let that be true for m = r. Assume

Ax = 0; (ad A)r+1B = 0.

Then (ad A)r(ad A)B = 0, and according to the inductive hypothesis

Ar(ad A)Bx = 0.

But Ar+1Bx = Ar(BAx + (ad A)Bx), i. e. Ar+1Bx = 0, as was to be proved.
As a consequence of coincidence of E ′ with the whole root subspace, corresponding to λ, we

have:
(A1 − λI)Akx = 0,

i. e. A1Akx = λAkx,Akx ∈ E ′.
Show now the invariance of E ′′. Let {ej}

n
j=1 be the Jordan basis of the operator A1 with E ′

being corresponded to the vectors {ej}
j2
j=j1

. One has to show that for any j less then j1 or more
then j2 the coordinates of Akej with the numbers from j1 to j2 with respect to the assigned
basis are equal to zero. Let it be not so and exist such j′ that ej′ ∈ E ′′, but the j1-th coordinate
(j1 ≤ j0 ≤ j2) of the vector Akej′ is a 6= 0. Write it like this:

Akej′ = . . . = aej0 .

Let ej′ be an eigenvector of A1 corresponding to the eigenvalue µ 6= λ. Then

(ad A1)Akej′ = A1(. . . + aej0) − µ(. . . + aej0) = . . . + (λ − µ)aej0 .

Verify that
(ad A1)

mAkej′ = . . . + (λ − µ)maej0 .
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For m = 0 it is obvious. Let it be satisfied for m = r. Then

(ad A1)
r+1Akej′ = (ad A1)(ad A1)

rAkej′ = A1(ad A1)
rAkej′ − (ad A1)

rAkA1ej′ =

= A1(. . . + (λ − µ)raej0) − µ(ad A1)
rAkej′ = . . . + (λ − µ)raλej0 − µ(λ − µ)raej0 =

= . . . + (λ − µ)r+1aej0 ,

i. e. that is true also for m = r + 1, and, hence, for all m ∈ N .
Thus,

(ad A1)
mAkej′ = . . . + (λ − µ)maej0 6= 0

for any m ∈ N , which contradicts (21).
Let now ej′ be a root (but not eigen) vector, corresponding to the eigenvalue µ, with the

j0-th coordinate of the vector Akej′−1 equal to 0. Then

(ad A1)Akej′ = A1(. . . + aej0) − Ak(ej′−1 + µej′) = . . . + (λ − µ)aej0 .

Analogously
(ad A1)

mAkaj′ = . . . + (λ − µ)maej0 6= 0

for any m ∈ N , which contradicts (21).
Since the sequence of basis vectors belonging to the root subspace begins with the eigenvector,

the required statement for complex space is proved.
The transfer onto the case of real space can be done in the same way as in the proof of

theorem 6 (the ball of corresponding norm in the copmlexified Rn intersects with Rn). The
theorem is proved.

From theorems 6 and 7 follows, in particular, that a finite (compact) commutative family
consisting of operators dissipative (stable dissipative) in their own norms is simultaneously
dissipative (simultaneously stable dissipative).

2.2. The Mass Action Law and Dissipative Mechanisms

Some constructive conditions of simultaneous dissipativity can be obtained for finite families of
operators of rank 1. The problem of the absence of wrapping effect in the system constructed
in accordance with the Mass Action Law (MAL) is reduced to the problem on simultaneous
dissipativity of such operators.

MAL systems appear from mathematical description of systems of chemical and biological
kinetics and in some other problems. To the considered process is assigned an algebraic object,
called reaction mechanism and having the form:

αr1A1 + . . . + αrnAn → βr1A1 + . . . + βrnAn (r = 1, . . . , d). (22)

Speaking in terms of chemical kinetics, the reaction mechanism is a list of stoichiometric
equations of elementary reactions (22). In this case A1, . . . , An are the substances taking part
in the reaction; αri, βri are the non-negative integers called stoichiometric coefficients and
showing in what amount the particles of Ai enter into the r-th elementary reaction as the
initial substance (αri) or product (βri). The following notations are accepted: γri = βri−αri, γr

is the vector with the components γri (i = 1, . . . , n) — so-called stoichiometric vector of the
r-th elementary reaction.
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In accordance with MAL [14,15], to the mechanism (22) corresponds the following system
of ordinary differential equations:

dci

dt
=

d∑

r=1

γriwr (23)

where ci(t) is the concentration of substance Ai at the moment of time t ≥ 0,

wr = kr(t)
n∏

j=1

c
αrj

j

is the rate of the r-th elementary reaction, continuously depending on time. In particular, if
reaction proceeds under constant external conditions, then kr(t) = const (r = 1, . . . , d) and kr is
called rateant of the r-th elementary reaction. In the latter case (23) represents an autonomous
system with polynomial right sides.

Let L be a linear hull of the family {γr}
d
r=1. If L 6= Rn, then there exist such ai (i = 1, . . . , n),

not all equal to zero, that for all r = 1, . . . , d the equalities

n∑

i=1

aiγri = 0

are satisfied, from which for system (23) follows that

n∑

i=1

aici(t) = const. (24)

Relationships (24) are called stoichiometric conservation laws. If all ai are positive, then the
corresponding stoichiometric law is called the positive conservation law [15]. In MAL positive
conservation laws takes place rather often (but not always).

As it is known [15], balance polyhedrons are intersections of affine subspaces of the form
(L + c), where c is a constant vector, with a cone of non-negative vectors (first orthant) in Rn.
Balance polyhedrons represent positive invariant with respect to (23) convex sets (one can find
the proof of their positive invariance in [15]). If there exists at least one of positive conservation
law, they are compact.

The question arises: under what conditions does the norm exist in Rn according to which
the system (23) is constricting in all balance polyhedrons and independent of rate constants?

Definition 8. Mechanism (22) is called dissipative, if for system (23) there exists a norm,
constricting in all balance polyhedrons irrespective of rate constants (in other words, the
constricting norm depends on the mechanism only).

We use the notation Mri for the operator in Rn, represented by the matrix, in the i-th
column of which there are components of the vector γr, and on other places — zeros. The
subspace L is invariant with respect to all Mri [15]. The notation M ′

ri stays for restriction of
Mri on L.

Theorem 8. Let for mechanism (22) exist at least one positive conservation low. This
mechanism is dissipative if and only if the family {M ′

ri | αri > 0} is simultaneously dissipative.
Proof. Sufficiency. It is known [15] that the Jacobi matrix Jc of system (22) at the point

c, whose coordinates are positive, has the form

Jc =
∑

αri>0

αri

wr

ci

Mri. (25)
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Matrices Jc belong to the convex cone produced by the family {Mri| αri > 0}. Besides, the
difference of any two solutions (23) from one balance polyhedron belongs to the subspace L.
Under the conditions of lemma 3 and theorem 2 obtain the existence of constricting norm in
the subspace L. It can be expanded onto all Rn.

Necessity. Matrices Mri (αri > 0) belong to the closure of the family of matrices Jc for
arbitrary non-negative vectors c and rate constants kr. To prove this, first let consider the case
when cj (j = 1, . . . , n) and kr are fixed and all kl(l 6= r) tend to zero. In the limit in (25) only
the sum for given r is left. Further on, fix all cj > 0 (j 6= i) and let ci tend to zero, changing
kr so that the equality αriwr/ci = 1 holds true. Then all the terms except one tend to zero and
in the limit we obtain Mri.

Thus, the matrices M ′
ri (αri > 0) belong to the closure of the family of restrictions of the

matrices Jc on the subspace L. Hence, according to lemma 3 and theorem 2 the necessity
follows. The theorem is proved.

Note that matrices Mri represent matrix-columns (in each matrix there is only one non-
zero column) and that means that the rank of each of them is equal to unity. We come to the
problem of simultaneous dissipativity of the finite family of operators of rank 1.

Note that dissipative mechanisms of reactions were studied in details in [12]. In particular,
some classes of dissipative mechanisms are pointed out and all dissipative mechanisms for
n = 3,

∑3
i=1 αri ≤ 3,

∑3
i=1 βri ≤ 3 (r = 1, . . . , d), c1 + c2 + c3 = const enumerated.

In the next subsection are obtained necessary and sufficient conditions of simultaneous
dissipativity of the operators of rank 1 in R2 (corresponding to the case dim L = 2) and some
sufficient conditions of simultaneous dissipativity of matrix-columns.

2.3. Constructive Conditions of Simultaneous Dissipativity

of One-Dimensional Operators

Before consideration of simultaneous dissipativity of operators of rank 1, find out what can
be said about dissipativity of one such operator. From necessary and sufficient conditions (see
the paragraph after lemma 6) follows that the norm in which the given operator of rank 1 is
dissipative exists if and only if it has a negative eigenvalue.

Positive semi-trajectories of system (3) corresponding to the initial condition x(0) = x0

are in this case rectilinear segments parallel to the image of A and connecting x0 with KerA.
Operator A of rank 1 is dissipative in the given norm if and only if for any point x (‖x‖ = 1)
there exists such ε > 0 that ‖x + εAx‖ ≤ 1. It means that the negative number belongs to the
spectrum of A, and the image of A is orthogonal to its kernel (in the given norm, the subspace
E2 is orthogonal to E1 if ‖x + y‖ ≥ ‖x‖ for any x ∈ E1, y ∈ E2 [7]).

Let now be given a family {Mk}
m
k=1 of operators of rank 1 in Rn. Each of them can be

represented in the form (· ; ψk)ϕk, i. e. Mkx = (x ; ψk)ϕk where (· ; ·) is the standard scalar
product in Rn. The vectors ϕk and ψk are determined by the operator Mk unambiguously (up
to scalar factors). Let λk = (ϕk; ψk), i. e. λk is an eigenvalue of Mk (either it is the only non-
zero eigenvalue, or 0, if the operator Mk is nilpotent). As it has already been mentioned, for
simultaneous dissipativity of {Mk} the conditions

λk < 0 (k = 1, . . . ,m) (26)

are necessary.
Assign to each operator Mk the projector Pk projecting parallel to the image of Mk on the

kernel of Mk. It is easy to see that Pk = I−Mk/λk. By virtue of the mentioned above condition
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of dissipativity of the operator of rank 1 in the given norm the operator Mk is dissipative in
some norm if and only if Pk is constriction in this norm.

All Pk can be constrictions in one norm if and only if all products of the form
∏q

j=1 Pkj
(q ∈ N

is arbitrary; kj ∈ {1, . . . ,m} and they are not necessarily different) are jointly bounded. We
come to the following conclusion.

Lemma 7. The family {Mk}
m
k=1 of operators of rank 1 is simultaneously dissipative if

and only if the conditions (26) are satisfied and all products of the form
∏q

j=1 Pkj
(q ∈ N is

arbitrary; kj ∈ {1, . . . ,m} and they are not necessarily different) are jointly bounded. As a
constricting norm one can take

‖x‖ = sup
q∈N,1≤ kj≤m

{‖x‖0,
∥∥(

q∏

j=1

Pkj
)x

∥∥
0
}, (27)

where ‖.‖0 is any norm in Rn.
Proof. All statements of the lemma, except the latter, follow immediately from the above

reasoning. Further on, if all products
∏q

j=1 Pkj
are jointly bounded, then

sup
q∈N,1≤ kj≤m

{‖x‖0,
∥∥(

q∏

j=1

Pkj
)x

∥∥
0
} < ∞

for each x ∈ Rn. This expression possesses all properties of norm and all operators Pk are
constrictions in such norm, i. e. all Mk are simultaneously dissipative. The lemma is proved.

From lemma 7 follows a simple consequence.
Corollary 1. If all ϕk are collinear (images of Mk coincide) or all ψk are collinear (kernels

of Mk coincide) and (ϕk; ψk) < 0 for all k = 1, . . . ,m, then the operators Mk (k = 1, . . . ,m)
are simultaneously dissipative. As corresponding constricting norm one can take

sup
q∈N,1≤kj≤m

{‖x‖0, ‖Pkx‖0}.

To demonstrate this, it is sufficient to note that in these cases

q∏

j=1

Pkj
= Pk1

or
q∏

j=1

Pkj
= Pkq

,

respectively.
Remark 10. If not all ϕk are collinear, then as a norm in lemma 7 one can take

sup
q∈N,1≤kj≤m

∥∥(

q∏

j=1

Pkj
)x

∥∥
0
. (28)

The criterion established in lemma 7 is not constructive. Constructive criteria of simultaneous
dissipativity of finite family of operators of rank 1 in Rn have been obtained only at n = 2 (for
arbitrary n there exist sufficient conditions for one class of operators; they are given at the end
of the section). Pass to the consideration of the case n = 2.
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Consider the family {Mk}
m
k=1 of the operators of rank 1 in R2. As before, represent each

operator Mk in the form (· ; ψk)ϕk. Let first m = 2.
Lemma 8. The operators M1 = (· ; ψ1)ϕ1 and M2 = (· ; ψ2)ϕ2 are simultaneously dissipative

in R2 if and only if the condition
∣∣∣∣
(ϕ1; ψ2) · (ϕ2; ψ1)

(ϕ1; ψ1) · (ϕ2; ψ2)

∣∣∣∣ ≤ 1 (29)

is satisfied together with the conditions

(ϕ1; ψ1) < 0; (ϕ2; ψ2) < 0.

As a corresponding constricting norm one can take

‖x‖ = max{‖x‖0, ‖P1x‖0, ‖P2x‖0, ‖P1P2x‖0, ‖P2P1x‖0}. (30)

Proof. In R2 the projectors P1 and P2 have rank 1 and are represented in the form

P1 = (· ; η1)χ1; P2 = (· ; η2)χ2,

where η1, η2, χ1, χ2 are some vectors in R2.
The operators

∏q

j=1 Pkj
are bounded when the spectrum of the operator (P1P2) lies on the

segment [−1; 1]:
|(χ1; η2) · (χ2; η1)| ≤ 1. (31)

In a standard orthonormalized basis Pk acts like this:

Pkx =
1

(ϕk; ψk)
·

((
x(1)

x(2)

)
;

(
ϕ

(2)
k

−ϕ
(1)
k

))
·

(
ψ

(2)
k

−ψ
(1)
k

)
,

where (
a(1)

a(2)

)

denotes the vector with the coordinates a(1) and a(2). Hence

(η1; χ2) =
(ϕ1; ψ2)

(ϕ2; ψ2)
;

(χ1; η2) =
(ϕ2; ψ1)

(ϕ1; ψ1)
,

i. e. condition (31) takes the form (29).
To complete the proof, use lemma 7. To check a possibility of choosing corresponding norm

in the form (30), note that

(P1P2)
rP1 = (η1; χ2)

r · (η2; χ1)
r · P1;

(P2P1)
rP2 = (η1; χ2)

r · (η2; χ1)
r · P2

for any r ∈ N . It means that with the account of (31), in (27) one can restrict oneself to finite
number of products. The lemma is proved.
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Remark 11. If ϕ1 and ϕ2 are non-collinear, then as required norm we can take

max{‖P1x‖0, ‖P2x‖0, ‖P1P2x‖0, ‖P2P1x‖0}.

This follows from remark 10. Then the ball of the norm is determined by the inequalities

|(x; η1)| ≤ min

{
1

‖χ1‖0

,
1

|(χ1; η2)| · ‖χ2‖0

}
;

|(x; η2)| ≤ min

{
1

‖χ2‖0

,
1

|(χ2; η1)| · ‖χ1‖0

}
,

i. e. it is parallelogram.
Also notice that for simultaneous dissipativity of a family the dissipativity of each operator

from convex hull of the family is insufficient. To see this, consider the operators represented
by the matrices

M1 =

(
−1 1

0 0

)
; M2 =

(
0 0

−2 −1

)
.

Each of them is dissipative in its norm. It is easy to show that spectrum of any non-trivial
convex combination of M1 and M2 lies in open left half-plane. Nevertheless

(ϕ1; ψ2) · (ϕ2; ψ1)

(ϕ1; ψ1) · (ϕ2; ψ2)
= −2,

i. e. condition (29) is not satisfied.
Reasoning like in proof of lemma 8, it is easy to obtain a criterion of a simultaneous

dissipativity for arbitrary m. The result is a set of conditions of the form

(ϕk; ψk) < 0 (k = 1, . . . ,m); (32)

∣∣∣∣
(ϕk1

; ψk2
) · (ϕk2

; ψk3
) · . . . · (ϕkq

; ψk1
)

(ϕk1
; ψk1

) · (ϕk2
; ψk2

) · . . . · (ϕkq
; ψkq

)

∣∣∣∣ ≤ 1, (33)

where {kj}
q
j=1 is a set of different numbers from 1 to m, and inequalities (33) holds for all such

sets. The number of conditions has the order O((m − 1)!) and for any large m testing of these
conditions becomes unrealizable. It turns out, however, that among inequalities (33) there are
dependent ones and the number of conditions can be reduced.

Theorem 9. Let the vectors ψk (k = 1, . . . ,m) lie in one half-plane clockwise. Then the
family of operators {Mk}

m
k=1, where Mk = (·; ψk)ϕk is simultaneously dissipative if and only if

the vectors ϕk (k = 1, . . . ,m) lie in one half-plane clockwise and the conditions (32) and the
followings ((34), (35)) are satisfied:

∣∣∣∣
(ϕk; ψk+1) · (ϕk+1; ψk)

(ϕk; ψk) · (ϕk+1; ψk+1)

∣∣∣∣ ≤ 1 (k = 1, . . . ,m with ϕm+1 = −ϕ1; ψm+1 = −ψ1); (34)





∣∣∣∣
(ϕ1; ψ2) · (ϕ2; ψ3) · . . . · (ϕm; ψ1)

(ϕ1; ψ1) · (ϕ2; ψ2) · . . . · (ϕm; ψm)

∣∣∣∣ ≤ 1;

∣∣∣∣
(ϕ1; ψm) · (ϕm; ψm−1) · . . . · (ϕ2; ψ1)

(ϕ1; ψ1) · (ϕ2; ψ2) · . . . · (ϕm; ψm)

∣∣∣∣ ≤ 1.

(35)
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The corresponding norm can be chosen polyhedral (a norm, whose ball is polygon).
Proof. Necessity. Let lk be the kernels of the operators Mk (i. e. straight lines orthogonal

to ψk). Straight lines lk divide the plane into 2m sectors. If among the vectors ψk there are
collinear, then some sectors are singular, but this does not change the further reasoning. In
each sector G and for each p ∈ {1, . . . ,m}

sign (x1; ψp) = sign (x2; ψp)

for all x1 ∈ int G, x2 ∈ int G.
Let Gr be a sector lying between corresponding rays of straight lines lr and lr+1 (where

lm+1 = l1). It is enough to consider the sectors {Gk}
m
k=1 into which one half-plane is divided,

since for sectors lying in vertical angles to Gk the reasons are the same.
Note that by inequality (32) for each operator Mk the projector Pk is determined, which

operates in each sector Gk as a projector in the direction υkr = sign (x; ψk) · ϕk (x ∈ Gr) onto
the straight line lk.

A norm with respect to which all Mk are dissipative exists if and only if there exist a convex
body Q symmetrical with respect to 0 and positively invariant with respect to all systems of
the following form

dx

dt
=

m∑

k=1

hk(t)(x; ψk)ϕk, (36)

where hk(t) is any function piecewise continuous and non-negative for t ≥ 0. The sufficiency
is evident (suppose hk(t) ≡ 1, hj(t) ≡ 0 for j 6= k and come to dissipativity of Mk with respect
to Q). To prove the necessity, it is sufficient to make an estimation analogous to that made in
the proof of theorem 1:

d

dt
‖x(t)‖Q = NQ

(
x(t),

m∑

k=1

hk(t)Mkx(t)
)
≤

≤ γQ

( m∑

k=1

hk(t)Mkx(t)
)
· ‖x(t)‖Q ≤ 0.

Here ‖.‖Q is a norm whose unit ball is Q.
Since (x; ψk)ϕk = |(x; ψk)| · υkr at x ∈ Gr, then (36) can be rewritten as follows:

dx

dt
=

m∑

k=1

yk(t)υkr (37)

where yk(t) is piecewise continuous and non-negative for t ≥ 0. Thus, it is sufficient to construct
such a polygon W that from each point of its boundary ∂W all the vectors υkr are not directed
into the exterior of W . Then one can take

Q = co {W ∪ (−W )}.

Let (37) have at least one unbounded solution, whose positive semi-trajectory lies inside one
of sectors. Then (36) has an unbounded solution, i. e. the operators Mk are not simultaneously
dissipative.

The notation C{υkr} is used for a convex cone produced by {υkr}
m
r=1.
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Let this cone coincide with R2 at least in one sector Gr (i. e. the vectors generating it do not
lie in one half-plane). Then as yk(t) one can choose such constants that υ =

∑m

k=1 ykυkr ∈ Gr,
and then, drawing a ray from the point x0 ∈ int Gr in the direction of υ, obtain a positive
semi-trajectory of unbounded solution (37) lying inside Gr.

Thus, for simultaneous dissipativity of {Mk} it is necessary to satisfy the conditions

C{υkr} 6= R
2 (k = 1, . . . ,m). (38)

If C{υkr} in some sector is a half-plane, then it must contain the vertical angle to Gr − Ĝr

(and thus intersect with Gr only at zero); otherwise (37) has an unbounded solution. For each
sector Gr consider the boundary of the cone C{υkr}. It consists of two directions. Show that
for Gj it is υjj, υ(j+1),j. It is sufficient to show that for j = 1.

Let υ1,1 and υ2,1 be collinear and oppositely directed. Then to satisfy (38) it is necessary
that the other υk1 lie on one side of the straight line, stretched on υ1,1. But if υ1,1 and υ2,1 are
non-collinear, then all other υk1 can be expanded in terms of the basis υ1,1, υ2,1.

Let, for example, υ3,1 = c1υ1,1 + c2υ2,1, and υ3,1 be collinear to one of the basis vectors
(for example, υ1,1; the case with υ2,1 is considered analogously). Then c2 = 0. If c1 > 0 then
υ3,1 ∈ C{υ1,1, υ2,1}. Let c1 < 0. Then to satisfy (38) in G1 it is necessary for υ1,1 and υ3,1 to
be boundary directions in C{υk1}. Since υk,(l+1) = υkl, if k 6= l + 1, and υ(l+1),(l+1) = −υl,(l+1),
then the same directions are boundary for C{υk2} as well, otherwise (38) is not satisfied in G2.
Simultaneously υ2,1 ∈ C{υk1}, υ2,2 = −υ2,1 ∈ C{υk2}. It means C{υk1} and {υk2} represent
half-plane whose join is all R2, what is impossible. That means c1 > 0.

Let now υ3,1 be non-collinear neither to υ1,1 nor to υ2,1. If c1 < 0, c2 < 0, then in G1 (38)
is not satisfied. If c1 < 0, c2 > 0, then in G2 there υ3,2 = c1υ1,2 + (−c2)υ2,2, i. e. again (38) is
not satisfied. Analogous reasoning hold for the case c1 > 0, c2 < 0, i. e. the only possible case is
c1 ≥ 0, c2 ≥ 0 and therefore υ3,1 ∈ C{υ1,1, υ2,1} (where C{x, y} is a convex cone, stretched on
the vectors x and y).

The case is left when the directions υ1,1 and υ2,1 coincide.
Without loss of generality one can assume non-collinearity of υ3,1 and υ1,1. Then υ2,2 and υ3,2

are boundary directions in C{υk2}. Consequently, υ1,1 ∈ C{−υ1,1, υ3,1} i. e. the directions υ3,1

and υ1,1 coincide contrary to the assumption. It means that if υrr and υ(r+1),r are co-directed,
all υkr are collinear, i. e. all ϕk are collinear. In this case the directions υrr and υ(r+1),r are also
boundary.

We call the obtained fact the boundary condition.
Since all ψk lie clockwise in one half-plane, then it is easy to check that in sector Gm either

all (x; ψk) ≥ 0 for all k or (x; ψk) ≤ 0 for all k. Thus, by virtue of (32), all ϕk lie in one
half-plane. From the boundary condition follows that ϕk ∈ C{ϕk−1, ϕk+1}, i.e vectors ϕk are
arranged either clockwise, or anti-clockwise.

Let, for example, υ1,1 = ϕ1 (the case υ1,1 = −ϕ1 is considered analogously). Then υ2,1 = ϕ2

lies in the half-plane bounded by the straight line stretched on υ1 and containing Ŝ1. Therefore
the direction from ϕ1 to ϕ2 in the half-plane containing all ϕk is the same as from ψ1 to ψ2,
i. e. clockwise.

The necessity of the other conditions is obvious, since (34) – (35) is simply a part of conditions
(33).

Sufficiency. Let the family {ϕk}
m
k=1 be arranged clockwise in one half-plane and the conditions

(32) and (34) – (35) be satisfied. Assume that among ϕk there are non-collinear vectors, and
among ψk there are no collinear ones.
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The condition of clockwise arrangement of ϕk in one half-plane means that the angle
(counted from ϕ1 clockwise) between ϕ1 and the vectors ϕ1, ϕ2, . . . , ϕm, ϕm+1 = −ϕ1 monotonically
increases from 0 to π. Taking into account that the angle between ϕk1 and (−ϕk2) is the angle
between ϕk1 and ϕk2, taken with opposite sign, it is easy to conclude that systems {υkr} (in each
sector) lie in one half-plane and are arranged clockwise (to avoid exiting from corresponding
half-plane we start counting in sector Gr from υ(r+1),r).

From conditions (34) follows that in each sector there is a “convex configuration", i. e. there
is vector x ∈ Gr, representable in the form

x = −
m∑

k=1

ckυkr,

where all ck > 0.
It means that if from one point x̃ ∈ int Gr one draws segments ā and b̄ in the directions of

υrr and υ(r+1),r up to the crossing with lr and lr+1, respectively, then these segments together
with the segments connecting 0 with the point of crossing ā with lr and b̄ with lr+1, respectively,
form a convex polygon (if υrr and υ(r+1),r are oppositely directed, it will be a triangle, and if
they are non-collinear — a quadrangle; as we have seen before they cannot be co-directed).

Due to the same orientation of {ϕk} and {ψk} all the other υkr are directed (from point
x̃) into this polygon, i. e. for any cone C{υkr} directions on the straight lines υr and υr+1 are
boundary.

Fix now the point x0 ∈ l1 (x0 6= 0) on the boundary ray of sector G1 (actually, one can begin
from any straight line lk; we begin from l1). Due to the boundary condition either direction
from x0 on l2 goes into sector G1, or direction from x0 on lm goes into Ĝm.

If one and only one of these statements is true, continue moving in the corresponding
direction (to the neighboring straight line) till the direction on the neighboring straight line
goes into the neighboring sector. In other words, move from lr to lr+1 in the direction parallel to
ϕr, if this direction goes into sector Gr (or, into Ĝr−1, respectively). As a polygon W mentioned
after (37) one should take a polygon formed by the segments which we moved along, and the
segments of those straight lines on which the movement broke (if exit on the initial ray did not
occur, in our case it is a part of l1 corresponding to G1, then it is a segment connecting x0 with
0, and a segment of that straight line on which the movement broke, connecting the point of
breaking with zero; if exit on the initial ray occurred, then it is a segment connecting x0 with
the point of exit).

If both statements are satisfied, then as W one can take a join of two such polygons formed
in moving to both sides from x0.

This algorithm is easy to check proceeding from boundary conditions, “convex configuration",
and (35) (the latter condition means that if exit on the initial ray occurred in moving in either
side, then the point of exit is no farther from the beginning of coordinates than the initial point;
in particular, if the point of exit coincides with the initial point, then the formed polygon can
be taken as W ). The ball of the sought for norm is a polygon.

If some of ψk are collinear, then some sectors Gk are singular. This, however, does not
change the results. The reasoning are analogous to the case when among ψk there are no
collinear vectors. The only difference here is the following: some straight lines lk correspond to
several directions {ϕj}

k1

j=k0
. Then in constructing W one needs to move along ϕk0

.
In the case when all ϕk (or all ψk) are collinear (see corollary 1), all the same one can regard

that {ϕk} and {ψk} have the same orientation, starting from (32).
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Conditions (34) – (35) are satisfied in this case. The norm can be chosen polyhedral, if one
chooses a polyhedral norm as ‖.‖0 in (30). The theorem is proved.

Remark 12. One can obtain the arrangement of vectors ψk required by the conditions of
theorem 9 by renumbering vectors and (if it is necessary) changing signs of some of them.

Thus, the problem of simultaneous dissipativity of a family of operators of rank 1 in R2 is
solved completely. The number of conditions to be checked now, in contrast to (33), is only of
the order O(m).

With theorem 9 one can study the MAL mechanism on dissipativity (and, respectively, on
the absence of IWE). For example, let the mechanism be

A1 → A2, A1 → A3, A2 → A1, A2 → A3,

3A2 → A1 + 2A3, 2A1 → A2 + A3, 2A2 → A1 + A3,

2A3 → A1 + A2, 3A1 → A2 + 2A3, 3A2 → 2A1 + A3,

A1 + A2 → 2A3. (39)

This mechanism possesses positive conservation law c1 + c2 + c3 = const. The corresponding
subspace is the plane

c1 + c2 + c3 = 0.

Obviously, dimL = 2, and one can use theorem 9. Writing matrices M ′
ri and using theorem 9,

let make sure that mechanism (39) is dissipative. The corresponding norm in the subspace L
has the form

‖c‖ = |c1| + |c2|.

It can be expanded onto all R3, for example, in this way:

‖c‖ = |c1| + |c2| + |c1 + c2 + c3|.

To complete the section, consider the question of simultaneous dissipativity of the finite
family of operators of rank 1 of special form in Rn for arbitrary n. Namely, we consider operators
represented by matrix-columns. Let obtain sufficient conditions of simultaneous dissipativity
of such operators.

Let the basis {ek}
n
k=1 and the norm

‖x‖ =
n∑

k=1

pk|xk| (40)

be given in Rn, where pk > 0 (k = 1, . . . , n), xk is the k-th coordinate of vector x in the
basis {ek}. Norm (40) coincides with l1 norm with respect to the basis {ek/pk}. Therefore, the
necessary and sufficient dissipativity conditions of the operator A represented by the matrix
(aij)

n
i,j=1 according to remark 9 have the form

piaii +
∑

j 6=i

pj|aji| ≤ 0 (i = 1, . . . , n). (41)
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Let now there be a family of operators, represented by the matrix-columns Aklk (k=1, . . . , n;
lk = 0, . . . , rk), where Aklk is the lk-th matrix with non-zero k-th column:

Aklk =




0 . . . 0 a
(lk)
1k 0 . . . 0

0 . . . 0 a
(lk)
2k 0 . . . 0

. . . . . . . . .

0 . . . 0 a
(lk)
nk 0 . . . 0




. (42)

Coming from (41), write dissipativity conditions of all operators in norm (40) with some
constants pk:

pka
(lk)
kk +

∑

j 6=k

pj|a
(lk)
jk | ≤ 0 (k = 1, . . . , n; lk = 0, . . . , rk). (43)

Theorem 10. If the system of linear inequalities (43) complemented by the inequalities

pk > 0 (k = 1, . . . , n) (44)

has a solution, then the family of operators represented by matrices (42) is simultaneously
dissipative.

Proof. Solvability of the systems (43), (44) means the existence of positive constants pk (k =
1, . . . , n) for which inequalities (43) are satisfied, and that is dissipativity condition of all
operators of the family in norm (40). Obviously, in this case the family is dissipative. The
theorem is proved.

Thus, for simultaneous dissipativity of finite family of operators represented by matrices-
columns the solvability of above written finite system of linear inequalities proves to be sufficient.
To check solvability, one can use algorithms of linear programming [16].

Remark 13. The solution of the system (43) – (44) exists if there exists solution of the
system of (n− d) linear inequalities complemented by inequalities (44) (where d is the number
of those k for which rk = 0; evidently 0 ≤ d ≤ n − 1). To prove this, assume

akk = max
0≤lk≤rk

a
(lk)
kk ; ajk = max

0≤lk≤rk

|a
(lk)
jk | (j 6= k)

(k = 1, . . . , n).

Consider the system

pkakk +
∑

j 6=k

pjajk ≤ 0 (k = 1, . . . , n). (45)

Obviously, if the set {pk} satisfies the system (44) – (45), then it satisfies the system (43) –
(44) as well. Numbers k for which rk = 0 are excluded. Therefore, in system (45) there are
(n − d) inequalities.

Remark 14. For n = 2 theorem 10 provides necessary and sufficient conditions of simultaneous
dissipativity. To demonstrate that, note that for operator Mk of the considered form the vector
ψk (see the notation at the beginning of the subsection) is directed along one of the coordinate
axes. Therefore (see the proof of sufficiency in theorem 9), if the family is simultaneously
dissipative, then one can choose parallelogram as a ball of the corresponding norm, with vertices
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on coordinate axes, i. e. the norm is of the form (40). In the case of arbitrary n the conditions
of theorem 10 are already not necessary. To see this, let

A1 =




−1 0 0

−1 0 0

1 0 0


 ; A2 =




0 −1 0

0 −1 0

0 1 0


 .

The system of linear inequalities
{

−p1 + p2 + p3 ≤ 0;

p1 − p2 + p3 ≤ 0

has no positive solutions. Nevertheless, simultaneous dissipativity exists, since each of the
operators is dissipative in its norm and ϕ1 = ϕ2 (see corollary 1).

Conclusion

Let us resume. The infinitesimal wrapping effect (IWE) in the interval space for smooth
autonomous system on positively invariant convex compact is studied. The local conditions
of absence of IWE in terms of Jacobi matrices field of the system are obtained. The relation
between the absence of IWE and simultaneous dissipativity of the Jacobi matrices is established,
and some sufficient conditions of simultaneous dissipativity are obtained.

On the basis of the conducted analysis the reason of weak efficiency of interval stepwise
methods is pointed out. The main reason is that to solve the problem of absence of IWE in
the system and to construct corresponding interval space one needs analysis of simultaneous
dissipativity of Jacobi matrices of system and constructing a constricting norm. The latter
questions are rarely solved constructively. Besides, in sufficiently rich interval spaces (for
example, in using standard intervals – rectangular parallelepipeds) IWE is almost always
present. One should, however, remember that the notion of the wrapping effect in the work is
treated sufficiently strongly. The final conclusion on the efficiency of stepwise interval methods
can be drawn only after studying asymptotic wrapping effect (AWE). It should also be noted
that there may be definitions of interval spaces, different from definition 1.

Some particular classes of systems without IWE and corresponding interval spaces are
pointed out. These results can be used in solving by interval methods particular systems from
the pointed out classes.
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