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PaccmaTpuBaeTcs HEOTHOPOIHOE SBOIOIMOHHOE YPaBHEHUE, COJIEPKAIIIEE TIEPBYIO IIPO-
M3BOHYIO IO BDEMEHU U OIIepaTOP, 00PA30BAHHBIN PAZHOCTHIO ABYX OUTAPMOHUIECKIX OITe-
paTopoB pas3HOil pa3MepPHOCTH, KOTOPHI aBTOPHI HasbkiBaioT Diamond-omeparopom. IIpa-
Basi 4YaCTh €CTh JIUIIIHUI-HellpepbiBHAas DyHKIHs pereHus. C MoMOIbIo 1peodpa3oBaHust
Dypbe HaligeHo GYyHIAMEHTAJIHHOE PEIIeHNE PACCMATPUBAEMOI'0 YPABHEHUST U UCCJIEI0Ba~
HBI ero cBoiicTBa. Ha 9T0it ocHOBe aHO SBHOE pEIeHNEe STOTO YPABHEHHUS B BHJIE CBEPTKH
dbyHKIINN npaBoil YacTu ¢ PyHIAMEHTAJLHBIM PEIIeHUEM, JTOKA3aHbl €r0 eIUHCTBEHHOCTh
U OrPAHUYEHHOCTH B PABHOMEDPHON HOPME.

Introduction

It is well known that for the heat equation

9 2
5 u(z,t) = ¢ Au(z, t) (0.1)

with the initial condition
u(z,0) = f(z)
where A = Z pys) is the Laplace operator and (z,t) = (x1, 22, ..., x,,t) € R" x (0,00), and f
-
i=1 i
is a continuous function, we obtain the solution

) = gy | o0 [—ﬂ] Fw)dy (02)

4c?t

as the solution of (0.1).
Now, (0.2) can be written as u(z,t) = E(xz,t) * f(x) where

E(z,t) = ;exp _leP (0.3)
’ (4c2mt)n/2 4c2t | '

(© UncruryT BRIYHCTUTENBbHBIX TexHOMOrH Cubupckoro otnenenus Poccuiickoit akagemun Hayk, 2006.




4 G. Sritanratana, A. Kananthai

E(z,t) is called the heat kernel, where |z|*> = 2% + 23 + -+ + 22 and t > 0, see [2, p. 208-209)].
Moreover, we obtain F(z,t) — § as t — 0, where § is the Dirac-delta distribution. We also
have extended (0.1) to be the equation

9 u(z,t) = —c2Au(z,t) (0.4)
ot
with the initial condition
u(z,0) = f(z)
where A? = AA is the biharmonic operator, that is
o2 o2 o2 2
N2 = — 4+ =) .
(axf Tt axg)

We can find the solution of (0.4) by using the n-dimensional Fourier transform to apply. We

obtain X
) = gy [ [ )
R R™

as a solution of (0.4), or u(x,t) can be written in the convolution form

uw(z,t) = E(z,t) f(2)

where

1 2| ¢4 ;

Elr. 1) = —clEft+iEe) g 0.5

(@.0) = o | € : 05)
R”

P = (G +&+--+&)%and (§,x) = &y + Lxo + - -+ + @y, The function E(z,t) of (0.5)

is the kernel of (0.4) and also E(x,t) — d ast — 0, since

/e(ﬁv”’dg = 6(x),

R

15% Elwt) = (2m)"

see [3, p. 396, Eq. (10.2.19b)]. Now, the purpose of this work is to study the equation

d 2 _
% u(x,t) — c*Qu(x,t) = f(x,t,u(z,t)) (0.6)

which is called the nonlinear diamond heat equation where (z,t) € R" x (0, 00) and the operator
¢ is first introduced by A. Kananthai [1, p. 27-37| and named the Diamond operator defined

by
& 8 \° 8> & &\’
<>:<—+——|----+—) —( + +---+—> , (0.7)
or? 0zl dx? dxZ,, 012, oxz,,
p + g = n is the dimension of space R", (z1,x2,...,2,) € R" and ¢ is a positive constant.

We consider the equation (0.6) with the following conditions on u and f as follows.

1. u(z,t) € CH(R") for any t > 0 where C¥(R™) is the space of continuous function with
4-derivatives.

2. f satisfies the Lipchitz condition, that is |f(z,t,u) — f(z,t,w)| < Alu — w| where A is
constant with 0 < A < 1.



On the nonlinear diamond heat equation related to the spectrum )

3. _
// |f(z, t,u(x, t))| dedt < oo
0 Rn
for z = (x1,29,...,2,) € R" 0 <t < oo and u(zx,t) is continuous function on R"™ x (0, c0).

Under such conditions of f, u and for the spectrum of F(z,t), we obtain the convolution
u(, 1) = B, )/ (o, by u(, )
as a unique solution in the compact subset of R™ x (0,00) where E(x,t) is an elementary
solution defined by (1.5) and is called the Diamond heat kernel.
1. Preliminaries

Definition 1.1. Let f(x) € L;(R") — the space of integrable function in R"™. The Fourier
transform of f(z) is defined by

7 1 —i(&,x
7o) = (%Wz/e € f(2) do (L1)
Rn
where § = (£1,62,--.,&), * = (21, 22,...,2,) € R, (§,0) = 21 + §ox9 + -+ + §u2y 18 the

usual inner product in R" and dz = dxy dxs . . . dz,.
Also, the inverse of Fourier transform is defined by

@) = G | € Fepae (1.2

Rn

Definition 1.2. Let E(xz,t) be defined by (1.5) which is called the diamond heat kernel. The

spectrum of E(x,t) is the bounded support of the Fourier transform ﬂ,\t) for any fixed t > 0.
Definition 1.3. Let £ = (£1,&s,...,&,) be a point in R™ and we write

U=+t G~~~y PHG=1

Denote by I'y = {{ € R" : §; > 0 and u > 0} the set of an interior of the forward cone, and
I'y denotes the closure of T',. _
Let Q be spectrum of E(z,t) defined by definition 1.2 for any fixed t > 0 and  C I',.. Let

E/(é“,\t) be the Fourier transform of E(z,t) and define

P 2 Pt 2
1
ETg?) _ e exp |t <ZZI gf) — < Z §j2> for £ € T'y, (1.3)

Jj=p+1

0 for £ ¢ T,

Lemma 1.1. Let L be the operator defined by

_ 9
L_at o (1.4)
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where < is the Diamond operator defined by

? ?\° 0> i »? \’
= ot ag oty — + TR ,
¢ (ax% 013 8:6723) (890%“ 02,4 6xp+q>
p+q =n is the dimension of R", (z1,x9,...,2,) € R", t € (0,00) and ¢ is a positive constant.
Then we obtain

E(z,t) = (2i>n/exp At <Z§3> <Z f) +i(&,x) | d¢ (1.5)

Q =p+1

as an elementary solution of (1.4) which is called the diamond heat kernel in the spectrum
QCR” fort > 0.
Proof. Let LE(x,t) = §(z,t) where E(z,t) is the kernel or the elementary solution of operator
L and ¢ is the Dirac-delta distribution. Thus

0
aE(w t) — OB (x,t) = 0(x)5(t).

Apply the Fourier transform defined by (1.1) to the both sides of the equation, we obtain

(Zf?) (Zg) F&.0) = gt

p+1

Thus

Jj=p+1

B - o | (S6) - (5 ¢)

where H(t) is the Heaviside function. Since H(t) = 1 for ¢t > 0. Therefore,

P 2 p+q 2
— 1
E,t) = CORE exp |t (;53) - (Z §j2>

Jj=p+1

which has been already defined by (1.3). Thus

Blet) = s [ O BE D = i [ 0 BlE g

Rn Q
where (2 is the spectrum of F(z,t). Thus from (1.3)

E(z,t) = (zi)n/exp c’t (ng) (Z §> +i(&,x) | dE

Q Jj=p+1

for t > 0. 0]
Definition 1.4. Let us extend E(z,t) to R" x R by setting

Blat) = (2;)n/exp 2t (ng) (Z f) +i(&,x) | d§  fort >0,

Q =p+1
0 for ¢t <0.
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2. Main Results

Theorem 2.1. The kernel E(x,t) defined by (1.5) have the following properties:
1) E(z,t) € C>® — the space of continuous function for x € R™, t > 0 with infinitely
differentiable;

2) (2 - 02<>> E(z,t) =0 fort > 0;

ot
3)

227 M(t)
|E(z,t)] < =75 :
i)

fort >0 where M(t) is a function of t in the spectrum Q and I' denote the Gamma function.
Thus E(x,t) is bounded for any fized t > 0;
4) PH&E(Q:,IS) = 0.

Proof.
1. From (1.5), since

P 2 p+q 2
e E(x,t) = (27?)"/8:13” exp | c“t (Zﬁl) - (jz §j> +i(&x) | dE.
0

Thus E(z,t) € C* for z € R", t > 0.
2. By computing directly, we obtain

3. We have

4 2 p+q 2
exp |t (Z{f) — (Z §j2> +i(&, x) | dE,
i=1

Jj=p+1

&
—
8
~
S~—
I
™o
N [ =
=
D\

1 ) I 2 p+q ) 2
B.0] < s [ o [ (25) —(Z@-) s

Q Jj=p+1

By changing to bipolar coordinates

§i=rw, & =rw, ..., =rwp, and i1 = Swpi1, Epra = SWpt2, - -5 Eptg = SWpig
P p+q
where Zw? =1 and Z wj2- = 1. Thus
i=1 ji=p+1
1
|E(x,t)] < o) /exp [t (s* = r)] P " dr ds S, d€,
T n

Q
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where d¢ = r?71s47 1 dr dsdQ), dQ,, dQ, and d©, are the elements of surface area of the unit
sphere in R? and R? respectively. Since 2 C R"™ is the spectrum of E(x,t) and we suppose
0<r<Rand 0<s <L where R and L are constants. Thus we obtain

R L

Q 0,0
P q//exp ct s —T)}Tp lgi=Ydsdr = (QPW)EM()

for any fixed ¢ > 0 in the spectrum

22 M(1)

O

Q:

(2.1)

where

M(t) = /R /L exp [ (s — )] 7150 ds dr (2.2)

and €2, = ——. Thus, for any fixed t > 0, E(x,t) is

bounded.
4. By (1.5), we have

Since E(x,t) exists, then

1 . 1 .
lim E _ i(€7) J¢ / i) 3¢ f R™.
lim (x,1) @) /e d¢ Gn) 'SP d¢ = o0(x), forx €
Q Rn
See [3, p. 396, Eq. (10.2.19b)|. O

Theorem 2.2. Given the nonlinear equation

0 2
a u(x t) —C <>U(x t) f(ac,t,u(a:,t)) (23)

for (z,t) € R™ x (0,00) and with the following conditions on u and f as follows:

1) u(z,t) € CO(R™) for any t > 0 where CW(R™) is the space of continuous function with
4-derivatives;

2) f satisfies the Lipchitz condition, that is |f(x,t,u) — f(z,t,w)| < Alu — w| where A is

constant and 0 < A < 1;
3)

//’f(%t,u(ai,t))!dxdt< 00

0 Rn

forx = (z1,29,...,2,) € R", t € (0,00) and u(z,t) is continuous function on R™ x (0, 00).
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Then we obtain the convolution
u(z,t) = E(x,t) f(z,t,u(z,t)) (2.4)

as a unique solution of (2.3) for x € Qo where Qq is an compact subset of R, 0 < t < T with T
is constant and E(z,t) is an elementary solution defined by (1.5) and also u(x,t) is bounded.
In particular, if we put p =0 in (2.3) then (2.3) reduces to the nonlinear equation

%u(x, t) — A%, 1) = f(2,t u(x, 1))

which 1s related to the heat equation.

Proof. Convolving both sides of (2.3) with E(z,¢) and then we obtain the solution
u(z,t) = Bz, t)f(z,t,u(z,1))

or

u(z,t) = 7/E(7’,s)f(x—r,t—s,u(x—r,t—s))drds

where E(r,s) is given by Definition 1.4.
We next show that u(z,t) is bounded on R™ x (0,00). We have

[e.e]

TR 2) " \2

by the condition 3 and (2.1) where

N = 7/ (2, t,u(z, )| du dt.

0 R»

Thus u(z,t) is bounded on R"™ x (0, 00).
To show that u(x,t) is unique, suppose there is another solution w(x,t) of equation (2.3).

Let the operator

0
L:——2
TR

then (2.3) can be written in the form

Lu(z,t) = f(z,t,u(x,t)).

Thus
Lu(z,t) — Lw(z,t) = f(z,t,u(z,t)) — f(z,t,w(x,t)).

By the condition 2 of the Theorem,
|Lu(z,t) — Lw(z,t)| < Alu(z,t) — w(z,t)]. (2.5)

Let Qg x (0, 7] be compact subset of R” x (0,00) and L : C(Qq) — CH(Q) for 0 <t < T.
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Now (C™W (), || - ||) is a Banach space where u(z,t) € CW () for 0 < ¢t < T, |- || given by

Ju(z, )| = sup|u(z, t)].
€

Then, from (2.5) with 0 < A < 1, the operator L is a contraction mapping on C™(€)). Since
(CW(Q), || - ||) is a Banach space and L : C(Q) — C™W(Qy) is a contraction mapping on
C™(€), by Contraction Theorem, see [4, p. 300], we obtain the operator L has a fixed point
and has uniqueness property. Thus u(x,t) = w(x,t). It follows that the solution u(z,t) of (2.3)
is unique for (x,t) € Qo x (0, 7] where u(x,t) is defined by (2.4).

In particular, if we put p = 0 in (2.3) then (2.3) reduces to the nonlinear equation

0 2 A2 -
5 u(x,t) — c*ANu(z,t) = f(z,t,u(x,t))

which has solution
u(z,t) = E(x,t) f(z,t,u(z, 1))

where E(z,t) is defined by (1.5) with p = 0. That is complete of proof. O
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