Информация о публикации

Просмотр записей
Инд. авторы: Gusev O.I., Beisel S.A.
Заглавие: Tsunami dispersion sensitivity to seismic source parameters
Библ. ссылка: Gusev O.I., Beisel S.A. Tsunami dispersion sensitivity to seismic source parameters // Science of Tsunami Hazards. - 2016. - Vol.35. - Iss. 2. - P.84-105. - ISSN 8755-6839.
Внешние системы: РИНЦ: 27154529; SCOPUS: 2-s2.0-84969833428;
Реферат: eng: The study focuses on the sensitivity of frequency dispersion effects to the form of initial surface elevation of seismic tsunami source. We vary such parameters of the source as rupture depth, dip-angle and rake-angle. Some variations in magnitude and strike angle are considered. The fully nonlinear dispersive model on a rotating sphere is used for wave propagation simulations. The main feature of the algorithm is the splitting of initial system on two subproblems of elliptic and hyperbolic type, which allows implementation of well-suitable numerical methods for them. The dispersive effects are estimated through differences between computations with the dispersive and nondispersive models. We consider an idealized test with a constant depth, a model basin for near-field tsunami simulations and a realistic scenario. Our computations show that the dispersion effects are strongly sensitive to the rupture depth and the dip-angle variations. Waves generated by sources with lager magnitude may be even more affected by dispersion. © 2016 - TSUNAMI SOCIETY INTERNATIONAL.
Ключевые слова: Tsunami propagation; Seismic source; Rotating sphere; Fully nonlinear dispersive model; Frequency dispersion; Numerical modelling;
Издано: 2016
Физ. характеристика: с.84-105
Цитирование:
1. Cherevko A.A. and Chupakhin A.P. (2009). Equations of the shallow water model on a rotating attracting sphere.1. Derivation and general properties. J. Appl. Mech. Tech. Phys. Vol. 50, No 2. P 188-198.
2. Chubarov L.B. and Guslakov V.K. (1985). Tsunamis and earthquake mechanisms in the island arc regions // Science of Tsunami Hazards. Tsunami Society, Honolulu, USA. Vol. 3, No 1. P. 3-21.
3. Dao M.H. and Tkalich P. (2007). Tsunami propagation modelling - a sensitivity study. Nat. Hazards Earth Syst. Sci. Vol. 7. P. 741-754.
4. Didenkulova I.I., Pelinovsky E.N. and Didenkulov O.I. (2014). Run-up of long solitary waves of different polarities on a plane beach. Izv. Atmos. Oceanic Phys. Pleiades Publishing. Vol. 50, No 5. 532-538.
5. Fedotova Z.I. and Khakimzyanov G.S. (2010). Nonlinear-dispersive shallow water equations on a rotating sphere. Russian Journal of Numerical Analysis and Mathematical Modelling. De Gruyter. Vol. 25, No 1. P. 15-26.
6. Fedotova Z.I. and Khakimzyanov G.S. (2014). Nonlinear-dispersive shallow water equations on a rotating sphere and conservation laws. Journal of Applied Mechanics and Technical Physics. Springer. Vol. 55, No 3. P. 404-416.
7. Fedotova Z.I., Khakimzyanov G.S. and Gusev O.I. (2015). History of the development and analysis of numerical methods for solving nonlinear dispersive equations of hydrodynamics. I. One-dimensional models problems. Computational Technologies. Russia, ICT SB RAS. Vol. 20, No 5. P. 120-156 (In Russian).
8. Glimsdal, S., Pedersen G.K., Harbitz C.B. and Lovholt F. (2013). Dispersion of tsunamis: does it really matter? Nat. Hazards Earth Syst. Sci. Vol. 13. P. 1507-1526.
9. Gusev O.I. (2012). On an algorithm for surface waves calculation within the framework of nonlinear dispersive model with a movable bottom. Computational technologies. Russia, ICT SB RAS. Vol. 17, No. 5. P. 46-64 (In Russian).
10. Gusev O.I. (2014). Algorithm for surface waves calculation above a movable bottom within the frame of plane nonlinear dispersive model. Computational technologies. Russia, ICT SB RAS. Vol. 19, No 6. P. 19-41 (In Russian).
11. Gusev O.I. and Khakimzyanov G.S. (2015). Numerical simulation of long surface waves on a rotating sphere within the framework of the full nonlinear dispersive model. Computational Technologies. Russia, ICT SB RAS. Vol. 20, No 3. P. 3-32 (In Russian).
12. Gusev O.I., Shokina N.Y., Kutergin V.A. and Khakimzyanov G.S. (2013). Numerical modelling of surface waves generated by underwater landslide in a reservoir. Computational technologies. Russia, ICT SB RAS. Vol. 18, No 5. P. 74-90 (In Russian).
13. Gusiakov V.K. (1978). Static displacement on the surface of an elastic space. Ill-posed problems of mathematical physics and interpretation of geophysical data. Novosibirsk, VC SOAN SSSR. P. 23-51 (in Russian).
14. Horrillo J., Grilli S.T., Nicolsky D., Roeber V., Zhang J. (2015). Performance benchmarking tsunami models for NTHMP's inundation mapping activities. Pure Appl. Geophys. Vol. 172, No. 3-4. P. 869-884.
15. Kajiura K. (1963). The leading wave of a tsunami. Bull. Earthq. Res. Inst. Vol. 41. P. 535-571
16. Khakimzyanov G.S., Gusev O.I., Beisel S.A., Chubarov L.B. and Shokina N.Yu (2015). Simulation of tsunami waves generated by submarine landslides in the Black Sea. Russian Journal of Numerical Analysis and Mathematical Modelling. De Gruyter. Vol. 30, No 4. P. 227-237
17. Khakimzyanov G.S., Shokin Yu.I., Barakhnin V.B. and Shokina N.Yu (2001). Numerical modelling of fluid flows with surface waves. Publishing House of SB RAS, Novosibirsk (In Russian)
18. Kirby J.T., Shi F., Tehranirad B., Harris J.C. and Grilli S.T. (2013). Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects. Ocean Modelling. Vol. 62. P. 39-55.
19. Kosykh V.S., Chubarov L.B., Gusiakov V.K., Kamaev D.A., Grigor'eva V.M. and Beisel S.A. (2013). A technique for computing maximum heights of tsunami waves at protected Far Eastern coastal points of the Russian Federation. Results from Testing of New and Improved Technologies, Models, and Methods of Hydrometeorological Forecasts. IG SOTsIN, Moscow-Obninsk. No 40, P. 115-134 (In Russian).
20. Lovholt F., Pedersen G.K. and Gisler G. (2008). Oceanic propagation of a potential tsunami from the La Palma Island. J. Geophys. Res. Vol. 113. C09026.
21. Lynett P.J. and Liu P.L.-F. (2002). A numerical study of submarine-landslide-generated waves and run-up. Proc. Royal Society of London. A. Vol. 458. P. 2885-2910
22. Okada Y. (1985). Surface deformation due to shear and tensile faults in a half space. Bull. Seism. Soc. Am. Vol. 75. P. 1135-1154.
23. Pelinovsky E.N. (1996). Hydrodynamics of tsunami waves. Institute of Applied Physics RAS, Nizhny Novgorod (In Russian).
24. Shi F, Kirby J.T., Harris J.C., Geiman J.D., Grilli S.T. (2012). A high-order adaptive timestepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modelling. Vol. 43-44. P. 36-51.
25. Shokin Yu.I., Babailov V.V., Beisel S.A., Chubarov L.B., Eletsky S.V., Fedotova Z.I., Gusiakov V.K. (2008). Mathematical Modeling in Application to Regional Tsunami Warning Systems Operations. Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Berlin: Springer. Vol. 101: Computational Science and High Performance Computing III. P.52-68.
26. Tadepalli S. and Synolakis C.E. (1994). The runup of N-waves. Proc. Royal Soc. London. A445. P. 99-112.
27. Titov V. and Synolakis, C.E. (1995). Evolution and runup of breaking and nonbreaking waves using VTSC2. Journal of Waterway, Port, Coastal and Ocean Engineering. Vol. 126, No 6. P. 308-316.