Инд. авторы: | Лисачев П.Д., Пустыльняк В.О., Штарк М.Б. |
Заглавие: | Регуляция экспрессии S100B при долговременной потенциации |
Библ. ссылка: | Лисачев П.Д., Пустыльняк В.О., Штарк М.Б. Регуляция экспрессии S100B при долговременной потенциации // Российский физиологический журнал им. И.М. Сеченова. - 2014. - Т.100. - № 8. - С.953-963. - ISSN 0869-8139. |
Внешние системы: | РИНЦ: 21836103; |
Реферат: | eng: In this study, contributions of intracellular regulatory cascades in the induction of S100B expression in rat hippocampal CA1 area during long term posttetanic potentiation (LTP) were estimated. The activation of transcription factor p53 (positive regulator of S100B transcription) by nutlin-3 increased the basal content of S100B mRNA up to 151 % of the control level, which was significantly lower than its content in tetanized slices (280 %). Therefore, p53 seems to be not unique transcription factor upregulating S100B expression during LTP. The inhibitor of Ca 2+/calmodulin-dependent kinases (CaMKs) KN-93 fully blocked the increase of S100B mRNA after tetanization, while KN-92 (inactive analogue of KN-93) was ineffective. The inhibitor of CaMKII and receptor tyrosine kinases K-252a essentially suppressed S100B expression during LTP, the inhibition of MAPK p38 or RSK2 moderately decreased, and the inhibition of MEK1 did not influence S100B mRNA content. Thus, CaMKs play a key role in the induction of S100B expression during LTP. rus: Исследовалась роль внутриклеточных регуляторных каскадов в индукции экспрессии S100B при формировании долговременной посттетанической потенциации (ДПТП) в поле CA1 срезов гиппокампа крыс. Активация транскрипционного фактора p53 (позитивного регулятора транскрипции S100B) с помощью nutlin-3 увеличивала базальный уровень мРНК S100B до 151 % относительно контроля, что было существенно ниже ее содержания в тетанизированных срезах (280 %). Следовательно, p53 - не единственный транскрипционный фактор, регулирующий экспрессию S100B при ДПТП. Ингибитор Са 2+/кальмодулинзависимых киназ (CaMK) KN-93 полностью блокировал увеличение уровня мРНК S100B после тетанизации, а его неактивный аналог KN-92 не влиял на экспрессию S100B. Ингибитор CaMKII и рецепторных тирозинкиназ K-252a существенно подавлял экспрессию S100B при ДПТП, ингибирование MAPK p38 или RSK2 умеренно снижало, а ингибирование MEK1 не влияло на количество мРНК S100B. Таким образом, кальмодулин-киназы играют ключевую роль в индукции экспрессии S100B при ДПТП. |
Ключевые слова: | долговременная потенциация; Hippocampal slices; long term potentiation; Ca 2+/calmodulin-dependent kinases; Ca 2+/кальмодулинзависимые киназы; p53; S100b; CA1; срезы гиппокампа; |
Издано: | 2014 |
Физ. характеристика: | с.953-963 |
Цитирование: | 1. Лисачев П. Д., Пустыльняк В. О., Штарк М. Б., Эпштейн О. И. Индукция экспрессии гена S100B при долговременной потенциации в поле CA1 гиппокампа зависит от активности рецепторов NMDA-типа. Бюл. эксперим. биологии и медицины. 154 (10) : 481-484. 2012. 2. Alessi D. R., Cuenda A., Cohen P., Dudley D. T., Saltiel A. R. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J. Biol. Chem. 270 (46) : 27 489-27 494. 1995. 3. Arnould T., Vankoningsloo S., Renard P., Houbion A., Ninane N., Demazy C., Remacle J., Raes M. CREB activation induced by mitochondrial dysfunction is a new signaling pathway that impairs cell proliferation. EMBO J. 21 (1-2) : 53-63. 2002. 4. Bain J., Plater L., Elliott M., Shpiro N., Hastie C. J., McLauchlan H., Klevernic I., Arthur J. S., Alessi D. R., Cohen P. The selectivity of protein kinase inhibitors: a further update. Biochem. J. 408 (3) : 297-315. 2007. 5. Berg M. M., Sternberg D. W., Parada L. F., Chao M. V. K-252a inhibits nerve growth factor-induced trk proto-oncogene tyrosine phosphorylation and kinase activity. J. Biol. Chem. 267 (1) : 13-16. 1992. 6. Chawla S., Vanhoutte P., Arnold F. J., Huang C. L., Bading H. Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J. Neurochem. 85 : 151-159. 2003. 7. Cho Y. Y., He Z., Zhang Y., Choi H. S., Zhu F., Choi B. Y., Kang B. S., Ma W. Y., Bode A. M., Dong Z. The p53 protein is a novel substrate of ribosomal S6 kinase 2 and a critical intermediary for ribosomal S6 kinase 2 and histone H3 interaction. Cancer Res. 65 : 3596-3603. 2005. 8. Condon J. C., Pezzi V., Drummond B. M., Yin S., Rainey W. E. Calmodulin-dependent kinase I regulates adrenal cell expression of aldosterone synthase. Endocrinology. 143 (9) : 3651-3657. 2002. 9. Craig A. L., Chrystal J. A., Fraser J. A., Sphyris N., Lin Y., Harrison B. J., Scott M. T., Dornreiter I., Hupp T. R. The MDM2 ubiquitination signal in the DNA-binding domain of p53 forms a docking site for calcium calmodulin kinase superfamily members. Mol. Cell. Biol. 27 : 3542-3555. 2007. 10. Donato R., Cannon B. R., Sorci G., Riuzzi F., Hsu K., Weber D. J., Geczy C. L. Functions of S100 Proteins. Curr. Mol. Med. 13 (1) : 24-57. 2013. 11. Donato R., Sorci G., Riuzzi F., Arcuri C., Bianchi R., Brozzi F., Tubaro C., Giambanco I. S100B’s double life: intracellular regulator and extracellular signal. Biochim. Biophys. Acta. 1793 (6) : 1008-1022. 2009. 12. Fomina-Yadlin D., Kubicek S., Walpita D., Dancik V., Hecksher-Sørensen J., Bittker J. A., Sharifnia T., Shamji A., Clemons P. A., Wagner B. K., Schreiber S. L. Small-molecule inducers of insulin expression in pancreatic alpha-cells. Proc. Natl. Acad. Sci. USA. 107 (34) : 15 099-15 104. 2010. 13. Gao L., Blair L. A., Marshall J. CaMKII-independent effects of KN93 and its inactive analog KN92 : reversible inhibition of L-type calcium channels. Biochem. Biophys. Res. Commun. 345 (4) : 1606-1610. 2006. 14. Golubovskaya V. M. Targeting FAK in human cancer: from finding to first clinical trials. Front. Biosci. (Landmark Ed). 19 : 687-706. 2014. 15. Gonzalez-Guerrico A. M., Meshki J., Xiao L., Benavides F., Conti C. J., Kazanietz M. G. Molecular mechanisms of protein kinase C-induced apoptosis in prostate cancer cells. J. Biochem. Mol. Biol. 38 (6) : 639-645. 2005. 16. Hashimoto Y., Nakayama T., Teramoto T., Kato H., Watanabe T., Kinoshita M., Tsukamoto K., Tokunaga K., Kurokawa K., Nakanishi S., Matsuda Y., Nonomura Y. Potent and preferential inhibition of Ca 2+/calmodulin-dependent protein kinase II by K252a and its derivative, KT5926. Biochem. Biophys. Res. Commun. 181 (1) : 423-429. 1991. 17. Huang C., Ma W. Y., Maxiner A., Sun Y., Dong Z. p38 kinase mediates UV-induced phosphorylation of p53 protein at serine 389. J. Biol. Chem. 274 : 12 229-12 235. 1999. 18. Kase H., Iwahashi K., Nakanishi S., Matsuda Y., Yamada K., Takahashi M., Murakata C., Sato A., Kaneko M. K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases. Biochem. Biophys. Res. Commun. 142 (2) : 436-440. 1987. 19. Lin J., Yang Q., Yan Z., Markowitz J., Wilder P. T., Carrier F., Weber D. J. Inhibiting S100B restores p53 levels in primary malignant melanoma cancer cells. J. Biol. Chem. 279 (32) : 34 071-34 077. 2004. 20. Lisachev P. D., Shtark M. B., Sokolova O. O., Pustylnyak V. O., Salakhutdinova M. Yu., Epstein O. I. A Comparison of the dynamics of S100B, S100A1, and S100A6 mRNA expression in hippocampal CA1 area of rats during long-term potentiation and after low-frequency stimulation. Cardiovasc. Psychiatry Neurol. 2010 : 720 958. 2010. 21. Madara J. C., Levine E. S. Presynaptic and postsynaptic NMDA receptors mediate distinct effects of brain-derived neurotrophic factor on synaptic transmission. J. Neurophysiol. 100 : 3175-3184. 2008. 22. Martiny-Baron G., Kazanietz M. G., Mischak H., Blumberg P. M., Kochs G., Hug H., Marmé D., Schächtele C. Selective inhibition of protein kinase C isozymes by the indolocarbazole Gö 6976. J. Biol. Chem. 268 (13) : 9194-9197. 1993. 23. Maroney A. C., Lipfert L., Forbes M. E., Glicksman M. A., Neff N. T., Siman R., Dionne C. A. K-252a induces tyrosine phosphorylation of the focal adhesion kinase and neurite outgrowth in human neuroblastoma SH-SY5Y cells. J. Neurochem. 64 (2) : 540-549. 1995. 24. Mellström B., Savignac M., Gomez-Villafuertes R., Naranjo J. R. Ca 2+-operated transcriptional networks: molecular mechanisms and in vivo models. Physiol. Rev. 88 (2) : 421-449. 2008. 25. Miyamoto E. Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus. J. Pharmacol. Sci. 100 : 433-442. 2006. 26. Nakanishi S., Yamada K., Kase H., Nakamura S., Nonomura Y. K-252a, a novel microbial product, inhibits smooth muscle myosin light chain kinase. J. Biol. Chem. 263 (13) : 6215-6219. 1988. 27. Nayak G., Cooper G. M. p53 is a major component of the transcriptional and apoptotic program regulated by PI 3-kinase-Akt-GSK3 signaling. Cell Death Dis. 3 : e400. 2012. 28. Nishiyama H., Knopfel T., Endo S., Itohara S. Glial protein S100B modulates long-term neuronal synaptic plasticity. Proc. Natl. Acad. Sci. USA. 99 : 4037-4042. 2002. 29. Parpura V., Grubišiæ V., Verkhratsky A. Ca 2+ sources for the exocytotic release of glutamate from astrocytes. Biochim. Biophys. Acta. 1813 : 984-991. 2011. 30. Perea G., Araque A. GLIA modulates synaptic transmission. Brain Res. Rev. 63 : 93-102. 2010. 31. Pustylnyak V. O., Lisachev P. D., Shtark M. B., Epstein O. I. Regulation of S100B gene in rat hippocampal CA1 area during long term potentiation. Brain Res. 1394 : 33-39. 2011. 32. Rothermundt M., Ahn J. N., Jorgens S. S100B in schizophrenia: an update. Gen. Physiol. Biophys. 28 : F76-F81. 2009. 33. Qin C., Nguyen T., Stewart J., Samudio I., Burghardt R., Safe S. Estrogen up-regulation of p53 gene expression in MCF-7 breast cancer cells is mediated by calmodulin kinase IV-dependent activation of a nuclear factor kB/CCAAT-binding transcription factor-1 complex. Mol. Endocrinol. 16 (8) : 1793-1809. 2002. 34. Sakatani S., Seto-Ohshima A., Shinohara Y., Yamamoto Y., Yamamoto H., Itohara S., Hirase H. Neural-activity-dependent release of S100B from astrocytes enhances kainate-induced gamma oscillations in vivo. J. Neurosci. 28 (43) : 10 928-10 936. 2008. 35. Schmitt J. M., Guire E. S., Saneyoshi T., Soderling T. R. Calmodulin-dependent kinase kinase/calmodulin kinase I activity gates extracellular-regulated kinase-dependent long-term potentiation. J. Neurosci. 25 (5) : 1281-1290. 2005. 36. Schroeter M. L., Abdul-Khaliq H., Sache J., Steiner J., Blasig I. E., Mueller K. Mood disorders are glial disorders: evidence from in vivo studies. Cardiovasc. Psychiatry Neurol. 2010 : 780 645. 2010. 37. Sorci G., Bianchi R., Riuzzi F., Tubaro C., Arcuri C., Giambanco I., Donato R. S100B protein, a damage-associated molecular pattern protein in the brain and heart, and beyond. Cardiovasc. Psychiatry Neurol. 2010 : 656 481. 2010. 38. Sumi M., Kiuchi K., Ishikawa T., Ishii A., Hagiwara M., Nagatsu T., Hidaka H. The newly synthesized selective Ca2+/calmodulin dependent protein kinase II inhibitor KN-93 reduces dopamine contents in PC12h cells. Biochem. Biophys. Res. Commun. 181 (3) : 968-975. 1991. 39. Takeda K., Ichijo H. Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system. Genes Cells. 7 : 1099-1111. 2002. 40. Vassilev L. T., Vu B. T., Graves B., Carvajal D., Podlaski F., Filipovic Z., Kong N., Kammlott U., Lukacs C., Klein C., Fotouhi N., Liu E. A. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 303 : 844-848. 2004. 41. Wayman G. A., Tokumitsu H., Davare M. A., Soderling T. R. Analysis of CaM-kinase signaling in cells. Cell Calcium. 50 (1) : 1-8. 2011. 42. Yano S., Tokumitsu H., Soderling T. R. Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature. 396 : 584-587. 1998. 43. Zarubin T., Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res. 15 (1) : 11-18. 2005. 44. Zheng F., Luo Y., Wang H. Regulation of BDNF-mediated transcription of immediate early gene Arc by intracellular calcium and calmodulin. J. Neurosci. Res. 87 (2) : 380-392. 2009. |