Цитирование: | 1. Cea, L., & Vazquez-Cendon, M. (2012). Unstructured finite volume discretisation of bed friction and convective flux in solute transport models linked to the shallow water equations. Journal of Computational Physics (231), pp. 3317-3339.
2. Cea, L., Puertas, J., & Vazquez-Cendon, M.-E. (2007, September). Depth averaged modelling of turbulent shallow water flow with wet-dry fonts. Archives of Computational Methods in Engineering, 14 (3), pp. 303-341.
3. Chaouat, B., & Schiestel, R. (2002). Reynolds stress transport modelling for steady and unsteady channel flows with wall injection. Journal of Turbulence, 3, pp. 1-16.
4. Chu, V. H., & Babarutsi, S. (1988). Confinement and bed-friction effects in shallow turbulent mixing layers. Journal of Hydraulic Engineering, 10 (114), pp. 1257-1274.
5. Duc, B., Wenka, T., & Rodi, W. (2004, September). Numerical modeling of bed deformation in laboratory channels. Journal of Hydraulic Engineering, 9, pp. 894-904.
6. Finaud-Guyot, P., Delenne, C., Guinot, V., & Llovel, C. (2011). 1D-2D coupling for river flow modeling. Comptes Rendus Mecanique (339), pp. 226-234.
7. Hou, J., Simons, F., Mahgoub, M., & Hinkelmann, R. (2013). A robust well-balanced model on unstructured grids for shallow water flows with wetting and drying over complex topography. Computer Methods in Applied Mechanics and Engineering (257), pp. 126-149.
8. Kang, S., & Sotiropoulos, F. (2012). Numerical modeling of 3D turbulent free surface flow in natural waterways. Advances in Water Resources (40), pp. 23-36.
9. Kang, S., Lightbody, A., Hill, C., & Sotiropoulos, F. (2011). High-resolution numerical simulation of turbulence in natural waterways. Advances in Water Resources, 34, pp. 98-113.
10. Lyubimova, T. P., Lepihin, A. P., & Parshakova, Y. A. (2010). Tiunov, A. I. (2010). Chislennoe modelirovanie razbavleniya i perenosa vysokomineralizovannyh rassolov v turbulentnyh potokah. Vychislitel'naya mekhanika sploshnyh sred, pp. 68-79.
11. McGuirk, J. J., & Rodi, W. (1978). A depth-averaged mathematical model for the near field of side discharges into open channel flow. Journal of Fluid Mechanics, 88, pp. 761-781.
12. Olsen, N. R., & Stokseth, S. (1995). Three-dimensional numerical modelling of water flow in a river with large bed roughness. Journal of Hydraulic Research, 33, pp. 571-581.
13. Patankar, S. V. (1980). Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation. River2D Hydrodynamic Model for Fish Habitat. (2002). Retrieved 2015 10-06 from River2D: http://www.river2d.ualberta.ca/.
14. Rodi, V. (1984). Models of turbulence in the environment (Modeli turbulentnosti okruzhayuscheiy srediy). Methods of Measuring Turbulent Flows (Metodi rascheta turbulentikh techenii), pp. 276-378.
15. Sandiv, S. K., Sotiropoulos, F., & Odgaard, A. J. (1998 January). Three-dimensional numerical model for flow through natural rivers. Journal of Hydraulic Engineering, 124 (1), pp. 13-24.
16. Sauvaget, P., David, E., & Soares, C. (2000). Modelling tidal currents on the coast of Portugal. Coastal Engineering (40), pp. 393-409.
17. Sedov, L. I. (2013). Mekhanika v SSSR za 50 let. Moskva: Ripol Klassik.
18. Uijttewaal, W. (2014). Hydrodynamics of shallow flows: application to rivers. Journal of Hydraulic Research, 52 (2), pp. 157-172.
19. Uijttewaal, W., & Booij, R. (2000). Effects of shallowness on the development. Physics of Fluids, 2 (12), pp. 392-402.
20. Van Leer, B. (1979). Towards the ultimate conservative difference scheme. Journal of Computational Physics, pp. 10-136.
21. Yu, L., & Righetto, A. M. (2001). Depth-averaged k-omega turbulence model and application. Advances in Engineering Software (32), pp. 375-394.
22. Yu, L., & Zhu, S. P. (1993). Numerical simulation of discharged waste heat and contaminants into the south estuary of the Yangtze River. Mathematical and Computer Modelling, 18 (12), pp. 107-123.
|