Информация о публикации

Просмотр записей
Инд. авторы: Kovenya V.M., Babintsev P.V.
Заглавие: Simulation of supersonic flows on the basis of splitting algorithms
Библ. ссылка: Kovenya V.M., Babintsev P.V. Simulation of supersonic flows on the basis of splitting algorithms // Journal of Applied Mechanics and Technical Physics. - 2017. - Vol.58. - Iss. 5. - P.801-808. - ISSN 0021-8944. - EISSN 1573-8620.
Внешние системы: DOI: 10.1134/S0021894417050054; РИНЦ: 35481042; SCOPUS: 2-s2.0-85037527150; WoS: 000432475800005;
Реферат: eng: For the numerical simulation of aerodynamics problems, the Euler and Navier — Stokes equations written in integral form are used to construct an implicit finite-volume predictor-corrector scheme. At the predictor stage, the splitting of equations into physical processes and spatial directions is introduced, which makes it possible to reduce the solution of the original system to the solution of individual equations on fractional steps by the scalar sweep method and ensure the stability of the algorithm as a whole. The paper also describes the supersonic gas flows in a narrowing channel with regular and non-regular reflection of the compression shock from the symmetry plane and the numerical substantiation of the existence of pulsating flow with a supersonic flow past a cylinder with a needle. © 2017, Pleiades Publishing, Ltd.
Ключевые слова: Shock waves; Supersonic flow; Finite volume schemes; Flow past a cylinder; Physical process; Predictor-corrector schemes; Navier Stokes equations; Supersonic gas flows; Stokes equations; Splitting algorithms; Spatial direction; Separation; Computational fluid dynamics; supersonic flows; shock waves; separations; finite-volume schemes; Euler and Navier — Stokes equations;
Издано: 2017
Физ. характеристика: с.801-808
Цитирование:
1. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, et al., Numerical Solution of Multidimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian].
2. A. A. Samarskii, The Theory of Difference Schemes (Marcel Dekker, New York, 2001).
3. G. I. Marchuk, Methods of Computational Mathematics. 3rd Edition (Moscow, Nauka, 1989) [in Russian].
4. V. M. Kovenya and N. N. Yanenko, Splitting Method in Problems of Gas Dynamics (Nauka. Sib. Otd., Novosibirsk, 1981) [in Russian].
5. P. J. Roache, Computational Fluid Dynamics (Hermosa Publishers, 1976).
6. S. Yamomoto and H. Daiguji, “Higher-Order Accurate Upwind Schemes for Solving the Compressible Euler and Navier - Stokes Equations,” Computers Fluids 22, 259-270 (1993).
7. R. J. Le Veque, Finite-volume Methods for Hyperbolic Problems (Cambridge Univ. Press, Cambridge, 2002).
8. J. B. Vos, A. Rizzi, D. Darrac, et al., “Navier-Stokes Solvers in European Aircraft Design,” Progress Aerospace Sci. 38, 601-697 (2002).
9. V. M. Kovenya, Splitting Algorithms for Solving the Multidimensional Problems of Aerodynamics (Izd. Sib. Otd. Ros. Akad. Nauk, Novosibirsk, 2014) [in Russian].
10. V. M. Kovenya and P. V. Babintsev, “Splitting Algorithms in the Finite-volume Method,” Vychisl. Tekhnologii 20 (6), 65-84 (2015).
11. L. G. Loitsianskii, Mechanics of Liquids and Gases (Pergamon Press, 1966).
12. M. S. Ivanov, D. Vandromme, V. M. Fomin, et al., “Transition Between Regular and Mach Reflection of Shock Waves: New Numerical and Experimental Results,” Shock Waves 11 (3), 197-207 (2001).
13. J. von Neumann, “Oblique Reflection of Shock Waves,” in Collected Works of J. von Neumann. Vol. 6 (Pergamon Press, Oxford, 1963).
14. V. I. Zapryagaev and I. N. Kavun, “Experimental Study of the Reverse Flow in the Forward Separation Region in a Pulsating Flow Around a Spiked Body,” Prikl. Mekh. Tekh. Fiz. 48 (4), 30-39 (2007) [J. Appl. Mech. Tech. Phys. 48 (4), 492-500 (2007)].
15. V. M. Kovenya and A. A. Eremin, “The Predictor-Corrector Method for the Numerical Solution of Euler and Navier - Stokes Equations,” Vestn. Novosib. Gos. Univ. Ser. Matematika, Mekhanika, Informatika 15 (2), 22-37 (2015).