Инд. авторы: | Воропаева О.Ф., Лисачев П.Д., Сенотрусова С.Д., Шокин Ю.И. |
Заглавие: | Гиперактивация сигнального пути p53-микроРНК: математическое моделирование вариантов противоопухолевой терапии |
Библ. ссылка: | Воропаева О.Ф., Лисачев П.Д., Сенотрусова С.Д., Шокин Ю.И. Гиперактивация сигнального пути p53-микроРНК: математическое моделирование вариантов противоопухолевой терапии // Математическая биология и биоинформатика. - 2019. - Т.14. - № 1. - С.355-372. - EISSN 1994-6538. |
Внешние системы: | DOI: 10.17537/2019.14.355; РИНЦ: 38500487; |
Реферат: | rus: Выполнено численное исследование функционирования системы p53 - ингибитор - microRNA с использованием минимальной математической модели, описывающей лишь наиболее общие закономерности функционирования биологической системы c отрицательной обратной связью p53 - белок-ингибитор и положительной обратной связью p53 - microRNA. Адекватность принятой модели и результатов численного анализа подтверждается согласием с известными данными лабораторных исследований. В рамках принятой модели рассмотрены возможные стратегии восстановления нормального уровня p53 и p53-зависимых микроРНК в целях профилактики угрозы рака. Изучены варианты противораковой терапии, связанные с гиперактивацией регуляторов апоптоза p53 и микроРНК. Показана потенциально высокая эффективность противораковой терапии, мишенью которой является белок-ингибитор p53 как основное звено петли положительной обратной связи p53 - microRNA. eng: We carried out a numerical simulation of the system p53-inhibitor-microRNA. A minimal mathematical model was used, which describes only the most common features of the functioning of a biological system with a negative feedback p53-inhibitory protein and a positive feedback p53-microRNA. Adequacy of the accepted model and results of the computational analysis is confirmed by agreement with published data of biological experiments. In the frames of the accepted model, possible strategies were descried for the restoration of the p53 and its target microRNAs normal levels for cancer prevention. In addition, possible variants of anticancer therapies were studied, which are associated with the hyperactivation of the regulators of apoptosis p53 and microRNAs. Our results demonstrate potentially high effectiveness of the anticancer therapy targeted on the p53 inhibitor, which is a critical element of the positive feedback chain p53-microRNA. |
Ключевые слова: | уравнение с запаздыванием; онкомаркер; р53; Mdm2; Wip1; микроРНК; numerical simulation; delay differential equation; tumor marker; microRNA; positive feedback; положительная обратная связь; численное моделирование; |
Издано: | 2019 |
Физ. характеристика: | с.355-372 |
Цитирование: | 1. Vousden K.H., Prives C. Blinded by the light: The growing complexity of p53. Cell. 2009. V. 137. P. 413-431. doi: 10.1016/j.cell.2009.04.037. 2. Желтухин А.О., Чумаков П.М. Повседневные и индуцируемые функции гена p53. Успехи биол. химии. 2010. Т. 50. С. 447-516. 3. Muller P.A., Vousden K.H. p53 mutations in cancer. Nat. Cell Biol. 2013. V. 15. P. 2-8. doi: 10.1038/ncb2641. 4. Liu J., Zhang C., Hu W., Feng Z. Tumor suppressor p53 and its mutants in cancer metabolism. Cancer Lett. 2015. V. 356. P. 197-203. doi: 10.1016/j.canlet.2013.12.025. 5. Алмазов В.П., Кочетков Д.В., Чумаков П.М. p53 - инструмент для терапии злокачественных заболеваний человека. Молекулярная биология. 2007. Т. 41. № 6. С. 947-963. 6. Liu J., Zhang C., Zhao Y., Feng Z. MicroRNA control of p53. J. Cell. Biochem. 2017. V. 118. P. 7-14. doi: 10.1002/jcb.25609. 7. He L., He X., Lim L.P., Stanchina E.D., Xuan Z., Liang Y., Xue W., Zender L., Magnus J., Ridzon D., et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007. V. 447. P. 1130-1134. doi: 10.1038/nature05939. 8. Tarasov V., Jung P., Verdoodt B., Lodygin D., Epanchintsev A., Menssen A., Meister G., Hermeking H. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle. 2007. V. 6. № 13. P. 1586-1593. doi: 10.4161/cc.6.13.4436. 9. Shin S., Lee E.M., Cha H.J., Bae S., Jung J. H., Lee S.M., Yoon Y., Lee H., Kim S., Kim H. et al. MicroRNAs that respond to histone deacetylase inhibitor SAHA and p53 in HCT116 human colon carcinoma cells. Int. J. Oncol. 2009. V. 35. P. 1343-1352. doi: 10.3892/ijo_00000452. 10. Bisio A., De Sanctis V., Del Vescovo V., Denti M.A., Jegga A.G., Inga A., Ciribilli Y. Identification of new p53 target microRNAs by bioinformatics and functional analysis. BMC Cancer. 2013. V. 13. Article No. 552. doi: 10.1186/1471-2407-13-552. 11. Ren Z.J., Nong X.Y., Lv Y.R., Sun H.H., An P.P., Wang F., Li X., Liu M., Tang H. Mir-509-5p joins the Mdm2/p53 feedback loop and regulates cancer cell growth. Cell Death Dis. 2014. V. 5. Article No. e1387. doi: 10.1038/cddis.2014.327. 12. Selbach M., Schwanhausser B., Thierfelder N., Fang Z., Khanin R., Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008. V. 455. P. 58-63. doi: 10.1038/nature07228. 13. Bartel D.P. Metazoan microRNAs. Cell. 2018. V. 173. P. 20-51. doi: 10.1016/j.cell.2018.03.006. 14. Vasudevan S. Posttranscriptional upregulation by microRNAs. WIREs RNA. 2012. V. 3. P. 311-330. doi: 10.1002/wrna.121. 15. Suzuki H.I., Yamagata K., Sugimoto K., Iwamoto T., Kato S., Miyazono K. Modulation of microRNA processing by p53. Nature. 2009. V. 460. P. 529-533. doi: 10.1038/nature08199. 16. Harris S.L., Levine A.J. The p53 pathway: positive and negative feedback loops. Oncogene. 2005. V. 24. P. 2899-2908. doi: 10.1038/sj.onc.1208615. 17. Чумаков П.М. Белок p53 и его универсальные функции в многоклеточном организме. Успехи биол. химии. 2007. Т. 47. С. 3-52. 18. Lu X. Tied up in loops: positive and negative autoregulation of p53. Cold Spring Harb. Perspect. Biol. 2010. V. 2. Article No. a000984. doi: 10.1101/cshperspect.a000984. 19. Tricoli JV, Jacobson JW. MicroRNA: Potential for cancer detection, diagnosis, and prognosis. Cancer Res. 2007. V. 67. P. 4553-4555. doi: 10.1158/0008-5472.CAN-07-0563. 20. Xie C., Chen W., Zhang M., Cai Q., Xu W., Li X., Jiang S. MDM4 regulation by the let-7 miRNA family in the DNA damage response of glioma cells. FEBS Lett. 2015. V. 589. P. 1958-1965. doi: 10.1016/j.febslet.2015.05.030. 21. Rahman M., Lovat F., Romano G., Calore F., Acunzo M., Bell E.H., Nana-Sinkam P. miR-15b/16-2 regulates factors that promote p53 phosphorylation and augments the DNA damage response following radiation in the lung. J. Biol. Chem. 2014. V. 289. P. 26406-26416. doi: 10.1074/jbc.M114.573592. 22. Zhang X., Wan G., Mlotshwa S., Vance V., Berger F.G., Chen H., Lu X. Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res. 2010. V. 70. P. 7176-7186. doi: 10.1158/0008-5472.CAN-10-0697. 23. Issler M.V.C., Mombach J.C.M. MicroRNA-16 feedback loop with p53 and Wip1 can regulate cell fate determination between apoptosis and senescence in DNA damage response. PLoS ONE. 2017. V. 12. Article No. e0185794. doi: 10.1371/journal.pone.0185794. 24. Ugalde A.P., Ramsay A.J., de la Rosa J., Varela I., Mariño G., Cadiñanos J., Lu J., Freije J.M., López-Otín C. Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53. EMBO J. 2011. V. 30. P. 2219-2232. doi: 10.1038/emboj.2011.124. 25. Wang B., Li D., Sidler C., Rodriguez-Juarez R., Singh N., Heyns M., Ilnytskyy Y., Bronson R.T., Kovalchuk O. A suppressive role of ionizing radiation-responsive miR-29c in the development of liver carcinoma via targeting WIP1. Oncotarget. 2015. V. 6. P. 9937-9950. doi: 10.18632/oncotarget.3157. 26. Bommer G.T., Gerin I., Feng Y., Kaczorowski A.J., Kuick R., Love R.E., Zhai Y., Giordano T.J., Qin Z.S., Moore B.B. et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol. 2007. V. 17. P. 1298-1307. doi: 10.1016/j.cub.2007.06.068. 27. Yamakuchi M., Lowenstein C.J. MiR-34, SIRT1, and p53: The feedback loop. Cell Cycle. 2009. V. 8. P. 712-715. doi: 10.4161/cc.8.5.7753. 28. Neault M., Couteau F., Bonneau É., De Guire V., Mallette F.A. Molecular regulation of cellular senescence by microRNAs: implications in cancer and age-related diseases. Int. Rev. Cell. Mol. Biol. 2017. V. 334. P. 27-98. doi: 10.1016/bs.ircmb.2017.04.001. 29. Zhang J., Sun Q., Zhang Z., Ge S., Han Z.G., Chen W.T. Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the Mdm2-p53 feedback loop. Oncogene. 2013. V. 32. P. 61-69. doi: 10.1038/onc.2012.28. 30. Pichiorri F., Suh S.S., Rocci A., De Luca L., Taccioli C., Santhanam R., Zhou W., Benson D.M. Jr, Hofmainster C., Alder H. et al. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell. 2010. V. 18. P. 367-381. doi: 10.1016/j.ccr.2010.09.005. 31. Fornari F., Milazzo M., Galassi M., Callegari E., Veronese A., Miyaaki H., Sabbioni S., Mantovani V., Marasco E., Chieco P. et al. p53/mdm2 feedback loop sustains miR-221 expression and dictates the response to anticancer treatments in hepatocellular carcinoma. Mol. Cancer Res. 2014. V. 12. P. 203-216. doi: 10.1158/1541-7786.MCR-13-0312-T. 32. Scarola M., Schoeftner S., Schneider C., Benetti R. miR-335 directly targets Rb1 (pRb/p105) in a proximal connection to p53-dependent stress response. Cancer Res. 2010. V. 70. P. 6925-6933. doi: 10.1158/0008-5472.CAN-10-0141. 33. Xiao J., Lin H., Luo X., Luo X., Wang Z. miR-605 joins p53 network to form a p53:miR-605:Mdm2 positive feedback loop in response to stress. EMBO J. 2011. V. 30. P. 524-532. doi: 10.1038/emboj.2010.347. 34. Batchelor E., Loewer A. Recent progress and open challenges in modeling p53 dynamics in single cells. Curr. Opin. Syst. Biol. 2017. V. 3. P. 54-59. doi: 10.1016/j.coisb.2017.04.007. 35. Воропаева О.Ф., Шокин Ю.И. Численное моделирование обратной связи p53-Mdm2 в биологическом процессе апоптоза. Вычислительные технологии. 2012. Т. 17. № 6. C. 47-63. 36. Воропаева О.Ф., Шокин Ю.И., Непомнящих Л.М., Сенчукова С.Р. Математическое моделирование функционирования и регуляции биологической системы p53-Mdm2. Москва: изд-во РАМН, 2014. 176 с. 37. Воропаева О.Ф., Сенотрусова С.Д., Шокин Ю.И. Дерегуляция p53-зависимых микроРНК: результаты математического моделирования. Математическая биология и биоинформатика. 2017. Т. 12. № 1. С. 151-175. doi: 10.17537/2017.12.151. 38. Zhao C., Zhang Y., Popel A.S. Mechanistic computational models of microRNA-mediated signaling networks in human diseases. Int. J. Mol. Sci. 2019. V. 20. № 2. doi: 10.3390/ijms20020421. 39. Khanin R., Vinciotti V. Computational Modeling of Post-Transcriptional Gene Regulation by MicroRNAs. J. Computational Biology. 2008. V. 15. № 3. P. 305-316. doi: 10.1089/cmb.2007.0184. 40. Nissan T., Parker R. Computational analysis of miRNA-mediated repression of translation: Implications for models of translation initiation inhibition. RNA. 2008. V. 14. № 8. P. 1480-1491. doi: 10.1261/rna.1072808. 41. Zinovyev A., Morozova N., Nonne N., Barillot E., Harel-Bellan A., Gorban A.N. Dynamical modeling of microRNA action on the protein translation process. BMC Systems Biology. 2010. V. 4. № 13. doi: 10.1186/1752-0509-4-13. 42. Zinovyev A., Morozova N., Gorban A., Harel-Belan A. Mathematical modeling of microRNA-mediated mechanisms of translation repression. Adv. Exp. Med. Biol. 2013. V. 774. P. 189-224. doi: 10.1007/978-94-007-5590-1_11. 43. Zhdanov V.P. Effect of non-coding RNA on bistability and oscillations in mRNA-protein interplay. Biophys. Rev. Lett. 2010. V. 5. № 2. P. 89-107. doi: 10.1142/S1793048010001159. 44. Zhdanov V.P. Kinetic models of gene expression including non-coding RNAs. Physics Reports. 2011. V. 500. № 1. P. 1-42. doi: 10.1016/j.physrep.2010.12.002. 45. Zhdanov V.P. Intracellular miRNA or siRNA delivery and function. BioSystems. 2018. V. 171. P. 20-25. doi: 10.1016/j.biosystems.2018.05.007. 46. Kang H.-W., Crawford M., Fabbri M., Nuovo G., Garofalo M., Nana-Sinkam S.P., Friedman A. A mathematical model for microRNA in lung cancer. PLoS ONE. 2013. V. 8. № 1. Article No. e53663. doi: 10.1371/journal.pone.0053663. 47. Nikolova E., Jordanov I., Vitanov N.K. Dynamical features of the quasi-stationary microRNA-mediated protein translation process supported by eIF4F translation initiation factors. Computers and Mathematics with Applications. 2013. V. 66. P. 1716-1725. doi: 10.1016/j.camwa.2013.04.021. 48. Schmitz U., Wolkenhauer O., Vera Ju. MicroRNA cancer regulation: advanced concepts, bioinformatics and systems biology tools. Advances in experimental medicine and biology. 2013. V. 774. doi: 10.1007/978-94-007-5590-1. 49. Vera Ju., Schmitz U., Lai X., Engelmann D., Khan F. M., Wolkenhauer O., Putzer B. M. Kinetic modeling-based detection of genetic signatures that provide chemoresistance via the E2F1-p73/DNp73-miR-205 network. Cancer Research. 2013. V. 73. № 12. P. 3511-3524. doi: 10.1158/0008-5472.CAN-12-4095. 50. Lai X., Schmitz U., Gupta S. K., Bhattacharya A., Kunz M., Wolkenhauer O., Vera Ju. Computational analysis of target hub gene repression regulated by multiple and cooperative miRNAs. Nucleic Acids Research. 2012. V. 40. № 18. P. 8818-8834. doi: 10.1093/nar/gks657. 51. Nikolov S., Vera Ju., Schmitz U., Wolkenhauer O. A model-based strategy to investigate the role of microRNA regulation in cancer signalling networks. Theory in Biosciences. 2011. V. 130. № 1. P. 55-69. doi: 10.1007/s12064-010-0109-5. 52. Lai X., Wolkenhauer O., Vera Ju. Modeling miRNA regulation in cancer signaling systems: mir-34a regulation of the p53/Sirt1 signaling module. Computational Modeling of Signaling Networks. Methods in Molecular Biology. 2012. V. 880. P. 87-108. doi: 10.1007/978-1-61779-833-7_6. 53. Lai X., Wolkenhauer O., Vera Ju. Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucleic Acids Research. 2016. V. 44. № 13. P. 6019-6035. doi: 10.1093/nar/gkw550. 54. Lai X., Bhattacharya A., Schmitz U., Kunz M., Vera Ju., Wolkenhauer O. A systems’ biology approach to study microRNA-mediated gene regulatory networks. BioMed Research International. 2013. V. 2013. Article No. 703849. doi: 10.1155/2013/703849. 55. Luo Z., Azencott R., Zhao Y. Modeling miRNA-mRNA interactions: fitting chemical kinetics equations to microarray data. BMC Systems Biology. 2014. V. 8. № 19. doi: 10.1186/1752-0509-8-19. 56. Ooi H.K., Ma L. Integral control feedback circuit for the reactivation of malfunctioning p53 pathway. arXiv: 1510.04136 [q-bio.MN]. 2015. URL: arxiv.org/abs/1510.04136 (accessed 17.03.2019). 57. Azam M. R., Fazal S., Ullah M., Bhatti A. I. System-based strategies for p53 recovery. IET Syst. Biol. 2018. V. 12. № 3. P. 101-107. doi: 10.1049/iet-syb.2017.0025. 58. Moore R., Ooi H.K., Kang T., Bleris L., Ma L. MiR-192-mediated positive feedback loop controls the robustness of stress-induced p53 oscillations in breast cancer cells. PLoS Computational Biology. 2015. V. 11. № 12. Article No. e1004653. doi: 10.1371/journal.pcbi.1004653. 59. Jonak K., Kurpas M., Szoltysek K., Janus P., Abramowicz A., Puszynski K. A novel mathematical model of ATM/p53/NF-κB pathways points to the importance of the DDR switch-off mechanisms. BMC Systems Biology. 2016. V. 10. № 75. doi: 10.1186/s12918-016-0293-0. 60. Liu Z., Shen J., Cai S., Yan F. MicroRNA regulatory network: structure and function. Springer, 2018. 231 p. doi: 10.1007/978-94-024-1577-3. 61. Zhang T., Brazhnik P., Tyson J.J. Exploring mechanisms of the DNA-damage response: p53 pulses and their possible relevance to apoptosis. Cell Cycle. 2007. V. 6. № 1. P. 85-94. doi: 10.4161/cc.6.1.3705. 62. Gupta S., Silveira D.A., Mombach J.C.M. Modeling the role of microRNA-449a in the regulation of the G2/M cell cycle checkpoint in prostate LNCaP cells under ionizing radiation. PLoS ONE. 2018. V. 13. № 7. Article No. e0200768. doi: 10.1371/journal.pone.0200768. 63. Tiana G., Jensen M.H., Sneppen K. Time delay as a key to apoptosis induction in the p53 network. Eur. Phys. J. B. 2002. № 29. P. 135-140. doi: 10.1140/epjb/e2002-00271-1. 64. Воропаева О.Ф., Козлова А.О., Сенотрусова С.Д. Численный анализ перехода от уравнения с запаздыванием к системе ОДУ в математической модели сети онкомаркеров. Вычислительные технологии. 2016. Т. 21. № 2. С. 12-25. 65. Воропаева О.Ф., Сенотрусова С.Д. Переход от уравнения с запаздыванием к системе обыкновенных дифференциальных уравнений в модели сети онкомаркеров. Математическое моделирование. 2017. Т. 29. № 9. С. 135-154. 66. Сенотрусова С.Д., Воропаева О.Ф. Математическое моделирование функционирования положительной связи в системе онкомаркеров р53-микроРНК. Сиб. журн. вычисл. математики. 2019. Т. 22. № 3. С. 17-34. 67. Kitadate A., Ikeda S., Teshima K., Ito M., Toyota I., Hasunuma N., Takahashi N., Miyagaki T., Sugaya M., Tagawa H. MicroRNA-16 mediates the regulation of a senescence-apoptosis switch in cutaneous T-cell and other non-Hodgkin lymphomas. Oncogene. 2016. V. 35. № 28. P. 3692-3704. doi: 10.1038/onc.2015.435. 68. Munk R., Panda A.C., Grammatikakis I., Gorospe M., Abdelmohsen K. Senescence-associated microRNAs. International Review of Cell and Molecular Biology. 2017. V. 334. P. 177-205. doi: 10.1016/bs.ircmb.2017.03.008. 69. Batchelor E., Mock C.S., Bhan I., Loewer A., Lahav G. Recurrent initiation: A mechanism for triggering p53 pulses in response to DNA damage. Molecular Cell. 2008. V. 30. № 3. P. 277-289. doi: 10.1016/j.molcel.2008.03.016. 70. Yang R., Huang B., Zhu Y., Li Y., Liu F., Shi J. Cell type-dependent bimodal p53 activation engenders a dynamic mechanism of chemoresistance. Science Advances. 2018. V. 4. №. 12. Article No. eaat5077. doi: 10.1126/sciadv.aat5077. 71. Okada N., Lin C.-P., Ribeiro M.C., Biton A., Lai G., He X., Bu P., Vogel H., Jablons D.M., Keller A.C. et al. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes & Development. 2014. V. 28. P. 438-450. doi: 10.1101/gad.233585.113. 72. Concepcion C.P., Han Y.-C., Mu P., Bonetti C., Yao E., D’Andrea A., Vidigal J.A., Maughan W.P., Ogrodowski P., Ventura A. Intact p53-dependent responses in mir-34-deficient mice. PLoS Genetics. 2012. V. 8. № 7. Article No. e1002797. doi: 10.1371/journal.pgen.1002797. 73. Navarro F., Lieberman J. miR-34 and p53: new insights into a complex functional relationship. PLoS ONE. 2015. V. 10. Article No. e0132767. doi: 10.1371/journal.pone.0132767. 74. Yu J., Baron V., Mercola D., Mustelin T., Adamson E.D. A network of p73, p53 and Egr1 is required for effcient apoptosis in tumor cells. Cell Death and Differentiation. 2007. V. 14. P. 436-446. doi: 10.1038/sj.cdd.4402029. 75. Kato R., Mizuno S., Kadowaki M., Shiozaki K., Akai M., Nakagawa K., Oikawa T., Iguchi M., Osanai K., Ishizaki T. et al. Sirt1 expression is associated with CD31 expression in blood cells from patients with chronic obstructive pulmonary disease. Respiratory Research. 2016. V. 17. Article No. 139. doi: 10.1186/s12931-016-0452-2. 76. Castro R.E., Ferreira D.M.S., Afonso M.B., Borralho P.M., Machado M.V., Cortez-Pinto H., Rodrigues C.M. miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J. Hepatology. 2013. V. 58. № 1. P. 119-125. doi: 10.1016/j.jhep.2012.08.008. 77. Baker J.R., Vuppusetty C., Colley T., Papaioannou A.I., Fenwick P., Donnelly L., Ito K., Barnes P.J. Oxidative stress dependent microRNA-34a activation via PI3Kα reduces the expression of sirtuin-1 and sirtuin-6 in epithelial cells. Scientific Reports. 2016. V. 6. Article No. 35871. doi: 10.1038/srep35871. |