Цитирование: | 1. Ohta K, Kuwayama Y, Hirose K, et al. Experimental determination of the electrical resistivity of iron at Earth’s core conditions. Nature. 2016; 534: 95–98. doi: 10.1038/nature17957
2. Pourovskii LV, Mravlje J, Georges A, et al. Electron–electron scattering and thermal conductivity of ϵ -iron at Earth’s core conditions. New J. Phys. 2017; 19: 073022. doi: 10.1088/1367-2630/aa76c9
3. Xu J, Zhang P, Haule K, et al. Thermal conductivity and electrical resistivity of Solid iron at Earth’s Core conditions from first Principles. Phys. Rev. Lett. 2018; 121: 096601. doi: 10.1103/PhysRevLett.121.096601
4. Konôpková Z, Lazor P, Goncharov AF, et al. Thermal conductivity of hcp iron at high pressure and temperature. High Press. Res. 2011; 31: 228–236. doi: 10.1080/08957959.2010.545059
5. Konôpková Z, McWilliams RS, Gómez-Pérez N, et al. Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature. 2016; 534: 99–101. doi: 10.1038/nature18009
6. Zinin PV, Bykov AA, Machikhin AS, et al. Measurement of the temperature distribution on the surface of the laser heated specimen in a diamond anvil cell system by the tandem imaging acousto-optical filter. High Press. Res. 2019; 39: 131–149. doi: 10.1080/08957959.2018.1564748
7. Saha P, Mazumder A, Mukherjee GD., Thermal conductivity of dense hcp iron: direct measurements using laser heated diamond anvil cell. Geosci. Front. 2020: S1674987120300232.
8. Campbell AJ., Measurement of temperature distributions across laser heated samples by multispectral imaging radiometry. Rev. Sci. Instrum. 2008; 79: 015108. doi: 10.1063/1.2827513
9. Geballe ZM, Sime N, Badro J, et al. Thermal conductivity near the bottom of the Earth’s lower mantle: measurements of pyrolite up to 120 GPa and 2500 K. Earth Planet. Sci. Lett. 2020; 536: 116161. doi: 10.1016/j.epsl.2020.116161
10. Bulatov KM, Zinin PV, Mantrova YV, et al. Simultaneous measurements of the two-dimensional distribution of infrared laser intensity and temperature in a single-sided laser-heated diamond anvil cell. Comptes Rendus Geosci. 2019; 351: 286–294. doi: 10.1016/j.crte.2018.06.011
11. Akahama Y, Kawamura H., Pressure calibration of diamond anvil Raman gauge to 310 GPa. J. Appl. Phys. 2006; 100: 043516. doi: 10.1063/1.2335683
12. Boehler R., Temperatures in the Earth’s core from melting-point measurements of iron at high static pressures. Nature. 1993; 363: 534–536. doi: 10.1038/363534a0
13. Anzellini S, Dewaele A, Mezouar M, et al. Melting of iron at Earth’s inner core boundary based on fast X-ray diffraction. Science. 2013; 340: 464–466. doi: 10.1126/science.1233514
14. Phillip HR, Taft EA., Kramers-Kronig analysis of reflectance data for diamond. Phys. Rev. 1964; 136: A1445–A1448. doi: 10.1103/PhysRev.136.A1445
15. Balzaretti NM, da Jornada JAH., Pressure dependence of the refractive index of diamond, cubic silicon carbide and cubic boron nitride. Solid State Commun. 1996; 99: 943–948. doi: 10.1016/0038-1098(96)00341-9
16. Malitson IH, Dodge MJ., Refractive index and birefringence of synthetic sapphire. J. Opt. Soc. Am. 1972; 62: 1405.
17. Cao X, Wang Y, Li X, et al. Refractive index and phase transformation of sapphire under shock pressures up to 210 GPa. J. Appl. Phys. 2017; 121: 115903. doi: 10.1063/1.4978746
18. Seagle CT, Heinz DL, Liu Z, et al. Synchrotron infrared reflectivity measurements of iron at high pressures. Appl. Opt. 2009; 48: 545–552. doi: 10.1364/AO.48.000545
19. Machikhin AS, Zinin PV, Shurygin AV, et al. Imaging system based on a tandem acousto-optical tunable filter for in situ measurements of the high temperature distribution. Opt. Lett. 2016; 41: 901–904. doi: 10.1364/OL.41.000901
20. Bulatov KM, Mantrova YV, Bykov AA, et al. Multi-spectral image processing for the measurement of a spatial temperature distribution on the surface of a laser-heated microscopic object. Comput. Opt. 2017; 41: 864–868. doi: 10.18287/2412-6179-2017-41-6-864-868
21. Hust JG, Lankford AB., Thermal conductivity of aluminum, copper, iron, and tungsten for temperatures from 1 K to the melting point [Internet]. Gaithersburg, MD: National Bureau of Standards; 1984 [cited 2018 Jun 30]. Report No.: NBS IR 84-3007. Available from: https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nbsir84-3007.pdf.
22. Perecherla A, Williams WS., Room-temperature thermal conductivity of cemented transition-metal carbides. J. Am. Ceram. Soc. 1988; 71: 1130–1133. doi: 10.1111/j.1151-2916.1988.tb05804.x
23. Yue D, Gao Y, Zhao L, et al. In situ thermal conductivity measurement in diamond anvil cell. Jpn. J. Appl. Phys. 2019; 58: 040906. doi: 10.7567/1347-4065/ab01f1
24. Giampaoli R, Kantor I, Mezouar M, et al. Measurement of temperature in the laser heated diamond anvil cell: comparison between reflective and refractive optics. High Press. Res. 2018; 38: 250–269. doi: 10.1080/08957959.2018.1480017
25. Hasegawa A, Yagi T, Ohta K., Combination of pulsed light heating thermoreflectance and laser-heated diamond anvil cell for in-situ high pressure-temperature thermal diffusivity measurements. Rev. Sci. Instrum. 2019; 90: 074901. doi: 10.1063/1.5093343
|