Информация о публикации

Просмотр записей
Инд. авторы: Bulatov K.M., Semenov A.N., Bykov A.A., Machikhin A.S., Litasov K.D., Zinin P.V., Rashchenko S.V.
Заглавие: Measurement of thermal conductivity in laser-heated diamond anvil cell using radial temperature distribution
Библ. ссылка: Bulatov K.M., Semenov A.N., Bykov A.A., Machikhin A.S., Litasov K.D., Zinin P.V., Rashchenko S.V. Measurement of thermal conductivity in laser-heated diamond anvil cell using radial temperature distribution // High Pressure Research. - 2020. - ISSN 0895-7959. - EISSN 1477-2299.
Внешние системы: DOI: 10.1080/08957959.2020.1763334; РИНЦ: 45468715; SCOPUS: 2-s2.0-85085011661; WoS: 000534138500001;
Реферат: eng: Thermal conductivities of planetary materials under extreme conditions are important input parameters for modeling planetary dynamics such as accretion, geodynamo and magnetic field evolution, plate tectonics, volcanism-related processes etc. However, direct experimental measurements of thermal conductivity at extreme conditions remain challenging and controversial. Here we propose a new technique of thermal conductivity measurement in laser-heated diamond anvil cell (LH-DAC) based on radial temperature distribution around laser focal spot, mapped by imaging tandem acousto-optical tunable filter (TAOTF). The new technique provides much more information about heat fluxes in the laser-heated sample than existing static heating setups, and does not require dynamic numerical modeling using heat capacities in contrast to dynamic pulsed heating setups. In the test experiment, thermal conductivity of γ-Fe at conditions relevant to cores of terrestrial planets was measured. © 2020, © 2020 Informa UK Limited, trading as Taylor & Francis Group.
Ключевые слова: Thermal conductivity measurements; Terrestrial planets; Radial temperature distribution; Planetary materials; Laser-heated diamond anvil cells; Extreme conditions; Dynamic numerical modeling; Acousto-optical tunable filter; Pulsed lasers; Experimental mineralogy; Thermal conductivity; TAOTF; LH-DAC; iron; high pressure; Temperature distribution; Thermal conductivity;
Издано: 2020
Цитирование:
1. Ohta K, Kuwayama Y, Hirose K, et al. Experimental determination of the electrical resistivity of iron at Earth’s core conditions. Nature. 2016; 534: 95–98. doi: 10.1038/nature17957
2. Pourovskii LV, Mravlje J, Georges A, et al. Electron–electron scattering and thermal conductivity of ϵ -iron at Earth’s core conditions. New J. Phys. 2017; 19: 073022. doi: 10.1088/1367-2630/aa76c9
3. Xu J, Zhang P, Haule K, et al. Thermal conductivity and electrical resistivity of Solid iron at Earth’s Core conditions from first Principles. Phys. Rev. Lett. 2018; 121: 096601. doi: 10.1103/PhysRevLett.121.096601
4. Konôpková Z, Lazor P, Goncharov AF, et al. Thermal conductivity of hcp iron at high pressure and temperature. High Press. Res. 2011; 31: 228–236. doi: 10.1080/08957959.2010.545059
5. Konôpková Z, McWilliams RS, Gómez-Pérez N, et al. Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature. 2016; 534: 99–101. doi: 10.1038/nature18009
6. Zinin PV, Bykov AA, Machikhin AS, et al. Measurement of the temperature distribution on the surface of the laser heated specimen in a diamond anvil cell system by the tandem imaging acousto-optical filter. High Press. Res. 2019; 39: 131–149. doi: 10.1080/08957959.2018.1564748
7. Saha P, Mazumder A, Mukherjee GD., Thermal conductivity of dense hcp iron: direct measurements using laser heated diamond anvil cell. Geosci. Front. 2020: S1674987120300232.
8. Campbell AJ., Measurement of temperature distributions across laser heated samples by multispectral imaging radiometry. Rev. Sci. Instrum. 2008; 79: 015108. doi: 10.1063/1.2827513
9. Geballe ZM, Sime N, Badro J, et al. Thermal conductivity near the bottom of the Earth’s lower mantle: measurements of pyrolite up to 120 GPa and 2500 K. Earth Planet. Sci. Lett. 2020; 536: 116161. doi: 10.1016/j.epsl.2020.116161
10. Bulatov KM, Zinin PV, Mantrova YV, et al. Simultaneous measurements of the two-dimensional distribution of infrared laser intensity and temperature in a single-sided laser-heated diamond anvil cell. Comptes Rendus Geosci. 2019; 351: 286–294. doi: 10.1016/j.crte.2018.06.011
11. Akahama Y, Kawamura H., Pressure calibration of diamond anvil Raman gauge to 310 GPa. J. Appl. Phys. 2006; 100: 043516. doi: 10.1063/1.2335683
12. Boehler R., Temperatures in the Earth’s core from melting-point measurements of iron at high static pressures. Nature. 1993; 363: 534–536. doi: 10.1038/363534a0
13. Anzellini S, Dewaele A, Mezouar M, et al. Melting of iron at Earth’s inner core boundary based on fast X-ray diffraction. Science. 2013; 340: 464–466. doi: 10.1126/science.1233514
14. Phillip HR, Taft EA., Kramers-Kronig analysis of reflectance data for diamond. Phys. Rev. 1964; 136: A1445–A1448. doi: 10.1103/PhysRev.136.A1445
15. Balzaretti NM, da Jornada JAH., Pressure dependence of the refractive index of diamond, cubic silicon carbide and cubic boron nitride. Solid State Commun. 1996; 99: 943–948. doi: 10.1016/0038-1098(96)00341-9
16. Malitson IH, Dodge MJ., Refractive index and birefringence of synthetic sapphire. J. Opt. Soc. Am. 1972; 62: 1405.
17. Cao X, Wang Y, Li X, et al. Refractive index and phase transformation of sapphire under shock pressures up to 210 GPa. J. Appl. Phys. 2017; 121: 115903. doi: 10.1063/1.4978746
18. Seagle CT, Heinz DL, Liu Z, et al. Synchrotron infrared reflectivity measurements of iron at high pressures. Appl. Opt. 2009; 48: 545–552. doi: 10.1364/AO.48.000545
19. Machikhin AS, Zinin PV, Shurygin AV, et al. Imaging system based on a tandem acousto-optical tunable filter for in situ measurements of the high temperature distribution. Opt. Lett. 2016; 41: 901–904. doi: 10.1364/OL.41.000901
20. Bulatov KM, Mantrova YV, Bykov AA, et al. Multi-spectral image processing for the measurement of a spatial temperature distribution on the surface of a laser-heated microscopic object. Comput. Opt. 2017; 41: 864–868. doi: 10.18287/2412-6179-2017-41-6-864-868
21. Hust JG, Lankford AB., Thermal conductivity of aluminum, copper, iron, and tungsten for temperatures from 1 K to the melting point [Internet]. Gaithersburg, MD: National Bureau of Standards; 1984 [cited 2018 Jun 30]. Report No.: NBS IR 84-3007. Available from: https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nbsir84-3007.pdf.
22. Perecherla A, Williams WS., Room-temperature thermal conductivity of cemented transition-metal carbides. J. Am. Ceram. Soc. 1988; 71: 1130–1133. doi: 10.1111/j.1151-2916.1988.tb05804.x
23. Yue D, Gao Y, Zhao L, et al. In situ thermal conductivity measurement in diamond anvil cell. Jpn. J. Appl. Phys. 2019; 58: 040906. doi: 10.7567/1347-4065/ab01f1
24. Giampaoli R, Kantor I, Mezouar M, et al. Measurement of temperature in the laser heated diamond anvil cell: comparison between reflective and refractive optics. High Press. Res. 2018; 38: 250–269. doi: 10.1080/08957959.2018.1480017
25. Hasegawa A, Yagi T, Ohta K., Combination of pulsed light heating thermoreflectance and laser-heated diamond anvil cell for in-situ high pressure-temperature thermal diffusivity measurements. Rev. Sci. Instrum. 2019; 90: 074901. doi: 10.1063/1.5093343