Цитирование: | 1. Динамическая метеорология. Теоретическая метеорология. /Под ред. Д. Л. Лайхтмана.- Л., Гидрометеоиздат, 1976, 607 с.
2. Климова Е. Г. Алгоритм усвоения данных наблюдений на основе адаптивного субоптимального фильтра Калмана.-Метеорология и гидрология, 2005, № 3, с. 24-35.
3. Монин А. С., Яглом А. М. Статистическая гидромеханика. Часть 2. - М., Наука, 1967, 720 с.
4. Статистическая структура метеорологических полей. /Под ред. Л. С. Гандина, В. И. Захариева, Р. Целнаи. - Будапешт, 1976, 365 с.
5. Цырульников М. Д., Локтионова Е. А. Статистическое оценивание горизонтальных ковариационных функций полей ветра для целей объективного анализа.-Метеорология и гидрология, 1993, № 11, с. 32-42.
6. Berre L. Estimation of synoptic and mesoscale forecast error covariances in a Limited- Area Model.-Mon. Wea. Rev., 2000, vol. 128, pp. 644-667.
7. Deng X. and Stude R. A mesoscale analysis method for surface potential temperature in mountainous and coastal terrain. - Mon. Wea. Rev., 2005, vol. 133, pp. 389-408.
8. Derber J. and Bouttier F. A reformulation of the background error covariance in the ECMWF global data assimilation system. - Tellus, 1999, vol. 51A, pp. 195-221.
9. Fisher M. The sensitivity of analysis errors to the specification of background error covariances.- Workshop on Flow-dependent Aspects of Data Assimilation, 11-13 June 2007, pp. 27- 36.
10. Fisher M. and Andersson E. Development in 4D-Var and Kalman Filtering. - Technical Memorandum No. 357, ECMWF, Reading, England, 2001, 36 p.
11. Fisher M. and Courtier P. Estimating the covariance matrix of analysis and forecast errors in variational data assimilation. /In: ECMWF Research Dept., Technical Memorandum No. 220, 1995, pp. 1-26.
12. Ghil M. and Malanotte-Rizzolli P. Data assimilation in meteorology and oceanography. /In: Advances in Geophysics. - New York, Academic Press, 1991, vol. 33, pp. 141- 266.
13. Haggmark L., Ivarsson K. I., Ollvik S., and Olofsson P.-O. Mesan, an operational mesoscale analysis system.-Tellus, 2000, vol. 52A, pp. 2-20.
14. Hollingsworth A. and Lonnberg P. The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field. - Tellus, 1986, vol. 38A, pp. 111-136.
15. Jazwinski A. H. Stochastic Processes and Filtering Theory.-New York, Academic Press, 1970, 377 p.
16. Lee S.-J., Parrish D. F., and Wu W.-S. Near surface data assimilation in the NCEP gridpoint statistical-interpolation system: Use of land temperature data and a comprehensive forward model. - NCEP, Office Note 446, Oct. 7, 2005, 28 p.
17. Lonnberg P. and Hollingsworth A. The statistical structure of short-range forecast errors as determined from radiosonde data. Part II: The covariance of height and wind errors.- Tellus, 1986, vol. 38A, pp. 137-161.
18. Mellor G. L. and Yamada T. Development of turbulence closure model for geophysical fluid problems. - Reviews of Geophysics and Space Physics, 1982, vol. 20, No. 4, pp. 851-875.
19. Qin X., Li W., Tuyl A. V., and Baker E. H. Estimation of three-dimensional error covariances. Part I: Analysis of height innovation vectors. - Mon. Wea. Rev., 2001, vol. 129, pp. 2126-2135.
20. Rabier F., McNally A., Andersson E., et al. The ECMWF implementation of threedimensional variational assimilation (3D-Var). II: Structure functions.-Quart. J. Roy. Meteorol. Soc., 1998, vol. 124, pp. 1809-1829.
21. Rawlins F., Ballard S. P., Bovis K. J., et al. The Met Office global four-dimensional variational data assimilation scheme. - Quart. J. Roy. Meteorol. Soc., 2007, vol. 133, pp. 347-362.
22. Ruggiero F. H., Sashegyi K. D., Madala V. R., and Raman S. The use of surface observations in four-dimensional data assimilation using a mesoscale model.-Mon. Wea. Rev., 1996, vol. 124, pp. 1018-1033.
23. Skamarock W. G. et al. A Description of the Advanced Research WRF Version 2. - Boulder, Colorado, USA, NCAR Technical Note, June 2005, 88 p.
24. http://www.mmm.ucar.ed/wrf.
|